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Epitaxial relationship between singe-crystalline SrRuO3 thin films and SrTiO3 substrate

Figure S1 indicates that (100), (110), and (111) oriented single-SRO thin films are grown 

epitaxially without any strain relaxation. The reciprocal space maps clearly show that the thin 

films are fully strained.
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Figure S1. XRD reciprocal space maps of 30-nm-thick single-crystalline SrRuO3 thin films. (a) (103) 

Bragg reflection of the SrTiO3 substrate for (100) SrRuO3 thin film. (b) (112) Bragg reflection of the 

SrTiO3 substrate for (110) SrRuO3 thin film. (a) (112) Bragg reflection of the SrTiO3 substrate for 

(111) SrRuO3 thin film.



Epitaxial orientation relationship between polycrystalline SrTiO3 substrate and SrRuO3 

thin film

Using Electron backscattering diffraction (EBSD), we obtained the epitaxial orientation 

relationship between the polycrystalline SrTiO3 substrate and SrRuO3 thin film (Fig. S2). 

Note that here we used thick (300 nm) SrRuO3 film to obtain reliable signal of the film from 

the EBSD measurements. The colours for the substrate and the thin film indicated by the 

inverse pole figure are not exactly the same, because of the experimental and analysis error. 

In particular, the significant difference in the electric resistivity between the substrate 

(insulator) and the film (metal) results in difference in the backscattering rate of the electrons. 

Nevertheless, the overall orientation can be considered to be highly alike, judging from the 

cube representation of the orientation shown in Figure S2. Therefore, we can conclude that 

the grains in the polycrystalline thin film and substrate have the same orientation.
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Figure S2. Inverse pole figure images of substrate (a) and film (b). Each corresponding domain in 

polycrystalline film followed substrate orientations. The cubic in each grain represent schematic 

orientation information.



Metallic behavior of single- and polycrystalline SrRuO3 epitaxial thin films in different 

temperature ranges

To investigate the temperature dependence of the metallic behaviour of single- and poly-SRO thin 

films, the ρ(T) curves (Fig. S3) were fitted using the relation ρ(T) = ρ0 + ATα (where ρ0 is the residual 

resistivity, A is a coefficient, and α is scaling parameter), in three different temperature ranges: T < 30 

K, 30 K < T < TC, and TC < T . Different α exponents were used to fit the metallic behaviour of the 

ρ(T) curves in each region (α = 2 for T < 30 K, α = 1.5 for 30 K < T < TC, and α = 2.0 for TC < T).
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Figure S3. Temperature dependence of ρ(T) for single- and polycrystalline SrRuO3 thin films in three 

specific regions (a) T2 for T < 30 K, (b) T1.5 for 30 K < T < TC, and (c) T0.5 for TC < T. The thick and 

thin lines represent the experimental data and the fitted results, respectively.



Relationship between atomic average distance and TC

The average distances between the Ru ions can be deduced from simple structural considerations. 

Taking into account the different strain state of single-crystalline thin films with different orientation, 

we obtained the Ru-Ru average distances between nearest, next-nearest, and next-next-nearest 

neighbour (n.n., n.n.n., and n.n.n.n., respectively) Ru ions, as shown in Figure S4. As the average 

atomic distance increases, the ferromagnetic TC decreases, as expected.
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Figure S4. Dependence of TC on Ru-Ru average distance, calculated for (a) n.n., (b) n.n. and n.n.n., 

and (c) n.n., n.n.n., and n.n.n.n. Ru ions. The corresponding number of Ru ions included in the 

calculation increases from (a) 6 to (b) 18 to (c) 26. The same trend was obtained when different 

number of Ru ions was considered.



XRD analysis of epitaxial single- and polycrystalline SrRuO3 thin films

Figure S5 shows the XRD θ-2θ scans for epitaxial poly-SRO thin film. The comparison of the 

thickness dependence of the single- and poly-SRO thin films indirectly indicates that the poly-SRO 

film is strained with respect to the substrate lattice, an also that its strain state is not identical to that of 

the single-SRO thin film. Compared with the single-SRO thin film, the poly-SRO thin film has a 

smaller c-axis lattice constant, suggesting a lower compressive strain, possibly due to the coalescence 

of the grains. An even smaller c-axis lattice constant is observed for the thicker film, indicating 

further strain relaxation.
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Figure S5. Comparison between epitaxial single- and poly-crystalline SrRuO3 thin films for (a) (110) 

and (b) (200) XRD Bragg peaks, describing the evolution of strain in the SrRuO3 thin films.


