Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Metal-free decarbonylative alkylation-aminoxidation of styrene derivatives with aliphatic aldehydes and N-hydroxyphthalimide

Yu-Xia Li, $^{\rm a}$ Qi-Qiang Wang $^{\rm b}$ and Luo Yang* $^{\rm a,b}$

Table of Contents

I. General information	S1
II. General experimental procedures	S1
III. Condition optimization	S1-2
Table S1. Condition optimization	S2
Table S2. Optimization of the ratio of mixed solvent	S2
IV. Spectra data of products 3a-3p, 4a	S2-9
V. Copies of ¹ H and ¹³ C NMR spectra of products	S10-46

I. General information

Unless otherwise noted, all commercially available compounds were used as provided without further purification. Dry solvents (toluene, benzene, chlorobenzene o-dichlorobenzene, 1,2-dichloroethane, dioxane, acetonitrile, dimethylformamide) were used as commercially available;

Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm) or Sorbent Silica Gel 60 F254 plates. The developed chromatography was analyzed by UV lamp (254 nm). High-resolution mass spectra (HRMS) were obtained from a JEOL JMS-700 instrument (ESI). Melting points are uncorrected. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 400 spectrometer at ambient temperature. Chemical shifts for ¹H NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent resonance as the internal standard (chloroform: δ 7.26 ppm). Chemical shifts for ¹³C NMR spectra are reported in parts per million (ppm) from tetramethylsilane with the solvent as the internal standard (CDCl₃: δ 77.16 ppm). Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet, br = broad signal), coupling constant (Hz), and integration.

II. General experimental procedures

A general experimental procedure is described as following:

To a solution of NHPI (0.2 mmol, 1 equiv.), styrene (0.6 mmol, 3 equiv.) and aldehyde (0.6 mmol, 3 equiv.) in mixed solvent of chlorobenzene (0.5 mL) and acetonitrile (0.5 mL) at ambient temperature. DTBP (0.4 mmol, 2.0 equiv.) was added with vigorous stirring. The reaction mixture was stirring at 130 °C (oil bath temperature) for 12 h under air. Afterwards the resulting mixture was cooled to room temperature, transferred to silica gel column directly and purified by column chromatography on silica gel with a mixture of EtOAc/petroleum ether as eluent to afford the pure product.

III. Condition optimization

Table S1: Condition optimization^{*a*}

Ph	+сно -		$-OH \xrightarrow{2 \text{ equiv [O]}}{\text{solvent, 12 h}} \left($	O C C C	-O Ph
1a	2a	NHPI			3a
entry	ratio	[O]	Solvent	Temp	yield
	1a:2a:NHPI	(2 equiv)		. (°C)	$[\%]^{b}$
1	1:1:1	DTBP	PhCl	130	15
2	3:3:1	DTBP	PhCl	130	36
3	3:3:1	DTBP	PhCl/CH ₃ CN	130	80
4	3:3:1	DTBP	°C ₆ H ₄ Cl ₂ /CH ₃ CN	130	54
5	3:3:1	DTBP	DCE /CH ₃ CN	130	53

6	3:3:1	DTBP	toluene /CH ₃ CN	130	51
7	3:3:1	DTBP	benzene /CH ₃ CN	130	63
8	3:3:1	DTBP	CH ₃ CN	130	47
9	3:3:1	TBHP	PhCl/CH ₃ CN	130	55
10	3:3:1	DCP	PhCl/CH ₃ CN	130	50
11	3:3:1	DTBP	PhCl/CH ₃ CN	110	36
12	3:3:1	DTBP	PhCl/CH ₃ CN	150	74

^{*a*} Conditions: **1a** (3 equiv, 0.6 mmol), **2a** (3 equiv, 0.6 mmol), NHPI (0.2 mmol), DTBP (2.0 equiv, 0.4 mmol), solvent (1.0 mL or mixed solvents in 1:1 volume ratio), reacted for 12 h under air unless otherwise noted. ^{*b*} Isolated yields.

Entry	ratio	Yield (%) ^b
	PhCl : CH ₃ CN	
1	1:1	80
2	1:4	61
3	2:3	72
4	3:2	74
5	4:1	70

Table S2: Optimization of the ratio of mixed solvent ^a

^{*a*} Conditions: **1a** (3 equiv, 0.6 mmol), **2a** (3 equiv, 0.6 mmol), NHPI (0.2 mmol), DTBP (2.0 equiv, 0.4 mmol), solvent (1.0 mL or mixed solvents), reacted for 12 h under air unless otherwise noted. ^{*b*} Isolated yields.

IV. Spectra data of products 3a-3p, 4a

(3a) 2-(3,3-dimethyl-1-phenylbutoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with styrene (**1a**) and pivalaldehyde(**2a**), and purified by flash column chromatography as white solid (51.9 mg, 80%).

M.p. 132-134 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.63 (m, 4H), 7.45-7.43 (m, 2H), 7.29-7.27 (m, 3H), 5.54-5.51 (m, 1H), 2.23-2.18 (m, 1H), 1.88-1.75 (m, 1H), 1.06 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.76, 139.78, 134.27, 128.95, 128.88, 128.34, 128.24, 123.31, 86.96, 48.90, 30.62, 30.14. IR(cm⁻¹): 2933, 1726, 1516, 1466, 1193, 1111. HRMS: calcd. for [M+Na]⁺ C₂₀H₂₁NNaO₃: 346.1419, found: 346.1389.

(3b) 2-(1-(4-(tert-butyl)phenyl)-3,3-dimethylbutoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with 1-(tert-butyl)-4-vinylbenzene (**1b**) and pivalaldehyde(**2a**), and purified by flash column chromatography as white solid (66 mg, 87%). M.p. 136-138 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.64 (m, 4H), 7.37 – 7.34 (m, 2H), 7.30 – 7.26 (m, 2H), 5.56-5.53 (m, 1H), 2.20-2.14 (m, 1H), 1.78-1.73 (m, 1H), 1.25 (s, 9H), 1.06 (s, 9H).¹³C NMR (101 MHz, CDCl₃) δ 163.89, 151.83, 136.77, 134.24, 129.06, 127.79, 125.24, 123.27, 86.74, 49.09, 34.68, 31.38, 30.64, 30.17. IR(cm⁻¹): 2950, 1779, 1723, 1503, 1463, 1354, 978, 696. HRMS: calcd. for [M+Na]⁺ C₂₄H₂₉NNaO₃: 402.2045, found: 402.2046.

(3c) 2-(3,3-dimethyl-1-(p-tolyl)butoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with 1-methyl-4-vinylbenzene (**1c**) and pivalaldehyde(**2a**), and purified by flash column chromatography as white solid (51 mg, 76%). M.p. 101-102 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.63 (m, 4H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H),5.51-5.48(m, 1H), 2.28 (s, 3H), 2.22-2.16 (m, 1H), 1.79-1.74 (m, 1H), 1.05 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.82, 138.74, 136.80, 134.24, 129.04, 128.98, 128.22, 123.31, 86.83, 48.90, 30.59, 30.16, 21.34. IR(cm⁻¹): 2941, 1796, 1723, 1522, 1454, 962. HRMS: calcd.for[M+Na]+C₂₁H₂₃NNaO₃: 360.1576, found: 360.1575.

(3d) 2-(1-(4-chlorophenyl)-3,3-dimethylbutoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with 1-chloro-4-vinylbenzene (**1d**) and pivalaldehyde(**2a**), and purified by flash column chromatography as white solid (40.2 mg, 56%). M.p. 138-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.66(m, 4H), 7.40 – 7.37 (m, 2H), 7.27 (s, 1H), 7.25 (s, 1H), 5.52-549 (m, 1H), 2.19-2.13 (m, 1H), 1.73-1.69(m, 1H), 1.05 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.74, 138.49, 134.73, 134.41, 129.57, 128.85, 128.61, 123.43, 86.22, 49.12, 30.62, 30.13. IR(cm⁻¹): 2958, 1779, 1723, 1597, 1488, 1345, 696. HRMS: calcd. for [M+Na]⁺ C₂₀H₂₀ClNNaO₃: 380.1029, found: 380.1027.

(3e) 2-(1-(3-chlorophenyl)-3,3-dimethylbutoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with 1-chloro-3-vinylbenzene (**1e**) and pivalaldehyde(**2a**), and purified by flash column chromatography as white solid (50.5 mg, 71%). M.p. 147-148 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.66 (m, 4H), 7.43-7.29 (m, 1H), 7.39 – 7.36 (m, 1H), 7.24-7.23 (m, 2H), 5.49-5.46 (m, 1H), 2.18-2.12 (m, 1H), 1.72-1.67 (m, 1H), 1.07 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.75, 142.17, 134.43, 134.14, 129.73, 129.01, 128.87, 128.24, 126.21, 123.46, 86.33, 49.28, 30.67, 30.12. IR(cm⁻¹): 2958, 1788, 1732, 1572, 1463, 1370, 687. HRMS: calcd. for [M+Na]⁺ C₂₀ClNNaO₃: 380.1029, found: 380.1024.

(3f) 2-(1-(2-chlorophenyl)-3,3-dimethylbutoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with 1-chloro-2-vinylbenzene (**1f**) and pivalaldehyde(**2a**), and purified by flash column chromatography as white solid (30 mg, 42%). M.p. 123-124 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.6 Hz, 1H), 7.73 – 7.66 (m, 4H), 7.37 – 7.33 (m, 1H), 7.21 – 7.20 (m, 2H), 6.20-6.17 (m, 1H), 2.14-2.08 (m, 1H), 1.72-1.68 (m, 1H), 1.12 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.78, 137.88, 134.39, 133.47, 129.73, 129.11, 129.01, 127.20, 123.45, 82.61, 49.11, 30.90, 30.14. IR(cm⁻¹): 2950, 1788, 1723, 1480, 1429, 1370, 696. HRMS: calcd. for [M+Na]⁺ C₂₀H₂₀ClNNaO₃: 380.1029, found: 380.1021.

(3g) 2-(1-(4-bromophenyl)-3,3-dimethylbutoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with 1-bromo-4-vinylbenzene (**1g**) and pivalaldehyde(**2a**), and purified by flash column chromatography as white solid (50.5 mg, 63%). M.p. 121-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.66 (m, 4H), 7.44 – 7.40 (m, 2H), 7.34 – 7.32(m, 2H), 5.51-5.48 (m, 1H), 2.18-2.12 (m, 1H), 1.72-1.68 (m, 1H), 1.05 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.77, 139.04, 134.44, 131.58, 129.86, 128.86, 123.46, 122.99, 86.29, 49.17, 30.65, 30.14. IR(cm⁻¹):2958, 1779, 1740, 1597, 1488, 1370, 687. HRMS: calcd. for [M+Na]⁺ C₂₀H₂₀BrNNaO₃: 424.0524, found: 424.0516.

(3h) 2-(1-(3-bromophenyl)-3,3-dimethylbutoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with 1-bromo-3-vinylbenzene (**1h**) and pivalaldehyde(**2a**), and purified by flash column chromatography as white solid (52.3 mg, 65%). M.p. 144-145 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.66 (m, 4H), 7.58 (t, *J* = 2.0 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.18 (t, *J* = 7.8 Hz, 1H), 5.48-5.45 (m, 1H), 2.17-2.11 (m, 1H), 1.72-1.67 (m, 1H), 1.07 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.78, 142.50, 134.45, 131.96, 131.18, 130.05, 128.95, 126.69, 123.49, 122.33, 86.35, 49.38, 30.71, 30.14. IR(cm⁻¹): 2933, 1726, 1559, 1466, 1363, 689.HRMS: calcd. for [M+Na]⁺ C₂₀H₂₀BrNNaO₃: 424.0524, found: 424.0519.

(3i) 2-(1-(4-fluorophenyl)-3,3-dimethylbutoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with 1-fluoro-4-vinylbenzene (**1i**) and pivalaldehyde(**2a**), and purified by flash column chromatography as white solid (48.3 mg, 71%). M.p. 145-146 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 4H), 7.46-7.42 (m, 2H), 6.99 (t, J = 8.8Hz, 2H), 5.53-5.50 (m, 1H), 2.23-2.18 (m, 1H), 1.79-1.74 (m, 1H), 1.07 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 164.31, 163.78, 161.85, 135.70, 135.67, 134.40, 130.15, 130.07, 128.85, 123.41, 115.45, 115.24, 86.24, 48.96, 30.60, 30.15. IR(cm⁻¹): 2942, 1726, 1516, 1457, 1355, 1136. HRMS: calcd. for [M+Na]⁺ C₂₀H₂₀FNNaO₃: 364.1325, found: 364.1319.

(3j) 2-(trans-3,3-dimethyl-1,2-diphenylbutoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with (E)-1,2-diphenylethene(**1j**) and pivalaldehyde(**2a**), and purified by flash column chromatography as white solid(42mg, 53%, trans:cis=1.1:1).

M.p. 153-154 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.61 (m, 4H), 7.19 (s, 2H), 7.01 – 6.97(m, 8H), 5.97 (d, J = 10.0 Hz, 1H), 3.29 (d, J = 10.4 Hz, 1H), 1.21 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.64, 140.93, 137.85, 134.25, 129.50, 128.92, 128.36, 127.52, 126.03, 123.29, 90.51, 60.42, 34.76, 30.05. IR(cm⁻¹): 2921, 1826, 1580, 1516, 1479, 1193, 1046. HRMS: calcd. for [M+Na]⁺ C₂₆H₂₅NNaO₃: 422.1732, found: 422.1727.

(3j') 2-(cis-3,3-dimethyl-1,2-diphenylbutoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with *cis*-1,2-diphenylethene (**1j**') and pivalaldehyde(**2a**), and purified by flash column chromatography as white solid(48 mg, 60%, trans:cis=3:1).

M.p. 153-154 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.61 (m, 4H), 7.21 (m, 5H), 7.16 – 7.10 (m, 5H), 6.18 (d, *J* = 4.8Hz, 1H), 2.83 (d, *J* = 4.8 Hz, 1H), 1.05 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 163.82, 138.71, 138.29, 134.24, 129.05, 128.69, 128.53, 127.71, 127.47, 126.64, 123.24, 88.41, 62.93, 34.88, 29.66. IR(cm⁻¹): 2921, 1826, 1580, 1516, 1479, 1193, 1046. HRMS: calcd. for [M+Na]⁺ C₂₆H₂₅NNaO₃: 422.1732, found: 422.1727.

(3k) 2-(3-methyl-1-phenylbutoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with styrene (**1a**) and isobutyraldehyde(**2b**), and purified by flash column chromatography as a colorless oil (45.2 mg, 74%).

¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.65 (m, 4H), 7.47-7.44 (m, 2H), 7.34-7.29 (m, 3H), 5.44-5.41 (m, 1H), 2.15 – 2.08 (m, 1H), 1.81-1.72 (m, 2H), 1.04 (d, *J* = 6.4 Hz, 3H), 0.98 (d, *J* = 6.4 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 163.84, 138.62, 134.32, 129.08, 128.96, 128.40, 128.26, 123.39, 87.78, 44.11, 25.08, 22.83, 22.69. IR(cm⁻¹): 2941, 1796, 1732, 1589, 1496, 1370, 1180.HRMS: calcd. for [M+Na]⁺ C₁₉H₁₉NNaO₃: 332.1263, found: 332.1263.

(3l) 2-((3-methyl-1-phenylpentyl)oxy)isoindoline-1,3-dione¹

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with styrene (**1a**) and 2-methylbutanal(**2c**), and purified by flash column chromatography as a colorless oil (47.0 mg, 73%).

¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.64 (m, 4H), 7.47-7.45(m, 2H), 7.31 – 7.29 (m, 3H), 5.47-5.44 (m, 1H), 2.27 – 2.20 (m, 1H), 1.78 – 1.70 (m, 1H), 1.59 – 1.58 (m, 1H), 1.45 – 1.40 (m, 1H), 1.29-1.21 (m, 1H), 1.05 (d, *J* = 6.4 Hz, 3H), 0.90 (t, *J* = 7.6 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 163.85, 139.00, 134.33, 129.03, 128.94, 128.38, 128.16, 123.38, 87.43, 42.51, 31.18, 29.78, 19.10, 11.27. IR(cm⁻¹): 2966, 1796, 1732, 1496, 1454, 1362, 1180. HRMS: calcd. for [M+Na]⁺ C₂₀H₂₁NNaO₃: 346.1419, found: 346.1385.

(4m) 2-((3-methyl-1-phenylhexyl)oxy)isoindoline-1,3-dione¹

The title compound was prepared according to the general procedure described above by the

¹ Diastereoselectivities were not determined.

reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with styrene (**1a**) and 2-methylpentanal (**2d**), and purified by flash column chromatography as a colorless oil (45.5 mg, 68%).

¹H NMR (400 MHz, CDCl₃) δ 7.72-7.65 (m, 4H), 7.46 – 7.44 (m, 2H), 7.33-7.30 (m, 3H), 5.43 (t, J = 7.4 Hz, 1H), 2.03 – 1.92 (m, 2H), 1.58 – 1.42 (m, 2H), 1.33 – 1.29 (m, 2H), 1.19 – 1.14 (m, 1H), 0.95 (d, J = 6.6 Hz, 3H), 0.87 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 163.85, 138.34, 134.32, 129.13, 128.96, 128.41, 128.38, 128.28, 128.03, 126.33, 123.40, 123.38, 88.01, 87.37, 41.81, 39.40, 29.52, 20.41, 19.95, 19.86, 14.38. IR(cm⁻¹): 2950, 1736, 1504, 1454, 1336. HRMS: calcd. for [M+Na]⁺ C₂₁H₂₃NNaO₃: 360.1576, found: 360.1578.

(3n) 2-((3-ethyl-1-phenylpentyl)oxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with styrene (**1a**) and 2-ethylbutanal (**2e**), and purified by flash column chromatography as a colorless oil (45.2 mg, 71%).

¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.64 (m, 4H), 7.47-7.45 (m, 2H), 7.31 – 7.30 (m, 3H), 5.42(t, J = 7.0 Hz, 1H), 2.17 – 2.10 (m, 1H), 1.85 – 1.80 (m, 1H), 1.48 – 1.37 (m, 5H), 0.90 – 0.85 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.84, 138.79, 134.32, 129.05, 128.96, 128.38, 128.26, 123.38, 87.85, 38.61, 36.90, 25.53, 25.28, 10.68, 10.60. IR(cm⁻¹): 2958, 1796, 1732, 1505, 1471, 1370, 1172. HRMS: calcd. for [M+Na]⁺ C₂₁H₂₃NNaO₃: 360.1576, found: 360.1571.

(30) 2-(2-cyclohexyl-1-phenylethoxy)isoindoline-1,3-dione

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with styrene (1a) and 2-ethylhexanal (**2f**), and purified by flash column chromatography as white solid (43.2 mg, 62%).

M.p. 133-135 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.65 (m, 4H), 7.46 – 7.44 (m, 2H), 7.32 – 7.29 (m, 3H), 5.48-5.45 (m, 1H), 2.15-2.07 (m, 1H), 1.95 (d, *J* = 12.8 Hz, 1H), 1.81 – 1.71 (m, 5H), 1.54 – 1.49 (m, 1H), 1.27 – 1.17(m, 3H), 1.05 – 0.96 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.85, 138.74, 134.32, 129.05, 128.95, 128.39, 128.23, 123.39, 87.20, 42.82, 34.34, 33.61, 33.24, 26.64, 26.28. IR(cm⁻¹): 2916, 2849, 1796, 1715, 1505, 1463, 1446, 1362, 1180. HRMS: calcd. for [M+Na]⁺ C₂₂H₂₃NNaO₃: 372.1576, found: 372.1598.

(3p) 2-((3-ethyl-1-phenylheptyl)oxy)isoindoline-1,3-dione¹

The title compound was prepared according to the general procedure described above by the reaction between 2-hydroxyisoindoline-1,3-dione (**NHPI**) with styrene (**1a**) and 2-ethylhexanal (**2g**), and purified by flash column chromatography as a colorless oil (45.2 mg, 61%).

¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.65 (m, 4H), 7.47-7.44 (m, 2H), 7.30 (d, *J* = 6.0 Hz, 3H), 5.42 (t, *J* = 7.0 Hz, 1H), 2.13– 2.12 (m, 1H), 1.84-1.78 (m, 1H), 1.50-1.44 (m, 2H), 1.40 – 1.37 (m, 2H), 1.27 (s, 5H), 0.89 – 0.85 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.85, 138.82, 138.73, 134.31, 129.05, 128.97, 128.38, 128.30, 128.26, 123.38, 87.89, 87.84, 39.08, 38.94, 35.50, 32.89, 32.67, 28.72, 28.60, 26.02, 25.75, 23.17, 23.13, 14.26, 14.25, 10.61, 10.54. IR(cm⁻¹): 2950, 2933, 1788, 1732, 1597, 1496, 1345, 1188. HRMS: calcd. for [M+Na]⁺ C₂₃H₂₇NNaO₃: 388.1889, found: 388.1864.

(4a) O-(3,3-dimethyl-1-phenylbutyl)hydroxylamine

To a solution of **3a** (64.6mg, 0.2 mmol) in 10% MeOH in CHCl₃ (2.0 mL) was added hydrazine monohydrate (0.03 mL, 0.6 mm), and the reaction mixture was stirred at room temperature. Upon completion (TLC monitoring, 16 h), a white precipitate appeared in a colorless reaction solution. The reaction mixture was passed through a short plug of silica gel washing with 30% EtOAc in hexane (30 mL). The filtrate was concentrated, and the residue was taken up in hexane (10 mL). The solution was acidified to pH=3 with H₂SO₄ in ether/hexane (1:3). A white precipitate formed and was separated by filtration washing with ether/hexane (1:3, 10 mL). The collected white precipitate was partitioned between ether (5 mL) and aqueous saturated K₂CO₃ solution (5 mL), and the aqueous phase was extracted with additional portions of ether (5 mL x 3). The combined organic layers were dried and concentrated to give O-(3,3-dimethyl-1-phenylbutyl)hydroxylamine as a colorless oil (29.7 mg, 77%);

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 5H), 5.13 (s, 2H), 4.62-4.59 (m, 1H), 1.79-1.74 (m, 1H), 1.48-1.44 (m, 1H), 0.97 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 143.75, 128.70, 127.66, 126.73, 85.56, 50.28, 30.59, 30.26. IR(cm⁻¹): 2949, 1581, 1464, 1377. HRMS: calcd. for [M+H]⁺ C₁₂H₂₀NO: 194.1545, found: 194.1539.

VI. Copies of 1H and 13C NMR spectra of products

