Oxidation of Terminal Diols Using an Oxoammonium Salt: A Systematic Study

Shelli A. Miller, James M. Bobbitt and Nicholas E. Leadbeater

Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States

Supporting Information: Experimental Studies

Key to Abbreviated Terms	S1
General Considerations Comments regarding origins of commercial starting materials, purification of solvents, and our spectroscopic techniques.	S2
Oxidation of Diols General oxidation procedure and spectral data for products	S 3
Post-Oxidation reactions Aldol, Wittig, Grignard, and Oxidative functionalization reactions	S 5
¹ H-NMR Spectra of Synthesized Compounds	S9
¹³ C-NMR Spectra of Synthesized Compounds	S23
¹⁹ F-NMR Spectrum of 12	S37

Key to Abbreviated Terms:

CDCl₃: deuterated chloroform

CH₂Cl₂: dichloromethane

TLC: Thin layer chromatography

General Considerations:

General:

NMR Spectra (¹H, ¹³C) were performed at 298 K on a Brüker DRX-400 400 MHz NMR. ¹H-NMR Spectra obtained in CDCl₃ were referenced to residual non-deuterated chloroform (7.26 ppm) in the deuterated solvent. ¹³C-NMR Spectra obtained in CDCl₃ were referenced to chloroform (77.3 ppm). ¹⁹F-NMR spectra were referenced to hexafluorobenzene (–164.9 ppm). Reactions in CH₂Cl₂ could be monitored with ¹H NMR by irradiating the solvent peak at 5.30 ppm. Flash chromatography and silica plugs utilized Dynamic Adsorbents Inc. Flash Silica Gel (60Å porosity, 32-63 µm). TLC analysis was performed using hexanes/ethyl acetate as the eluent and visualized using iodine. IR spectra were obtained on a Brüker ALPHA FT-IR spectrometer. High-resolution mass spectra were performed on either a JEOL AccuTOF-DART SVP 100 in positive direct analysis in real time (DART) ionization method, using PEG as the internal standard.

Chemicals:

Deuterated chloroform was purchased from Cambridge Isotope Laboratories and stored over 4\AA molecular sieves. All chemicals were purchased from commercial suppliers with exception of the oxoammonium salt 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate, **1**, which was prepared according to an established protocol.¹

¹ M. A. Mercadante, C. B. Kelly, J. M. Bobbitt, L. J. Tilley and N. E. Leadbeater, Nat. Protoc. 2013, 8, 666-676.

Oxidation of Diols

GENERAL PROCEDURE

1,10-Decanedial (3a) (1.294 g, 76%) was prepared from 1,10-decanediol (1.743 g, 10 mmol, 1 equiv). To a 250-mL round bottom flask equipped with a stir bar was added 1,10-

decanediol and dichloromethane (100 mL, 0.1 M in diol). After stirring for 5 min, the oxoammonium salt (6.302 g, 21 mmol, 2.1 equiv) was added, followed by silica gel (2.644 g, 2 mass equiv to substrate). The flask was sealed with a rubber septa and the mixture was allowed to stir until the slurry became white. Once white, the slurry was filtered through a thin pad of silica gel. The solid was washed using CH_2Cl_2 . The CH_2Cl_2 was removed *in vacuo* by rotary evaporation to afford the pure dialdehyde product, 1,10-decanedial, as a pale yellow oil.²

¹**H** NMR (CDCl₃, 400 MHz) δ ppm 1.30 (s, 8 H) 1.56 - 1.65 (m, 4 H) 2.40 (td, *J*=1.77, 7.30 Hz, 4 H) 9.74 (t, *J*=1.82 Hz, 2 H)

¹³C NMR (CDCl₃, 100 MHz) δ ppm 22.25 (CH₂) 29.29 (CH₂) 29.36 (CH₂) 44.10 (CH₂) 203.04 (CHO)

1,9-Nonanedial (3b) (0.690g, 83%) was prepared from 1,9nonanediol (0.801 g, 5 mmol, 1 equiv) using the general procedure to afford the product as a colorless oil.³

¹**H** NMR (CDCl₃, 400 MHz) δ ppm 1.19 (bs, 6H) 1.48 (m, 4H) 2.29 (t, *J* = 7.0 Hz, 4H) 9.61 (bs, 2H)

¹³C NMR (CDCl₃, 100 MHz) δ ppm 21.15 (CH₂) 28.10 (CH₂) 28.28 (CH₂) 43.00 (CH₂) 201.89 (CO)

² T. Suzuki, M. Tokunaga, Y. Wakatsuki, Org. Lett. 2001, 3, 735-737.

³ A. Ozanne, L. Pouységu, D. Depernet, B. François, S. Quideau, Org. Lett. 2003, 5, 2903-2906.

1,8-Octanedial (3c) (1.201 g, 84%) was prepared from 1,8-octanediol (1.462 g, 10 mmol, 1 equiv) using the general procedure to afford the product as a colorless oil.⁴

¹H NMR (CDCl₃, 400 MHz) δ ppm 1.27 - 1.35 (m, 4 H) 1.54 - 1.64 (m, 4 H) 2.39 (td, *J*=1.70, 7.25 Hz, 4 H) 9.72 (t, *J*=1.75 Hz, 2 H)
¹³C NMR (CDCl₃, 100 MHz) δ ppm 21.96 (CH₂) 29.01 (CH₂) 43.90 (CH₂) 202.78 (CHO)

Heptanedialdehyde (3d) (0.826 g, 64%) was prepared from 1,7-heptanediol (1.322 g, 10 mmol, 1 equiv) using the general procedure to afford the product as a pale yellow $oil.^5$

¹H NMR (CDCl₃, 400 MHz) δ ppm 1.28 - 1.39 (m, 2 H) 1.62 (quin, *J*=7.52 Hz, 4 H) 2.41 (td, *J*=1.61, 7.27 Hz, 4 H) 9.73 (t, *J*=1.63 Hz, 2 H)
¹³C NMR (CDCl₃, 100 MHz) δ ppm 21.94 (CH₂) 28.79 (CH₂) 43.79 (CH₂) 202.49 (CHO)

Adipaldehyde (3e) (26%) was prepared from 1,6-hexanediol (1.182 g, 10 mmol, 1 equiv) using the general procedure to afford the products adipaldehyde and caprolactone (4e) as an inseparable mixture of a

colorless oil (0.874 g, 87%).⁵

¹H NMR (CDCl₃, 400 MHz) δ ppm 1.62 (m, 4H) 2.44 (m, 4H) 9.73 (t, J = 1.5 Hz, 2H) ¹³C NMR (CDCl₃, 100 MHz) δ ppm 21.63 (CH₂) 43.71 (CH₂) 202.12 (CHO)

Caprolactone (4e) (74%)⁶

¹H NMR (CDCl₃, 400 MHz) δ ppm 2.24 (quin, *J*=7.58 Hz, 2 H) 2.47 (t, *J*=8.26 Hz, 2 H) 4.32 (t, *J*=7.06 Hz, 2 H)
¹³C NMR (CDCl₃, 100 MHz) δ ppm 29.12 (CH₂) 29.47 (CH₂) 23.11 (CH₂)

34.73 (CH2) 69.48 (CH2) 176.42 (CHO)

\delta-Valerolactone (4f) (0.817 g, 82%) was prepared from 1,5-pentanediol (0.994 g, 10 mmol, 1 equiv) using the general procedure to afford the product as a white solid.⁶

¹H NMR (CDCl₃, 400 MHz) δ ppm 1.86 (m, 1H) 2.53 (t, *J*=6.97 Hz, 1H) 4.32 (t, *J*=5.62 Hz, 1H) ¹³C NMR (CDCl₃, 100 MHz) δ ppm 19.03 (CH₂) 22.26 (CH₂) 29.79 (CH₂) 69.44 (OCH₂) 171.46 (CO)

⁴ X. Jiang, J. Zhang, S. Ma J. Am. Chem. Soc. 2016, 138, 8344-8347.

⁵ B. Hong, H. Tseng, S. Chen, *Tetrahedron* **2007**, *63*, 2840-2850.

⁶ T. Miyazawa, T. Endo J. Org. Chem. **1985**, 50, 3930-3931.

Butyrolactone (4g) (0.523 g, 61%) was prepared from 1,4-butanediol (0.901 g, 10 mmol, 1 equiv) using the general procedure to afford the product as a colorless oil.⁶

¹H NMR (CDCl₃, 400 MHz) δ ppm 2.24 (quin, *J*=7.58 Hz, 2 H) 2.47 (t, *J*=8.26 Hz, 2 H) 4.32 (t, *J*=7.06 Hz, 2 H) ¹³C NMP (CDCl₂ 100 MHz) δ ppm 22.38 (CH₂) 27.08 (CH₂) 68.72 (CH₂) 177.02 (CO)

¹³C NMR (CDCl₃, 100 MHz) δ ppm 22.38 (CH₂) 27.98 (CH₂) 68.72 (CH₂) 177.92 (CO)

2-Hydroxymethyl-1,3-dioxolane (6) (1.363g, 65%) was prepared from freshly distilled ethylene glycol (2.483 g, 40 mmol, 1 equiv), using the following modification the general procedure: Ethylene glycol was stirred in CH₂Cl₂ (200 mL, 0.2 M in diol), then 0.55 equiv (6.602 g, 22 mmol) oxoammonium salt was

added, followed by 1.98 g silica gel (0.8 mass equiv to the substrate). The mixture was refluxed for 20 h, at which point the white slurry was filtered through a pad of silica gel. Due to volatility, the solvent was removed *via* evaporation through a 30 cm Vigreux column to afford the product as a pale yellow oil.⁷

¹H NMR (CDCl₃, 400 MHz) δ ppm 3.64 (br. d, *J*=2.40 Hz, 2 H) 3.67 (br. s, 1 H) 3.85 - 4.04 (m, 4 H) 4.96 (t, *J*=3.24 Hz, 1 H)
¹³C NMR (CDCl₃, 100 MHz) δ ppm 62.68 (CH₂O) 65.09 (CH₂O) 103.21 (OCHO)

2-Hydroxyethyl-1,3-dioxane (7) (0.485 g, 73%) was prepared from 1,3propanediol (0.761 g, 10 mmol, 1 equiv) using the following modifications to the general procedure: 0.5 equiv (1.501 g, 5 mmol) oxoammonium salt was added, followed by 1.501 g silica gel (1 mass equiv to the

oxoammonium salt). The product was afforded as a yellow oil.8

¹H NMR (CDCl₃, 400 MHz) δ ppm 1.30 - 1.37 (dm, *J*=1.28, 13.42 Hz, 1 H) 1.84 (q, *J*=5.28 Hz, 2 H) 2.01 - 2.14 (qt, *J*=1.28, 13.42 Hz, 1 H) 2.62 (br. s, 1 H) 3.69 - 3.80 (m, 4 H) 4.09 (dd, *J*=5.06, 10.56 Hz, 2 H) 4.73 (t, *J*=4.84 Hz, 1 H)
¹³C NMR (CDCl₃, 100 MHz) δ ppm 25.91 (CH₂) 37.35 (CH₂) 58.87 (CH₂O) 67.10 (CH₂O) 102.01 (OCHO)

⁷ J. R. Sanderson, E. L. Yeakey, J. J. Lin, R. Duranleau, E. T. Marquis J. Org. Chem. 1987, 52, 3243-3246.

⁸ C. S. Shiner, T. Tsunoda, B. A. Goodman, S. Ingham, S.-H. Lee, P. E. Vorndam J. Am. Chem. Soc. 1989, 111, 1381-1392.

1-Cycloheptene-1-carboxaldehyde (9) (1.06 g, 50%) was prepared from the oxidation of 1,8-octanediol (2.5 g, 17.1 mmol, 1 equiv) using the procedure outlined above for oxidation, followed by a subsequent Aldol reaction. To the resulting solution of 1,8-octanedial, filtered off from the silica gel and oxoammonium salt, was added L-proline (1.5 g, 13 mmol, 0.76 eq) and 1.5 g of activated 4Å molecular sieves. The mixture was refluxed for 2 days, then filtered through a pad of silica gel. Due to volatility, the solvent was removed *via* evaporation through a 30 mm Vigreux column to afford the product as an orange oil.⁹

¹H NMR (CDCl₃, 400 MHz) δ ppm 1.45 (m, 1H) 1.56 (m, 1H) 1.75 (m, 1H) 2.37 (t, J = 5.6 Hz, 1H) 2.42 (q, J = 5.9 Hz, 1H) 6.83 (t, J = 6.3 Hz, 1H) ¹³C NMR (CDCl₃, 100 MHz) δ ppm 24.01 (CH₂) 26.17 (CH₂) 26.23 (CH₂) 30.08 (CH₂) 31.89 (CH₂) 147.64 (C) 157.22 (CH) 194.54 (CHO)

1,10-Undecadiene (10) (0.655 g, 86%) was prepared from the oxidation of 1,9-nonanediol (0.801 g, 5 mmol, 1 equiv) using the procedure outlined above for oxidation, followed by a subsequent Wittig reaction. The Wittig reagent, methylenetriphenylphosphorane, was prepared by stirring methyltriphenylphosphonium bromide (5.355 g, 15 mmol, 3 equiv to diol) and potassium t-butoxide (1.68 g, 15 mmol, 3 equiv to diol) in dry diethyl ether (75 mL, 0.2 M) for 7 hours. The filtered solution of 1,9-nonanedial was added directly to this solution and the mixture was filtered overnight. The solution was filtered and the solvent was removed *in vacuo*, resulting in a thick oil. Pentane (50 mL) was added to precipitate excess triphenylphosphine and the oxide byproduct. The resulting slurry was filtered through silica and the solvent was removed *in vacuo* to afford the product as a colorless oil.¹⁰

¹H NMR (CDCl₃, 400 MHz) δ ppm 1.34 (m, 10H). 2.05 (q, J = 7.1 Hz, 4H), 4.94 (dd, J=1.4, 8.00 Hz, 2H) 5.00 (dd, J = 1.9, 17.1 Hz, 2H) 5.84 (tq, J = 6.8, 14.8 Hz, 2H), ¹³C NMR (CDCl₃, 100 MHz) δ ppm 29.25 (CH₂) 29.41 (CH₂) 29.66 (CH₂) 34.12 (CH₂) 114.41 (CH₂) 139.46 (CH)

⁹ I. G. Molnár, E. Tanzer, C. Daniliuc, R. Gilmour, Chem. Eur. J. 2014, 20, 794-800.

¹⁰ X. Li, C. E. Burrell, R. J. Staples, B. Borhan, J. Am. Chem. Soc. 2012, 134, 9026-9029.

2,11-Dodecanediol (11) (0.900 g, 89%) was prepared from 1,10-decanediol (0.870 g, 5 mmol, 1 equiv) using the procedure outlined above for oxidation, followed by a subsequent Grignard reaction. A solution of 1,10-decanedial, filtered off of the silica gel and oxoammonium salt, was added to a solution of commercially available 3 M methylmagnesium chloride in anhydrous diethyl ether (7 mL, 21 mmol, 4.2 equiv). The solution was stirred overnight, then aliquots (~25 drops) of aqueous saturated potassium carbonate were added dropwise about 10 min apart. After 5 aliquots a white precipitate formed. The solution was filtered, and the solvent removed *in vacuo* to afford the product as white solid.¹⁰

¹H NMR (CDCl₃, 400 MHz) δ ppm 1.13 (d, *J*=8.00 Hz, 6H) 1.33 (m, 16H) 1.98 (br. s, 2 H) 3.72 (m, 2H)

¹³C NMR (CDCl₃, 100 MHz) δ ppm 23.62 (CH₂) 25.95 (CH₂) 29.73 (CH₂) 29.83 (CH₂) 29.53 (CH₃) 68.21 (CHOH)

Bis(1,1,1,3,3,3-hexafluoropropan-2-yl) heptanedioate (12) (0.768 g, 77%) was prepared from 1,7-heptanediol (0.676 g, 5 mmol, 1 equiv) using the procedure outlined above for oxidation, followed by subsequent oxidative functionalization using previously published method.¹¹ To the resulting solution of 1,7-heptanedialdehyde (5 mmol), filtered off the silica gel and oxoammonium salt slurry, was added pyridine (10.085 g, 127.5 mmol, 25.5 equiv) and hexafluoroisopropanol (5.041 g, 30 mmol, 6 equiv). After stirring for 5 min, the oxoammonium salt (7.502 g, 25 mmol, 5 equiv) was added all at once. The flask was sealed with a rubber septum and stirred until the solution turned red. Once the reaction was determined complete by TLC, the hexafluoroisopropanol and CH₂Cl₂ was removed *in vacuo*. Pentane or diethyl ether was

¹¹ C. B. Kelly, M. A. Mercadante, R. J. Wiles, N. E. Leadbeater, Org. Lett. 2013, 15, 2222-2225.

added to the resulting slurry to precipitate the nitroxide. After stirring for 5 min, the solution was filtered through a fritted funnel with medium porosity and transferred to a separatory funnel. The organic layer was washed with 1 M HCl (2×150 mL), deionized water (150 mL), and brine (150 mL). The organic layer was dried over sodium sulfate, and the solvent was removed *in vacuo*, affording the ester as a pale yellow oil. (Note: The CH₂Cl₂ may be removed *in vacuo* before the oxidative functionalization, however the reaction is slightly exothermic. With this particular substrate, the formation of the nitroxide, and subsequent red color, occurs within 5 min when concentrated and within 30 min when dilute).

¹**H** NMR (CDCl₃, 400 MHz) δ ppm 1.42 (m, 2H) 1.74 (m, *J* = 7.6 Hz, 2H), 2.53 (t, *J* = 7.3 Hz, 4H), 5.77 (m, *J* = 6.1 Hz, 2H),

¹³C NMR (CDCl₃, 100 MHz) δ ppm 24.29 (CH₂) 28.17 (CH₂) 33.23 (CH₂) 66.69 (m, $J_{O-CH-(CF3)2}=34.74$ Hz) 120.71 (q, $J_{C-F3)2}=282.77$ Hz) 170.25 (CO)

¹⁹**F** NMR (CDCl₃, 377 MHz) δ ppm -76.56 (s, 6 F), -76.57 (s, 6 F)

HRMS (ESI+), calcd for $C_{13}H_{12}F_{12}O_4$ [MH]+, calc. 461.0622, obs. 461.0635; [MNH4]+, calc. 478.0888, obs. 478.0888

FT-IR (neat, ATR, cm⁻¹) 2996-2852 (w, b) 1774 (s) 1381 (m) 1357 (m) 1287 (s) 1267 (m) 1229 (s) 1193 (vs) 1103 (vs) 901 (s) 730 (w) 689 (s) 529 (w) 488 (w)

Bis(1,1,1,3,3,3-hexafluoropropan-2-yl) heptanedioate 400 MHz, CDCl3

) ~~~	3c	~~ <u></u> 0
1,8–Octa 100 MHz	nedial z, CDCl	3																			
manutarijene ⁿ stationensten	4.04.9.9.9.9.9.0.0.9.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0	يېچىلىرى _ي ەر رويىرىنى بىرى	¹ 4-1-1-1 ⁴ /2-1 ⁴ /2-1 ⁴ /2-1-1		┿┺╅ [┲] ┙┺╡╪ _┲ ╹ _╊ ┱╬╍═╪╅┋┍╇	ä,tan quanta an an an an	agentury-and arrowing	<i>زادر به الاير</i> نامه، ريود.	ag-vijgentik brijke gingen kijege	۲۰۰۰ میلومدیارد. مرابع	halqoonaluridism	ryansyasyisen ya ku	5++++ at++++++++++++++++++++++++++++++++	۲۹۶۰۰۰۰ والدور کې د د والدو کې د د والدو کې د والدو کې د د والدو کې	ĸĸĸţĸŊŔĸĊŔĿĸĸŢĸŎĸ	Jonetralita	ing the second second second	ages die Agen wie waarde op	hence infertion of the standard and	arkaditationed;	on formain
200	190	180	170	160	150	140	130	120	110	100		80	70	60	50	40	30	20	 10	 0	ppm

											69.44							$\left\langle \right\rangle$)=0 4f
δ–Valerolactone 100 MHz, CDCl3																			
Man and a state of the state of	ut the state of th	enderselenderselenderse	belande for same for starting	a for a state of the	hanita da la sta Springer segur j	tild beskel liver of	na al a l'an aire Fian I agus anns	Maria Malana ang Prisiana ang Pri	ing the second	المحزر ومنع		ana takang takang da	a and a state of the second		www.	free free free	and the state of the		ing tradest in street
200 190 180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	ppm

19.771 —			
Butyrolactone 100 MHz, CDCl3			
200 190 180 170 1	 10 100 90 80 70	60 50 40 30 20	10 0 ppm

																	<		/-ОН
2–Hydro 100 MHz	xy–1,3- z, CDCI	-dioxa 3	ine																
	190	180	170	160	150	140	130	120	110	 90	 	بابریسیامہ، 60	50	40	**************************************	20	10	······	ppm

