Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Enzymatic cascades for the stereo-complementary epimerisation of *in situ* generated epoxy alcohols

Yu-Chang Liu,^{‡a,b,c} Chao Guo,^{‡a,b,c} Yan Liu,^{a, b} Hai-Bo Wang^{a, b} and Zhong-Liu Wu*^{a,b}

^a Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
E-mail: <u>wuzhl@cib.ac.cn</u>; Tel: +86 28-82890434
^b Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
^c Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

[‡] Both authors contribute equally to this work.

Table S1. Construction of plasmids in this work	2
Table S2. Sequences of oligonucleotides used in this work	2
Table S3. Separation conditions for chiral HPLC analysis ^a	3
Chiral HPLC chromatograms	4
NMR spectra of products	23

Constructed plasmid	Vector	Target enzyme	Primer set	
			Forward	Reverse
pET(AB)	pET15b	SMO	Nde I_AB	Xho I_AB
pET(RE)	pET15b	READH	Nde I_RE	Xho I_RE
pET(LK)	pET15b	LKADH	Nde I_LK	Xho I_LK
pRSFD(LKAB)	pRSFDuet-1	LKADH	EcoR I_LK	<i>Hind</i> III_LK
		SMO	Nde I_AB	Xho I_AB
pRSFD(REAB)	pRSFDuet-1	READH	<i>EcoR</i> I_RE	<i>Hind</i> III_RE
		SMO	Nde I_AB	Xho I_AB
pRSFD(RELK)	pRSFDuet-1	READH	<i>EcoR</i> I_RE	<i>Hind</i> III_RE
		LKADH	Nde I_LK	Xho I_LK
pRSFD(LKRE)	pRSFDuet-1	LKADH	EcoR I_LK	<i>Hind</i> III_LK
		READH	Nde I_RE	Xho I_RE
pRSFD(PFC05)	pRSFDuet-1	PFADH	<i>EcoR</i> I_PF	<i>Hind</i> III_PF
		ChKRED05	Nde I_C05	Xho I_C05

Table S1. Construction of plasmids in this work

Table S2. Sequences of oligonucleotides used in this work

Primer	Sequence
<i>EcoR</i> I_RE	CCG <u>GAATTC</u> GATGAAGGCAATCCAGTACACGAG
<i>Hind</i> III_RE	CCC <u>AAGCTT</u> CTACAGACCAGGGACCACAAC
Nde I_AB	CGC <u>CATATG</u> ATGAAAAAGCGTATCGGTATTGTTGGT
Xho I_AB	CCG <u>CTCGAG</u> TTAATTCAGGGGCAGCGGATTG
Nde I_LK	CGC <u>CATATG</u> ATGACTGATCGTTTAAAAGGCAAAGTAGCAATTG
Xho I_LK	CCG <u>CTCGAG</u> TTATTGAGCAGTGTATCCACCATCGACAACGAACTCTG
EcoR I_LK	CCG <u>GAATTC</u> GATGACTGATCGTTTAAAAGGCAAAGTAGCAATTG
<i>Hind</i> III_LK	CCC <u>AAGCTT</u> TTATTGAGCAGTGTATCCACCATCGACAACGAACTCTG
Nde I_RE	CGC <u>CATATG</u> ATGAAGGCAATCCAGTACACGAG
Xho I_RE	CCG <u>CTCGAG</u> CTACAGACCAGGGACCACAAC
EcoR I_PF	CCG <u>GAATTC</u> GATGAGCTATAACTTCCATAAT
<i>Hind</i> III_PF	CCC <u>AAGCTT</u> ACTGCGCGGTATAGCCGCCATCCACCGGCAAG
Nde I_C05	CGC <u>CATATG</u> ATGAATATCAACGGAAAAAATGC
Xho I_C05	CCG <u>CTCGAG</u> TTAAGGATTTGTAGAGAAAATTG

Entry	Substrate	Column	Column temperature (°C)	Hexane/ 2-propanol	Flow rate (mL/min)
1	1a	AD-H	35	90/10	0.5
2	2a	AD-H	35	95/5	0.5
3	3a	AS-H	35	90/10	0.5
4	4a	AS-H	25	98/2	0.5
5	5a	AS-H	35	95/5	0.5
6	6a	AD-H	35	90/10	0.5
7	7a	AD-H	35	90/10	0.5
8	8a	AS-H	35	95/5	0.5
9	9a	AS-H	35	95/5	0.5
10	10a	AS-H	35	95/5	0.5
11	11a	AD-H	35	95/5	0.5
12	12a	AD-H	35	90/10	0.5

Table S3. Separation conditions for chiral HPLC analysis^a

^a All the products and by-products derived from the same substrate were analyzed under the same conditions. The analysis was conducted with a Shimadzu Prominence LC-20AD system connected to a PDA-detector.

Chiral HPLC chromatograms

Shown are chromatograms detected at 220 nm using a photo diode array (PDA) detector.

<u>Chiral HPLC analysis for **1b** production (top to bottom):</u> Standard sample of (*rac*)-**1b**; products of the (2*R*)- and (2*S*)-system

Standard sample of (*rac*)-1c

<u>Chiral HPLC analysis for **2b** production (2nd of two attempts) (top to bottom):</u> Standard samples of (*rac*)-**2b**; products of the (2*R*)- and (2*S*)-system

2 总计

36.175

7193268

7319982

181879

185433

98.083

100.000

98.269

100.000

<u>Chiral HPLC analysis for **4b** production (top to bottom):</u> Standard samples of (*rac*)-**4b**; products of the (*2R*)- and (*2S*)-system

Peak#	Ret. Time	Area	Height	Area %	Height %
1	32.657	319985	8547	1.557	1.674
2	34.640	143160	3801	0.697	0.745
3	37.554	20086240	498165	97.746	97.581
总计		20549385	510513	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	29.792	109244	3407	1.157	1.244
2	31.358	71284	2386	0.755	0.871
3	32.692	9262151	268074	98.088	97.885
总计		9442680	273866	100.000	100.000

<u>Chiral HPLC analysis for **5b** production (top to bottom):</u> Standard samples of (*rac*)-**5b**; products of the (2*R*)- and (2*S*)-system

Standard samples of (*rac*)-5a, 5e and (*rac*)-5f;

<u>Chiral HPLC analysis for **6b** production (top to bottom):</u> Standard samples of (*rac*)-**6b**; products of the (2*R*)- and (2*S*)-system

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.293	10522178	547646	100.000	100.000
总计		10522178	547646	100.000	100.000

<u>Chiral HPLC analysis for **7b** production (top to bottom):</u> Standard samples of (*rac*)-**7b**; products of the (*2R*)- and (*2S*)-system

FCakff	Ret. Time	Alea	rieight	Alca 70	neight 70
1	8.968	209454	21503	1.773	3.391
2	10.503	357525	28155	3.027	4.440
3	12.648	193739	14126	1.640	2.228
4	16.226	154922	10810	1.312	1.705
5	16.869	10894958	559534	92.247	88.237
总计		11810598	634128	100.000	100.000

Standard samples of (*rac*)-7c, 7e and (*rac*)-7f;

<u>Chiral HPLC analysis for **8b** production (top to bottom):</u> Standard samples of (*rac*)-**8b**; products of the (2*R*)- and (2*S*)-system

Standard samples of (*rac*)-8c, 8e and (*rac*)-8f;

<u>Chiral HPLC analysis for **9b** production (top to bottom):</u> Standard samples of (*rac*)-**9b**; products of the (2*R*)- and (2*S*)-system

Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.274	17294922	842290	100.000	100.000
总计		17294922	842290	100.000	100.000

<u>Chiral HPLC analysis for **10b** production (top to bottom):</u> Standard samples of (*rac*)-**10b**; products of the (2*R*)- and (2*S*)-system

Standard samples of (rac)-10a, 10e and (rac)-10f

<u>Chiral HPLC analysis for **11b** production (top to bottom):</u> Standard samples of (*rac*)-**11b**; products of the (2*R*)- and (2*S*)-system

<u>Chiral HPLC analysis for **12b** production (top to bottom):</u> Standard samples of (*rac*)-**12b**; products of the (2*R*)- and (2*S*)-system

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.785	744772	43215	10.141	10.702
2	15.824	6599243	360592	89.859	89.298
总计		7344015	403808	100.000	100.000

NMR spectra of products

¹H-NMR and ¹³C NMR spectra of (2*R*)-b

¹H-NMR and ¹³C-NMR spectra of (2R)-1b

¹H-NMR and ¹³C-NMR spectra of (2R)-**2b**

¹H-NMR and ¹³C-NMR spectra of (2R)-4b

¹H-NMR spectra of (2R)-5b

¹H-NMR and ¹³C-NMR spectra of (2R)-**6b**

¹H-NMR spectra of (2R)-8b

¹H-NMR and ¹³C-NMR spectra of (2R)-10b

140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10

¹H-NMR spectra of (2S)-b

¹H-NMR spectrum of (2*S*)-1b

¹H-NMR spectrum of (2S)-**5b**

¹H-NMR spectrum of (2*S*)-**6b**

¹H-NMR spectrum of (2S)-7b

¹H-NMR spectrum of (2S)-**8b**

¹H-NMR spectrum of (2*S*)-9b

¹H-NMR spectrum of (2S)-10b

