Supplementary Information

Divergent Response of Homologous ATP Sites to Stereospecific Ligand Fluorination for Selectivity Enhancement

Alpesh Patel, Ari Hardianto, Shoba Ranganathan, Fei Liu*

Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, Australia, 2109

I. Synthesis of (-)-balanol 1 and balanoids 1a-1e.

- A. General information. (S2)
- **B**. Synthesis and characterization of the final balanol **1** and balanoids **1a–1e**. (S2–S11)
- C. References. (S11)
- D. NMR spectra of 1, 3a–3e, 3.1a–3.1e, and 1a–1e. (S12–S43)

II. Binding affinity measurements.

A. Binding assay for balanol and balanoids. (S44–S45)

B. Full set of binding constants and curves measured for balanol **1** and balanoids **1a–1e** against PKA/C isozymes. (S45–S49)

III. Docking analysis.

A. Development of docking protocols using the balanol-PKA X-ray crystal structure (pdb code:1BX6). (S50–S52)

B. Construction of the PKCɛ structural homology model. (S52–S56)

C. Docking simulation of balanoids to PKA/C using optimised docking simulation procedure. (S56–S64)

D. References. (S65)

I. Synthesis of (-)-balanol 1 and balanoids 1a-1e.

A. General information.

All reactions were conducted under N₂ atmosphere. Unless otherwise specified, all reagents were purchased from Sigma–Aldrich and used without further purification. CH₂Cl₂ was obtained from a solvent purification system (Innovative Technology SPS400) and stored over MS 4Å beads. Acetone, EtOAc and petroleum ether were distilled before use. Petroleum ether refers to the fraction collected between 60 °C and 80 °C. THF was distilled from Na–benzophenone and stored over MS 4Å beads. ¹H NMR spectra were recorded at 25 °C on either a Bruker DRX600K or DPX400 NMR spectrometer and are reported in ppm using the specified solvent as the internal standard (CDCl₃ at 7.26 ppm, (CD₃)₂SO at 2.50 ppm, CD₃CN at 1.94 ppm). ¹³C NMR spectra are reported in ppm using the specified solvent as the internal standard (CDCl₃ at 7.16 ppm, (CD₃)₂SO at 39.52 ppm, CD₃CN at 1.32 and 118.26 ppm).

B. Synthesis and characterization of the final balanol 1 and balanoids 1a-1e.

Scheme S1.1. Synthesis of balanol **1**. *Reagents and conditions*: (a) H₂, Pd/C, triflic acid, MeOH, 14 h, 25 °C; (b) Et₃N, 4–benzyloxybenzoyl chloride, 2 h, 25 °C, 52% over two steps; (c) 2–chloro–1–methylpyridinium iodide, DMAP, NEt₃, DCM, 8 h, 25 °C, 75%; (d) i) H₂, Pd/C, THF, H₂O, AcOH, 25 °C, 10 h; ii) TFA, neat, 5 min., 25 °C, 70%.

The benzophenone (2) and azepane fragment 5 were synthesized as described previously).^[1] The coupling of benzophenone (2) and azepane (5.5a) fragments was successfully accomplished via esterification using the Mukaiyama procedure to afford the fully protected balanol progenitor 5.5b in 75% yield (Scheme S1.1). The universal benzyl deprotection was achieved by mild palladium– catalyzed hydrogenolysis of 5.5b in acidic media to obtain the Boc protected balanol as a yellow solid, which was subjected to purification by reverse phase HPLC. The Boc deprotection was readily achieved by treatment with neat TFA to furnish balanol (1) in 70% yield, which exhibited characterization data consistent with that from previous reports.

2–(2,6–dihydroxy–4–(((3*R*,4*R*)–3–(4–hydroxybenzamido)azepan–4–yloxy)carbonyl) benzoyl)– 3–hydroxybenzoic acid (1) $[\alpha]^{20}{}_{D}$ = -109.3 (*c* 0.12, MeOH); ¹H NMR (400 MHz, (CD₃)₂SO) δ 11.67 (s, 2H), 9.88 (brs, 1H), 9.06 (brs, 1H), 8.98 (brs, 1H), 8.51 (d, *J* = 7.91 Hz, 1H), 7.64 (d, *J* = 8.87 Hz, 2H), 7.37 (dd, *J* = 7.78, 1.01 Hz, 1H), 7.27 (t, *J* = 7.90 Hz, 1H), 7.05 (dd, *J* = 8.00, 1.01 Hz, 1H), 6.78 (d, *J* = 8.66 Hz, 2H), 6.78 (s, 2H), 5.29–5.23 (m, 1H), 4.53–4.45 (m, 1H), 3.39–3.25 (m, 2H), 3.20–3.11 (brs, 2H), 2.17–2.08 (m, 1H), 2.03–1.79 (m, 3H); ¹³C NMR (100 MHz, (CD₃)₂SO) δ 201.6, 166.9, 166.2, 164.2, 161.5, 160.5, 153.3, 135.5, 132.5, 129.3, 129.0, 128.9, 124.4, 120.0, 119.7, 114.9, 113.5, 107.3, 75.9, 50.8, 46.0, 45.9, 28.2; MS (ESI): *m/z*, 551.17 [M⁺ + H].

(3*R*,4*R*)–3–(4–(benzyloxy)benzamido)–4–hydroxyazepane–1–carboxylic acid–*tert*–butyl ester (5.5a)

A solution of compound 5 (20 mg, 58.1 µmol) and trifluoromethanesulfonic acid (4 µL, 58.1 µmol) in MeOH (1.21 mL) was treated with Pd/C (5% w/w). The resulting suspension was stirred under H₂ (1 atm) for 14 h. The reaction mixture was then filtered through a pad of Celite which was rinsed with MeOH (1 mL \times 5). The solvent was evaporated under reduced pressure to yield the desired amine 5.5 which was used in the next step without further purification. 4–benzyloxybenzoyl chloride (15.6 mg, 68.1 µmol) was added to the solution of amine 5.5 and Et₃N (64 µL, 681 µmol) in CH₂Cl₂ (0.81 mL) under N₂ atmosphere. The reaction mixture was stirred for 2 h at 25 °C before it was quenched by the addition of MeOH (0.15 mL) and pyridine (0.15 mL). The volatiles were evaporated under vacuum and the residue was dissolved in EtOAc. The organic phase was successively washed with aqueous 2 N HCl, water, aqueous saturated NaHCO₃, and brine. The organic layer was then dried (Na₂SO₄) before vacuum evaporation to obtain the crude mixture, which was purified by flash chromatography (petroleum ether/ethyl acetate, 1/1) to afford azepane 5.5a (15.6 mg, 52% over two steps) as a colourless oil with NMR, optical rotation and mass spectra matching to those reported previously.^[1] R_f (petroleum ether/EtOAc, 1/1) 0.33; $[\alpha]^{20}_D = -4.1$ (c 0.8, CH₂Cl₂); ¹H NMR (400 MHz, CD₂Cl₂) δ 8.96 (d, J = 4.98 Hz, 1H), 7.90 (d, J = 8.71 Hz, 2H), 7.51– 7.36 (m, 5H), 7.08 (d, J = 8.71 Hz, 2H), 5.17 (s, 2H), 4.11–4.02 (m, 3H), 3.82–3.75 (m, 1H), 3.33 (dd, J = 15.46, 4.90 Hz, 1H), 2.79 (ddd, J = 13.88, 12.30, 3.50 Hz, 1H), 1.95-1.63 (m, 4H), 1.54 (s, 3.50 Hz, 1.51 Hz), 1.54 (s, 3.50 Hz, 1.51 Hz), 1.54 (s, 3.50 Hz, 1.51 Hz), 1.54 (s, 3.50 Hz), 1.54 (s, 39H); ¹³C NMR (100 MHz, CD₂Cl₂) δ 168.5, 162.0, 157.7, 137.0, 129.4, 129.0, 128.5, 128.0, 126.5, 115.0, 81.0, 78.0, 70.5, 61.2, 50.7, 50.1, 33.1, 28.5, 27.5; MS (ESI): *m/z*, 441.23 [M⁺ + H].

(3*R*,4*R*)-*tert*-butyl-3-(4-(benzyloxy)benzamido)-4-(3,5-bis(benzyloxy)-4-(2-(benzyloxy)-6-(benzyloxycarbonyl)benzoyl)benzoyloxy)azepane-1-carboxylate (5.5b)

A suspension of hydroxyazepane benzamide **5.5a** (15.6 mg, 35.4 μ mol), benzophenone **2** (24.0 mg, 35.4 μ mol) and 2–chloro–1–methylpyridinium iodide (11.8 mg, 46.0 μ mol) in CH₂Cl₂ (0.35 mL) was treated with Et₃N (9.9 μ L, 70.8 μ mol) and allowed to stir for 30 min at 25 °C. The reaction

mixture was then reacted with 4–dimethylaminopyridine (2.2 mg, 17.7 µmol) and was allowed to stir for 8 h at 25 °C before vacuum evaporation to obtain the crude mixture for purification by flash chromatography (petroleum ether/ethyl acetate, 3/2) to afford the fully protected balanol **5.5b** (29.2 mg, 75%) as a colourless oil with NMR, optical rotation and mass spectra matching to those reported previously.^[2] R_f (petroleum ether/EtOAc, 3/2) 0.31; $[\alpha]^{20}{}_{D}$ = -61.1 (*c* 0.7, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.60 Hz, 1H), 7.77 (d, *J* = 8.56 Hz, 2H), 7.42–7.03 (m, 27H), 6.93 (brd, *J* = 8.82 Hz, 3H), 6.82 (d, *J* = 7.92 Hz, 2H), 5.11 (s, 2H), 5.05 (s, 2H), 4.84 (s, 4H), 4.67 (s, 2H), 4.13–3.94 (m, 2H), 3.35 (dd, *J* = 15.66, 5.77 Hz, 1H), 2.89–2.79 (m, 1H), 2.09–1.69 (m, 6H), 1.57 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 191.7, 167.5, 166.4, 165.8, 161.4, 158.1, 156.4, 136.5, 135.9, 135.8, 132.9, 130.6, 129.0, 128.8, 128.4, 128.3, 128.0, 127.9, 127.6, 127.5, 127.4, 122.1, 115.5, 114.7, 107.1, 81.0, 77.9, 70.6, 70.1, 67.2, 53.7, 50.3, 49.8, 28.6; MS (ESI): *m/z*, 1101.24 [M⁺ + H].

A solution of fully protected balanol 5.5b (20.0 mg, 18.2 µmol) in THF/AcOH/Water (16/4/1) at 25 °C was treated with Pd/C (10% w/w) and stirred under H₂ atmosphere (1 atm) for 10 h at 25 °C before it was filtered through a pad of celite and vacuum evaporated to obtain the crude mixture. The crude was then chromatographed on a Phenomenex Gemini C18 column (150×21.20 mm) eluting with MeCN/water/TFA (from 35:65:0.1 to 39:61:0.1 over 25 min; flow rate: 8.80 mL/min; retention time 19.5 min) to provide boc-protected balanol as a pale yellow solid powder. The compound was treated with TFA (1 mL) at 25 °C for 5 min before TFA was vacuum evaporated. The reaction flask was kept under high vacuum (0.005 Torr, 25 °C) for 3 h to remove traces of TFA, and the pale vellow film obtained was characterized as balanol (1) (7.0 mg, 70%) with NMR, optical rotation and mass spectra matching to those reported previously.^[3] $\left[\alpha\right]^{20}_{D} = -109.3$ (c 0.12, MeOH); ¹H NMR (400 MHz, (CD₃)₂SO) δ 11.67 (s, 2H), 9.88 (brs, 1H), 9.06 (brs, 1H), 8.98 (brs, 1H), 8.51 (d, J = 7.91 Hz, 1H), 7.64 (d, J = 8.87 Hz, 2H), 7.37 (dd, J = 7.78, 1.01 Hz, 1H), 7.27 (t, J= 7.90 Hz, 1H), 7.05 (dd, J = 8.00, 1.01 Hz, 1H), 6.78 (d, J = 8.66 Hz, 2H), 6.78 (s, 2H), 5.29–5.23 (m, 1H), 4.53–4.45 (m, 1H), 3.39–3.25 (m, 2H), 3.20–3.11 (brs, 2H), 2.17–2.08 (m, 1H), 2.03–1.79 (m, 3H); 13 C NMR (100 MHz, (CD₃)₂SO) δ 201.6, 166.9, 166.2, 164.2, 161.5, 160.5, 153.3, 135.5, 132.5, 129.3, 129.0, 128.9, 124.4, 120.0, 119.7, 114.9, 113.5, 107.3, 75.9, 50.8, 46.0, 45.9, 28.2; MS (ESI): m/z, 551.17 [M⁺ + H].

Scheme S1.2. Synthesis of balanoids **1a–1e**. *Reagents and conditions*: (a) i) H₂, Pd/C, triflic acid, MeOH, 14 h, 25 °C; ii) Et₃N, 4–benzyloxybenzoyl chloride, 2 h, 25 °C; (b) 2–chloro–1–methylpyridinium iodide, DMAP, NEt₃, DCM, 8 h, 25 °C; (c) i) H₂, Pd/C, THF, H₂O, AcOH, 25 °C, 10 h; ii) TFA, neat, 5 min., 25 °C.

The azepanes 4a-4e were prepared as described previously^[4] and subjected to the same coupling protocol that used in the total synthesis of (–)–balanol (1). The palladium catalyzed hydrogenation in acidic conditions followed by amidation to afforded the azepane benzamides (3a-3e) which were then coupled with benzophenone (2) to furnish the fluorinated, fully protected balanoids (3.1a-3.1e). Finally, removal of both the benzyl and Boc groups furnished the fluorinated balanol analogues (1a-1e) in fair yields (Scheme S1.2).

(3*R*,4*R*,6*S*)–3–(4–(benzyloxy)benzamido)–6–fluoro–4–hydroxyazepane–1–carboxylic acid– *tert*–butyl ester (3a)

The procedure for the synthesis of **5.5a** was followed: yield 50% over two steps; colourless oil; R_f (petroleum ether/EtOAc, 1/1) 0.34; $[\alpha]^{20}_{D}$ = +19.7 (*c* 1.4, CH₂Cl₂); IR (film) v_{max} (cm⁻¹): 3500–3100 (br), 1673, 1634, 1607, 1508, 1243, 1200, 1178, 1134, 1049, 849, 799, 721; ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 5.34 Hz, 1H), 7.84 (d, *J* = 8.78 Hz, 2H), 7.45–7.31 (m, 5H), 7.02 (d, *J* = 8.76 Hz, 2H), 5.52 (brs,1H), 5.12 (s, 2H), 4.70–4.50 (m, ¹*J*_{HF} = 45.93 Hz, 1H), 4.37 (dd, *J* = 13.54, 5.55 Hz, 1H), 4.18–4.09 (m, 2H), 3.79 (dd, *J* = 11.03, 6.67 Hz, 1H), 3.33 (dd, *J* = 15.74, 5.47 Hz, 1H), 2.88–2.78 (m, 1H), 2.37 (dd, *J* = 15.24, 15.15 Hz, 1H), 2.23–2.12 (m, 1H), 1.49 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 161.9, 157.2, 136.5, 129.3, 128.8, 128.3, 127.6, 125.6, 114.9, 87.6 (d, ¹*J*_{CF} = 176.82 Hz), 82.0, 73.7 (d, ³*J*_{CF} = 14.86 Hz), 70.3, 60.2, 53.3 (d, ²*J*_{CF} = 34.19 Hz), 50.4, 39.5 (d, ²*J*_{CF} = 19.96 Hz), 28.4; HRMS (ESI): [M + H]⁺, *m/z* calcd for C₂₅H₃₂FN₂O₅ 459.2295, found 459.2299.

(3*R*,4*R*,6*R*)–3–(4–(benzyloxy)benzamido)–6–fluoro–4–hydroxyazepane–1–carboxylic acid– *tert*–butyl ester (3b)

The procedure for the synthesis of **5.5a** was followed: yield 48% over two steps; colourless oil; R_f (petroleum ether/EtOAc, 1/1) 0.35; $[\alpha]^{20}_{D} = -38.8$ (*c* 0.9, CH₂Cl₂); IR (film) ν_{max} (cm⁻¹): 3500–3100 (br), 1673, 1634, 1607, 1508, 1243, 1200, 1178, 1134, 1049, 849, 799, 721; ¹H NMR (400 MHz, CDCl₃) δ 8.99 (d, *J* = 4.88 Hz, 1H), 7.85 (d, *J* = 8.79 Hz, 2H), 7.44–7.30 (m, 5H), 7.01 (d, *J* = 8.83 Hz, 2H), 5.11 (s, 2H), 4.87–4.72 (m, ¹*J*_{HF} = 45.06 Hz, 1H), 4.43 (dd, *J* = 15.94, 15.28 Hz, 1H), 4.27–4.06 (m, 3H), 3.21 (dd, *J* = 15.48, 5.38 Hz, 1H), 2.98 (dd, *J* = 15.81, 2.02 Hz, 1H), 2.39–1.97 (m, 2H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 161.9, 157.8, 135.8, 129.3, 128.8, 128.3, 127.6, 125.8, 114.8, 88.7 (d, ¹*J*_{CF} = 178.54 Hz), 81.7, 72.0 (d, ³*J*_{CF} = 6.67 Hz), 70.2, 60.2, 54.4 (d, ²*J*_{CF} = 22.99 Hz), 50.1, 37.4 (d, ²*J*_{CF} = 20.06 Hz), 28.4; HRMS (ESI): [M + H]⁺, *m/z* calcd for C₂₅H₃₂FN₂O₅ 459.2295, found 459.2300.

(3*R*,4*S*,5*S*)–3–(4–(benzyloxy)benzamido)–5–fluoro–4–hydroxyazepane–1–carboxylic acid– *tert*–butyl ester (3c)

The procedure for the synthesis of **5.5a** was followed: yield 48% over two steps; colourless oil; R_f (petroleum ether/EtOAc, 1/1) 0.34; $[\alpha]^{20}{}_{D}$ = +44.5 (*c* 1.2, CH₂Cl₂); IR (film) ν_{max} (cm⁻¹): 3500–3100 (br), 1673, 1634, 1607, 1508, 1243, 1200, 1178, 1134, 1049, 849, 799, 721; ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 4.83 Hz, 1H), 7.79 (d, *J* = 8.28 Hz, 2H), 7.43–7.30 (m, 5H), 6.99 (d, *J* = 8.93 Hz, 2H), 5.10 (s, 2H), 4.81–4.62 (dt, *J* = 45.88 (¹*J*_{HF}), 9.43, 9.0 Hz, 1H), 4.20–3.89 (m, 3H), 3.28–3.20 (m, 1H), 3.06–2.95 (m, 2H), 2.28–2.14 (m, 1H), 2.07–1.93 (m, 1H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 162.2, 157.3, 136.7, 129.6, 129.1, 128.6, 127.9, 125.8, 115.1, 92.2 (d, ¹*J*_{CF} = 172.0 Hz), 81.8, 78.6 (d, ²*J*_{CF} = 20.9 Hz), 70.5, 57.7 (d, ³*J*_{CF} = 7.41 Hz), 47.8, 44.7 (d, ³*J*_{CF} = 14.77 Hz), 33.1 (d, ²*J*_{CF} = 21.8 Hz), 28.7; HRMS (ESI): [M + H]⁺, *m*/*z* calcd for C₂₅H₃₂FN₂O₅ 459.2295, found 459.2297.

(5*R*,6*R*)–6–(4–(benzyloxy)benzamido)–3,3–difluoro–5–hydroxyazepane–1–carboxylic acid– *tert*–butyl ester (3d)

The procedure for the synthesis of **5.5a** was followed: yield 55% over two steps; colourless oil; R_f (petroleum ether/EtOAc, 1/1) 0.34; $[\alpha]^{20}_{D} = -27.4$ (*c* 1.0, CHCl₃); IR (film) ν_{max} (cm⁻¹): 3500–3100 (br), 2360, 1716, 1683, 1652, 1630, 1613, 1518, 1249, 1210, 1171, 1139, 1049, 840, 793, 726, 608; ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, *J* = 5.25 Hz, 1H), 7.85 (d, *J* = 8.70 Hz, 2H), 7.45–7.31 (m, 5H), 7.03 (d, *J* = 8.58 Hz, 2H), 5.38 (brs,1H), 5.13 (s, 2H), 4.43 (dd, *J* = 14.99, 13.34 Hz, 1H), 4.21–4.09 (m, 2H), 4.03 (dd, *J* = 9.97, 7.34 Hz, 1H), 3.32 (dd, *J* = 15.78, 5.26 Hz, 1H), 3.09 (dd, *J* = 31.99, 14.94 Hz, 1H), 2.49–2.24 (m, 2H), 1.51 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8,

161.9, 157.2, 136.5, 129.3, 128.8, 128.3, 127.6, 125.6, 121.7 (d, ${}^{1}J_{CF} = 238.33$ Hz), 114.9, 82.5, 72.1 (dd, J = 11.18 (${}^{2}J_{CF}$), 3.82 (${}^{3}J_{CF}$) Hz), 70.3, 60.0, 55.7 (dd, J = 41.22 (${}^{2}J_{CF}$), 28.80 (${}^{3}J_{CF}$) Hz), 50.1, 41.2 (t, ${}^{2}J_{CF} = 23.80$ Hz), 28.3; HRMS (ESI): [M + H]⁺, *m/z* calcd for C₂₅H₃₁F₂N₂O₅ 477.2201, found 477.2203.

(4*R*,5*S*,6*R*)–6–(4–(benzyloxy)benzamido)–3,3,4–trifluoro–5–hydroxyazepane–1–carboxylic acid–*tert*–butyl ester (3e)

The procedure for the synthesis of **5.5a** was followed: yield 58% over two steps; white crystals; R_f (petroleum ether/EtOAc, 1/1) 0.37; $[\alpha]^{20}_{D} = -11.4$ (*c* 1.0, CHCl₃); IR (film) v_{max} (cm⁻¹): 3500–3100 (br), 2360, 1716, 1683, 1652, 1630, 1613, 1518, 1249, 1210, 1171, 1139, 1049, 840, 793, 726, 608; ¹H NMR (600 MHz, CDCl₃) δ 8.44 (d, *J* = 4.87 Hz, 1H), 7.82 (d, *J* = 8.66 Hz, 2H), 7.45–7.32 (m, 5H), 7.03 (d, *J* = 8.59 Hz, 2H), 5.45 (s,1H), 5.12 (s, 2H), 4.68 (dddd, *J* = 46.57 (¹*J*_{HF}), 18.31, 9.42, 1.57 Hz, 1H), 4.47–4.39 (m, 1H), 4.30–4.24 (m, 1H), 4.21–4.10 (m, 2H), 4.34–4.23 (m, 2H), 1.51 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 162.0, 156.7, 136.4, 129.3, 128.8, 128.4, 127.6, 125.4, 121.7 (dd, *J* = 252.11 (¹*J*_{CF}), 18.99 (³*J*_{CF}) Hz), 114.9, 90.3 (dt, *J* = 193.17 (¹*J*_{CF}), 22.29 (²*J*_{CF}) Hz), 82.9, 73.2 (d, ²*J*_{CF} = 16.55 Hz), 70.3, 57.6 (d, ³*J*_{CF} = 5.71 Hz), 52.4 (dd, *J* = 37.68 (²*J*_{CF}), 27.76 (²*J*_{CF}) Hz), 48.9, 28.3; HRMS (ESI): [M + H]⁺, *m*/z calcd for C₂₅H₃₀F₃N₂O₅ 495.2107, found 495.2104.

(3*R*,4*R*,6*S*)–3–(4–(benzyloxy)benzamido)–4–(3,5–bis(benzyloxy)–4–(2–(benzyloxy)–6– (benzyloxycarbonyl)benzoyl)benzoyloxy)–6–fluoroazepane–1–carboxylic acid–*tert*–butyl ester (3.1a)

The procedure for the synthesis of **5.5b** was followed: yield 70%; colourless oil; R_f (petroleum ether/EtOAc, 3/2) 0.33; $[\alpha]^{20}_D$ = +34.3 (*c* 0.9, CH₂Cl₂); IR (film) v_{max} (cm⁻¹): 3365, 2390, 2324, 2288, 1715, 1688, 1666, 1652, 1638, 1585, 1493, 1129, 978, 919, 613; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.08 Hz, 1H), 7.75 (d, *J* = 8.56 Hz, 2H), 7.43–7.30 (m, 7H), 7.26–7.14 (m, 15H), 7.09–7.02 (m, 5H), 6.98–6.89 (m, 3H), 6.81 (d, *J* = 7.55 Hz, 2H), 5.09 (s, 2H), 5.05 (s, 2H), 4.95–4.77 (m, 1H), 4.81 (s, 2H), 4.80 (s, 2H), 4.67 (s, 2H), 4.32 (dd, *J* = 14.63, 6.70 Hz, 1H), 4.15 (d, *J* = 15.24 Hz, 1H), 3.54–3.44 (m, 1H), 3.39 (dd, *J* = 15.67, 4.98 Hz, 1H), 2.89 (dd, *J* = 24.21, 11.39 Hz, 1H), 2.46–2.30 (m, 2H), 1.55 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 167.8, 166.5, 165.8, 161.9, 158.4, 157.4, 156.7, 136.7, 136.6, 136.2, 136.1, 133.2, 132.9, 132.7, 130.9, 129.3, 129.1, 128.8, 128.7, 128.6, 128.3, 128.2, 127.9, 127.8, 127.6, 127.5, 126.8, 122.4, 115.7, 115.1, 107.4, 104.3, 87.8 (d, ¹*J*_{CF} = 177.72 Hz), 82.2, 72.6 (d, ³*J*_{CF} = 7.78 Hz), 70.9, 70.5, 67.5, 67.3, 53.5, 53.1 (d, ²*J*_{CF} = 34.37 Hz), 51.6, 34.4 (d, ²*J*_{CF} = 20.91 Hz), 28.7; HRMS (ESI): [M + H]⁺, *m/z* calcd for C₆₈H₆₄FN₂O₁₂ 1119.4443, found 1119.4413.

(3*R*,4*R*,6*R*)–3–(4–(benzyloxy)benzamido)–4–(3,5–bis(benzyloxy)–4–(2–(benzyloxy)–6– (benzyloxycarbonyl)benzoyl)benzoyloxy)–6–fluoroazepane–1–carboxylic acid–*tert*–butyl ester (3.1b)

The procedure for the synthesis of **5.5b** was followed: yield 72%; colourless oil; R_f (petroleum ether/EtOAc, 3/2) 0.31; $[\alpha]^{20}{}_{D} = -67.5$ (*c* 0.6, CH₂Cl₂); IR (film) v_{max} (cm⁻¹): 3365, 2390, 2324, 2288, 1715, 1688, 1666, 1652, 1638, 1585, 1493, 1129, 978, 919, 613; ¹H NMR (400 MHz, CDCl₃) δ 8.21–7.62 (m, 3H), 7.57–7.67 (m, 32H), 5.24–2.76 (m, 16H), 2.70–1.93 (m, 3H), 1.51 (s, 9H); ¹³C NMR (150 MHz, (CD₃)₂CO) δ 190.8, 168.2, 167.0, 166.0, 162.6, 162.3, 162.2, 157.6, 155.6, 138.0, 137.9, 136.8, 132.6, 132.5, 130.0, 130.0, 129.8, 129.3, 129.1, 129.0, 128.9, 128.8, 128.5, 122.6, 116.2, 115.3, 115.2, 92.2 (d, ¹*J*_{CF} = 169.37 Hz), 81.6, 80.6, 76.3, 71.8, 71.5, 70.7, 70.6, 67.5, 60.0, 54.0, 53.2, 50.5, 46.7, 46.1, 39.7 (d, ²*J*_{CF} = 21.27 Hz), 28.6, 28.4; HRMS (ESI): [M + H]⁺, *m/z* calcd for C₆₈H₆₄FN₂O₁₂ 1119.4443, found 1119.4447.

(3*R*,4*S*,5*S*)–3–(4–(benzyloxy)benzamido)–4–(3,5–bis(benzyloxy)–4–(2–(benzyloxy)–6– (benzyloxycarbonyl)benzoyl)benzoyloxy)–5–fluoroazepane–1–carboxylic acid–*tert*–butyl ester (3.1c)

The procedure for the synthesis of **5.5b** was followed: yield 67%; colourless oil; R_f (petroleum ether/EtOAc, 3/2) 0.34; $[\alpha]^{20}{}_{D}$ = +54.9 (*c* 1.0, CH₂Cl₂); IR (film) v_{max} (cm⁻¹): 3365, 2390, 2324, 2288, 1715, 1688, 1666, 1652, 1638, 1585, 1493, 1129, 978, 919, 613; ¹H NMR (600 MHz, CDCl₃) δ 7.76–7.66 (m, 2H), 7.42–6.79 (m, 32H), 5.17–4.87 (m, 5H), 4.81–4.56 (m, 6H), 4.00–3.12 (m, 6H), 2.32–2.16 (m, 2H), 1.56 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 192.3, 167.5, 166.2, 165.7, 161.9, 158.1, 156.6, 155.1, 136.4, 135.9, 135.7, 132.2, 131.1, 130.7, 129.0, 128.8, 128.6, 128.5, 128.4, 128.1, 128.0, 127.8, 127.7, 127.6, 127.4, 122.2, 115.4, 115.2, 114.9, 114.8, 107.2, 103.9, 91.1 (d, ${}^{1}J_{CF}$ = 175.6 Hz), 81.8, 81.3 (d, ${}^{2}J_{CF}$ = 16.36 Hz), 76.1, 70.9, 70.7, 70.2, 51.2, 47.8, 46.3, 41.5, 37.3, 32.1, 28.5; HRMS (ESI): [M + H]⁺, *m/z* calcd for C₆₈H₆₄FN₂O₁₂ 1119.4443, found 1119.4425.

(5*R*,6*R*)–6–(4–(benzyloxy)benzamido)–5–((3,5–bis(benzyloxy)–4–(2–(benzyloxy)–6– ((benzyloxy) carbonyl)benzoyl)benzoyl)oxy)–3,3–difluoroazepane–1–carboxylic acid–*tert*– butyl ester (3.1d)

The procedure for the synthesis of **5.5b** was followed: yield 70%; colourless oil; R_f (petroleum ether/EtOAc, 3/2) 0.33; $[\alpha]^{20}{}_{D} = -74.9$ (*c* 0.6, CH₂Cl₂); IR (film) ν_{max} (cm⁻¹): 3370, 2383, 2322, 2282, 1711, 1687, 1652, 1649, 1631, 1581, 1484, 1122, 999, 921, 627; ¹H NMR (400 MHz, CDCl₃) δ 8.03–7.94 (m, 1H), 7.84–7.76 (m, 2H), 7.46–6.82 (m, 32 H), 5.50 (t, *J* = 7.42 Hz, 1H), 5.13 (s,

2H), 5.09 (s, 4H), 4.81 (s, 4H), 4.68–4.58 (m, 1H), 4.50–4.34 (m, 1H), 4.19 (d, J = 14.98 Hz, 1H), 3.44 (dd, J = 15.13, 4.88 Hz, 1H), 3.30 (dd, J = 15.12, 4.22 Hz, 1H), 2.76–2.47 (m, 2H), 1.56 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 191.7, 167.5, 166.5, 161.7, 158.1, 157.1, 136.5, 135.9, 135.8, 132.3, 130.7, 129.1, 128.8, 128.6, 128.4, 127.8, 127.6, 127.2, 126.3, 122.2, 115.4, 114.9, 107.2, 82.4, 76.1, 70.7, 70.6, 70.2, 67.2, 55.7 (d, ² $_{CF} = 27.60$ Hz), 53.4, 50.6, 36.3 (d, ² $_{CF} = 27.70$ Hz), 28.3; HRMS (ESI): $[M + H]^+$, *m/z* calcd for C₆₈H₆₃F₂N₂O₁₂ 1137.4349, found 1137.4318.

(4*R*,5*S*,6*R*)–6–(4–(benzyloxy)benzamido)–5–((3,5–bis(benzyloxy)–4–(2–(benzyloxy)–6– ((benzyloxy)carbonyl)benzoyl)benzoyl)oxy)–3,3,4–trifluoroazepane–1–carboxylic acid–*tert*– butyl ester (3.1e)

The procedure for the synthesis of **5.5b** was followed: yield 74%; colourless oil; R_f (petroleum ether/EtOAc, 3/2) 0.36; $[\alpha]^{20}{}_{D} = -57.1$ (*c* 0.9, CH₂Cl₂); IR (film) v_{max} (cm⁻¹): 3378, 2388, 2343, 2267, 1721, 1689, 1659, 1641, 1639, 1587, 1489, 1129, 987, 926, 607; ¹H NMR (400 MHz, CDCl₃) δ 7.78–7.64 (m, 2H), 7.43–6.76 (m, 32H), 5.74–5.60 (m, 1H), 5.11 (s, 2H), 5.06 (s, 2H), 4.97–4.75 (m, 1H), 4.76 (s, 4H), 4.74 (s, 2H), 4.45–4.30 (m, 1H), 4.06 (brd, J = 14.54 Hz, 1H), 4.00–3.82 (m, 1H), 3.58–3.34 (m, 2H), 1.56 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 167.6, 166.3, 161.8, 158.1, 156.2, 136.4, 135.9, 129.0, 128.8, 128.6, 128.4, 128.1, 127.9, 127.8, 127.6, 127.3, 126.4, 122.2, 115.2, 114.9, 107.3, 89.4 (d, ${}^{1}J_{CF} = 217.71$ Hz), 82.6 (d, ${}^{2}J_{CF} = 24.57$ Hz), 78.3, 70.9, 70.6, 70.2, 67.4, 67.3, 51.8 (d, ${}^{3}J_{CF} = 9.44$ Hz), 30.4, 28.3; HRMS (ESI): [M + H]⁺, *m/z* calcd for C₆₈H₆₂F₃N₂O₁₂ 1155.4255, found 1155.4226.

2–(4–(((((3*R*,4*R*,6*S*)–6–fluoro–3–(4–hydroxybenzamido)azepan–4–yl)oxy)carbonyl)–2,6– dihydroxybenzoyl)–3–hydroxybenzoic acid (1a)

The procedure for the synthesis of **1** was followed: yield 64%; yellow film; retention time 20.0 min (Phenomenex Gemini C18 column (150 × 21.20 mm); MeCN/water/TFA (from 35:65:0.1 to 44:56:0.1 over 30 min; flow rate: 8.80 mL/min); $[\alpha]^{20}{}_{D}$ = +82.1 (*c* 0.5, MeOH); IR (film) v_{max} (cm⁻¹): 3400–2800 (br), 2360, 2340, 1717, 1683, 1652, 1646, 1635, 1489, 1102, 991, 922, 632; ¹H NMR (600 MHz, (CD₃)₂SO) δ 11.63 (s, 2H), 10.00 (s, 1H), 9.83 (s, 1H), 9.24 (brs, 1H), 8.46 (d, *J* = 8.00 Hz, 1H), 7.62 (d, *J* = 8.74 Hz, 2H), 7.35 (d, *J* = 7.80 Hz, 1H), 7.26 (t, *J* = 7.90 Hz, 1H), 7.04 (d, *J* = 8.13 Hz, 1H), 6.77 (d, *J* = 8.60 Hz, 2H), 6.76 (s, 2H), 5.36–5.31 (m, 1H), 5.29–5.17 (m, ¹*J*_{HF} = 44.09 Hz, 1H), 4.57–4.51 (m, 1H), 3.50–3.31 (m, 4H), 2.57–2.42 (m, 2H); ¹³C NMR (150 MHz, (CD₃)₂SO) δ 201.5, 166.9, 166.1, 164.1, 161.4, 160.4, 153.2, 135.3, 132.4, 129.2, 128.9, 128.8, 124.5, 120.0, 119.6, 114.8, 113.5, 107.3, 86.2 (d, ¹*J*_{CF} = 172.92 Hz), 71.5, 50.8, 49.2 (d, ²*J*_{CF} = 25.48 Hz), 47.7, 33.9 (d, ²*J*_{CF} = 22.28 Hz); HRMS (ESI): [M + H]⁺, *m/z* calcd for C₂₈H₂₆FN₂O₁₀ 569.1571, found 569.1575.

2–(4–(((((3*R*,4*R*,6*R*)–6–fluoro–3–(4–hydroxybenzamido)azepan–4–yl)oxy)carbonyl)–2,6– dihydroxybenzoyl)–3–hydroxybenzoic acid (1b)

The procedure for the synthesis of 1 was followed: yield 69%; yellow film; retention time 27.4 min (Phenomenex Gemini C18 column (150 × 21.20 mm); MeCN/water/TFA (from 5:95:0.1 to 55:45:0.1 over 30 min; flow rate: 8.80 mL/min); $[\alpha]^{20}_{D} = -77.9$ (*c* 0.4, MeOH); IR (film) v_{max} (cm⁻¹): 3400–2800 (br), 2360, 2340, 1717, 1683, 1652, 1646, 1635, 1489, 1102, 991, 922, 632; ¹H NMR (600 MHz, (CD₃)₂SO) δ 11.67 (s, 2H), 10.07 (brs, 1H), 9.87 (s, 1H), 9.34 (brs, 2H), 8.55 (d, *J* = 8.47 Hz, 1H), 7.61 (d, *J* = 8.69 Hz, 2H), 7.36 (d, *J* = 7.61 Hz, 1H), 7.27 (t, *J* = 8.01 Hz, 1H), 7.04 (d, *J* = 8.01 Hz, 1H), 6.78 (d, *J* = 8.66 Hz, 2H), 6.76 (s, 2H), 5.55 (ddd, *J* = 10.33, 9.93, 2.02 Hz, 1H), 5.33–5.21 (m, ¹J_{HF} = 47.37 Hz, 1H), 4.59–4.53 (m, 1H), 3.58 (dd, *J* = 17.42, 15.96 Hz, 1H), 3.52–3.40 (m, 2H), 3.30 (dd, *J* = 14.14, 7.39 Hz, 1H), 2.57–2.52 (m, 1H), 2.39–2.27 (m, 1H); ¹³C NMR (150 MHz, (CD₃)₂SO) δ 201.6, 166.9, 166.3, 164.0, 161.5, 160.6, 153.2, 135.3, 132.4, 129.2, 128.9, 128.8, 124.2, 120.0, 119.6, 114.9, 113.5, 107.4, 86.0 (d, ¹J_{CF} = 169.84 Hz), 70.1, 50.5, 50.3 (d, ²J_{CF} = 24.68 Hz), 47.1, 32.3 (d, ²J_{CF} = 19.15 Hz); HRMS (ESI): [M + H]⁺, *m/z* calcd for C₂₈H₂₆FN₂O₁₀ 569.1571, found 569.1577.

2-(4-(((3*R*,4*S*,5*S*)-5-fluoro-3-(4-hydroxybenzamido)azepan-4-yloxy)carbonyl)-2,6dihydroxybenzoyl)-3-hydroxybenzoic acid (1c)

The procedure for the synthesis of **1** was followed: yield 72%; yellow film; retention time 21.2 min (Phenomenex Gemini C18 column (150 × 21.20 mm); MeCN/water/TFA (from 35:65:0.1 to 44:56:0.1 over 30 min; flow rate: 8.80 mL/min); $[\alpha]^{20}{}_{D}$ = +58.7 (*c* 0.2, MeOH); IR (film) v_{max} (cm⁻¹): 3400–2800 (br), 2360, 2340, 1717, 1683, 1652, 1646, 1635, 1489, 1102, 991, 922, 632; ¹H NMR (600 MHz, (CD₃CN) δ 10.69 (brs, 1H), 8.00 (d, *J* = 6.91 Hz, 1H), 7.68 (d, *J* = 8.06 Hz, 2H), 7.51 (d, *J* = 7.62 Hz, 1H), 7.33 (t, *J* = 7.95 Hz, 1H), 7.11 (d, *J* = 7.62 Hz, 1H), 7.02 (s, 2H), 6.83 (d, *J* = 8.06 Hz, 2H), 5.49 (t, *J* = 7.98 Hz, 1H), 5.29–5.16 (m, ¹*J*_{HF} = 43.56 Hz, 1H), 4.41 (brs, 1H), 3.71–3.64 (m, 2H), 3.59–3.54 (m, 1H), 3.42–3.34 (m, 1H), 2.63–2.46 (m, 2H); ¹³C NMR (150 MHz, (CD₃)₂SO) δ 202.5, 169.5, 167.5, 162.5, 161.6, 160.5, 153.7, 137.1, 130.6, 130.6, 130.4, 125.5, 122.3, 121.2, 116.1, 109.2, 103.7, 86.9 (d, ¹*J*_{CF} = 167.92 Hz), 71.2 (d, ²*J*_{CF} = 19.71 Hz), 53.0, 50.6, 50.3, 35.3 (d, ²*J*_{CF} = 24.12 Hz); HRMS (ESI): [M + H]⁺, *m/z* calcd for C₂₈H₂₆FN₂O₁₀ 569.1571, found 569.1567.

2–(4–(((((3*R*,4*R*)–6,6–difluoro–3–(4–hydroxybenzamido)azepan–4–yl)oxy)carbonyl)–2,6– dihydroxybenzoyl)–3–hydroxybenzoic acid (1d) The procedure for the synthesis of **1** was followed: yield 75%; yellow film; retention time 27.5 min (Phenomenex Gemini C18 column (150 × 21.20 mm); MeCN/water/TFA (from 30:70:0.1 to 70:30:0.1 over 50 min; flow rate: 8.80 mL/min); $[\alpha]^{20}{}_{D} = -98.4$ (*c* 0.7, MeOH); IR (film) v_{max} (cm⁻¹): 3400–2800 (br), 2363, 2341, 1711, 1687, 1652, 1649, 1631, 1484, 1122, 999, 921, 627; ¹H NMR (600 MHz, (CD₃)₂SO) δ 11.68 (s, 2H), 10.09 (brs, 1H), 9.89 (s, 1H), 8.54 (d, *J* = 8.13 Hz, 1H), 7.63 (d, *J* = 8.58 Hz, 2H), 7.37 (d, *J* = 7.63 Hz, 1H), 7.28 (t, *J* = 7.99 Hz, 1H), 7.05 (d, *J* = 8.16 Hz, 1H), 6.78 (d, *J* = 8.64 Hz, 2H), 6.78 (s, 2H), 5.45–5.41 (m, 1H), 4.59–4.54 (m, 1H), 3.77–3.68 (m, 2H), 3.52–3.47 (m, 1H), 3.39–3.33 (m, 1H), 2.83–2.74 (m, 2H); ¹³C NMR (150 MHz, (CD₃)₂SO) δ 201.6, 167.0, 166.3, 164.0, 161.5, 160.6, 153.3, 135.1, 132.5, 129.3, 129.0, 128.9, 124.3, 121.8 (d, ¹*J*_{CF} = 243.01 Hz), 120.0, 119.7, 115.0, 113.6, 107.5, 69.4, 51.7 (t, ²*J*_{CF} = 38.37 Hz), 50.6, 48.1, 37.1 (t, ²*J*_{CF} = 25.41 Hz); HRMS (ESI): [M + H]⁺, *m/z* calcd for C₂₈H₂₅F₂N₂O₁₀ 587.1477, found 587.1467.

2–(2,6–dihydroxy–4–(((((3*R*,4*S*,5*R*)–5,6,6–trifluoro–3–(4–hydroxybenzamido)azepan–4– yl)oxy)carbonyl)benzoyl)–3–hydroxybenzoic acid (1e)

The procedure for the synthesis of **1** was followed: yield 68%; yellow film; retention time 27.6 min (Phenomenex Gemini C18 column (150 × 21.20 mm); MeCN/water/TFA (from 30:70:0.1 to 70:30:0.1 over 50 min; flow rate: 8.80 mL/min); $[\alpha]^{20}{}_{D}$ = -64.6 (*c* 0.4, MeOH); IR (film) v_{max} (cm⁻¹): 3400–2800 (br), 2360, 2346, 1719, 1667, 1659, 1640, 1639, 1480, 1129, 987, 946, 607; ¹H NMR (600 MHz, (CD₃)₂SO) δ 11.68 (s, 2H), 10.01 (brs, 1H), 9.86 (s, 1H), 8.48 (d, *J* = 8.05 Hz, 1H), 7.57 (d, *J* = 8.46 Hz, 2H), 7.36 (d, *J* = 7.80 Hz, 1H), 7.28 (t, *J* = 7.97 Hz, 1H), 7.05 (d, *J* = 7.95 Hz, 1H), 6.76 (d, *J* = 8.59 Hz, 2H), 6.76 (s, 2H), 5.67–5.60 (m, 1H), 5.48–5.35 (m, ¹J_{HF} = 45.30 Hz, 1H), 4.58–4.52 (m, 1H), 3.38–3.34 (m, 1H), 3.30–3.20 (m, 2H), 3.19–3.10 (m, 1H); ¹³C NMR (150 MHz, (CD₃)₂SO) δ 201.5, 166.9, 165.9, 164.1, 161.5, 160.4, 153.3, 134.7, 132.4, 129.1, 129.0, 128.9, 124.5, 121.8 (d, ¹J_{CF} = 251.98 Hz), 120.0, 119.7, 114.9, 113.7, 107.4, 89.4 (dd, *J* = 186.95 (¹J_{CF}), 25.49 (²J_{CF}) Hz), 72.0 (d, ²J_{CF} = 22.64 Hz), 63.0 (d, ²J_{CF} = 34.43 Hz), 49.5, 48.4; HRMS (ESI): [M + H]⁺, *m/z* calcd for C₂₈H₂₄F₃N₂O₁₀ 605.1383, found 605.1389.

C. References

- [1] A. Fürstner, O. R. Thiel, J. Org. Chem. 2000, 65, 1738-1742.
- [2] J. W. Lampe, P. F. Hughes, C. K. Biggers, S. H. Smith, H. Hu, *J. Org. Chem.* **1994**, *59*, 5147-5148.
- [3] K. C. Nicolaou, K. Koide, M. E. Bunnage, Chem. –Eur. J. 1995, 1, 454-466.
- [4] a) A. R. Patel, F. Liu, *Tetrahedron* 2013, 69, 744-752; b) A. R. Patel, G. Ball, L. Hunter, F. Liu, Org Biomol Chem 2013, 11, 3781-3785; c) A. R. Patel, L. Hunter, M. M. Bhadbhade, F. Liu, *Eur J Org Chem* 2014, 2014, 2584-2593.

- D. NMR spectra of 1, 3a–3e, 3.1a–3.1e, and 1a–1e.

S13 ¹H NMR spectrum of **1** S14-23 ¹H and ¹³C NMR spectra of NMR spectra of **3a–3e** S24-33 ¹H and ¹³C NMR spectra of NMR spectra **3.1a–3.1e** S34-43 ¹H and ¹³C NMR spectra of NMR spectra **1a–1e**

8.77	7.85 7.82 7.42 7.41 7.41 7.41 7.41 7.136 7.136 7.03	5.52 5.12 5.10 5.10 4.67 4.66 4.66 4.55 4.56 4.55 4.56 4.55 5.10 7.10 4.55 5.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7	$\overbrace{\begin{array}{c}3.36\\3.35\\3.35\\2.83\end{array}}^{3.35}$	2.362.172.172.1491.49
				Current Data Parameters NAME ARP#3#065#F-OH-fina EXPNO 1 PROCNO 1
F F Boc rotamers	3a			F2 - Acquisition Parameters Date 20110518 Time 12.05 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG zg30 TD 32768 SOLVENT CDC13 NS 16 DS 0 SWH 5995.204 Hz FIDRES 0.182959 Hz AQ 2.7329011 sec RG 256 DW 83.400 usec DE 20.00 usec TE 298.2 K D1 2.0000000 sec TD0 1
	I			CHANNEL fl NUC1 1H P1 13.50 usec PL1 3.00 dB SF01 399.9023994 MHz
				F2 - Processing parameters SI 32768 SF 399.9000132 MHz WDW no SSB 0 LB 0 Hz GB 0 PC 1.00
	/w/%_/k	lhn_h		
5.5 J.C 8.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.41 1.16 1	0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1

Current Data Parameters NAME ARP#3#065#F-OH-final azp#fra 12 EXPNO 4 PROCNO 1	-52 -53 -53 -53 -53 -1128.96 -1128.33 -1127.62 -114.87 -114.73	88.47 86.73 86.73 82.00 82.00 77.16 84 77.16 84 77.16 77.16 77.16 77.16 77.16 77.16 77.16 73.79 60.17 53.45 53.45 53.45 53.11	^{39.62} ^{39.42} ^{39.42} ^{39.42} ^{39.42}
F2 - Acquisition Parameters Date_ 20110518 Time 12.17 INSTRUM spect PROBHD 5 mm QNP 1H/1 PULPROG PULPROG zgpg TD 66560 SOLVENT CDC13 NS 2000 DS 2 SWH 25125.629 FIDRES 0.377488 AQ 1.3245940 RG 4597.6 DW 19.900 DE 20.000 TE 298.2 K D1 D1 2.0000000 sec d11 0.03000000 sec DELTA 1.89999998	HO H OBn F Boc 3a rotamers		
CHANNEL f1 NUC1 13C P1 12.00 usec PL1 -0.50 dB SF01 100.5659560 MHz			
F2 - Processing parameters SI 32768 SF 100.5549218 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40			
190 180 170 160 150	140 130 120 110 100		40 30 20 ppm

Current NAME EXPNO PROCNO	Data Parameters arp564_s2af20nal(%zpphplc_10A U 1 U U	136.66 129.55 129.07 129.07 128.61 127.89 112.13 - 115.13	- 93.08 - 91.34 - 81.79	~78.64 ~78.47 ~70.50	-57.72	-47.76 -44.66	/ 33.14 / 32.92 / 28.73	
F2 - Acq Date Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 d11 DELTA TD0	uisition Parameters 20120621 13.46 spect 5 mm QNP 1H/1 zgpg 66560 CDC13 19671 2 25125.629 Hz 0.377488 Hz 1.3245940 sec 18390.4 19.900 usec 20.00 usec 295.2 K 2.00000000 sec 0.03000000 sec 1.89999998 sec 1	$HO H G OBn$ $F_{M, G} OBn$ $Boc 3c$ $rotamers$						
====== NUC1 P1 PL1 SF01	CHANNEL f1 ======= 13C 12.00 usec -0.50 dB 100.5659560 MHz							
CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SF02	CHANNEL f2 ======= waltz16 1H 80.00 usec 3.00 dB 18.80 dB 24.80 dB 399.9015996 MHz							
F2 - Pro SI SF WDW SSB LB GB PC	Cessing parameters 32768 100.5548950 MHz GM 0 -1.00 Hz 0.01 1.40 MARTING MARTING MARTING MARTING	stanovský s la pravoda kanel W konde visizna policie k pravod Harring, kanen a polici dovena polici dovena polici	14.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		40mm)Japan/1000000	ned have be bled for an all the second at the second state of the second states of the second	#
 19() 180 170 160 150	140 130 120 110 10	0 90 8		60 50	0 40	30 20 10 ppr	r n

00 77 50	8 8 2 8	42	75	58	10,	Т 8 85	8726	06 82	71 61	31 19	91 84	61 51	10	43	0 7 0 0 0 7 0 0 0	7 12	8 1	6	2 0	0 00	99	3 6	0 1	4 8 9	C	
$\begin{pmatrix} 192.\\ 167.\\ 166. \end{pmatrix}$	r 165.	158. 157.	∬ 156. 136.	[136.	[136.	[132.]	∬ 130. ∬ 129.	<pre></pre>	/ 128. / 128.	-128. /128.	L127.	127.	126.	L122.	107.	-104. 	\ 86.9 82.1	17.7 77.4	L 77 . 1	L72.5	L 70.4	L 53.4	52.9 51.6	34.5	• 07	
Current NAME EXPNO PROCNO	Data Pa arp559	ramet _prot	ters tected 3 1	l F-b	alano	n l spo	t3				B	-			~							ſ				
F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 d11 DELTA TD0	uisitic 5 mm (2 1 2 0. 1.	20120 20120 20120 SF 20120 2010 20120	camete 0608 3.54 pect 1H/1 2gpg 5560 0C13 229 65940 5940 5940 1 0.000 1 0000 5998 2 1 0000 5998 1	Hz Hz Hz Sec Sec Sec Sec							G G G G G G G F	rot	OBn HN N Boo	D ₂ Bn	OBn 1a											
NUC1 P1 PL1 SF01	CHANNE 100	L f1 12 -().5659	13C 2.00 u 0.50 c 9560 M	usec 1B 1Hz													1						1			
CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SF02	CHANNE 399	EL f2 walt 80 18 24 9.9015	216 1H 3.00 1 3.00 c 3.80 c 4.80 c 5996 M	isec iB iB iB iB iHz														1								
F2 - Prov SI SF WDW SSB LB GB PC	cessing 100 0 0	g para 32).5548 3 1	ameter 2768 3950 N EM 3.00 F 1.40	rs MHz Hz	lyndu		ulles y des and				i, eta gile y ang a	a _{ya} yayadga	والمراجع المراجع	he ⁿ pitesyngeboen					٩		مېلىرىيە يەر مەر مەر مەر مەر مەر مەر مەر مەر مەر م	ليبيدونهم	ليبينوا	**************	ungénégaigan pan	ring the start of
200	190	 18	30		 16	0 1		 140	13	0 1		 11	0 1	 100	₁ 90		0	70	 60	 5()	40		20	 10	ppm

ССССССССССССССССССССССССССССССССССССС	
1162 1170 <t< td=""><td>29.5 28.4 28.4 28.4</td></t<>	29.5 28.4 28.4 28.4
Current Data Parameters NAME arp797_Fs2bprobal EXPNO 3 PROCNO 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
SF01 150.9178993 MHz NUC1 13C P1 12.00 usec PLW1 90.0000000 W	
SF02 600.1320945 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 70.00 usec PLW2 5.34999990 W PLW12 0.06987800 W PLW13 0.03424000 W	
F2 - Processing parameters SI 16384 SF 150.9027864 MHz WDW EM SSB 0 LB 2.00 Hz GB 0 PC 1.40	an an and a fill a sum of the second
190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20	maa

	55 56 34 79	117 07 07 07 07 07 07 07	202 203 203 203 203 203 203	38 08 08 08 08 08 03 08 02 08 02 08 02 08 02 08 02 08 00 08 00 08 00 08 00 08 00 08 00 08 000000	35 35 37 37 18 18 18	90 10 10 10 10 10 10 10 10 10 10 10 10 10	N 00 0 4 m	0 1 5 3 2 5	012 4	
	1.	2008	00000	88777	22.0	4. 		0000401	0 4 0 M	
	1001		1 1 2 2 3 3 4		1121	11101010000000000000000000000000000000	8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	70 70 67 67 67 67 67 67 67 67	50 29 28 28	
						- // /				
Current NAME EXPNO PROCNO	Data Parameters arp780_triFpro 10 1	יר ר רר bal_13C				11 1) r	
F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ RG DW DE TE D1 d11 DELTA TD0	uisition Parame 20130625 7.56 spect 5 mm QNP 1H/1 2gpg 66560 CDC13 10240 2 25125.629 0.377488 1.3245940 3649.1 19.900 20.00 299.2 2.0000000 0.0300000 1.89999988 1	Hz Hz sec usec usec K sec sec sec		В		CO2Bn				
	CHANNEL fl ===				FUL N	3 10				
NUC1 P1	130	usec			F B	oc			1	
PL1 SFO1	0.50-0 100.5659560	dB MHz								
					rotamers	S				
CPDPRG2 NUC2 PCPD2 PL2 PL12 PL13 SFO2	CHANNEL IZ === waltz16 1H 80.00 3.00 18.80 24.80 399.9015996	usec dB dB dB MHz								
F2 - Pro	cessing paramet	ers							,	
SI SF	32768	MHz		- 11 -						
WDW	EM	 	L.			. 1		Li -		
hipitality	wither where the second second	antil Antip Antipation	Millingerterapyinteractions	Mynuthy Hynunius	ing he have been a state of the second	hill a state a state of the sta	have been preserved been been been been been been been be	inal for the state of the state	appropriation of the second second	the hadrone with the total the
GB PC	0 1.40	1.1.	e de la compañía				. ,			
200	190 180 1	70 160) 150 140	130 12	0 110 1	.00 90	80 70	60 50 4	10 30 20) 10 ppm

II. Binding affinity measurements.

A. Binding assay for balanol and balanoids.

Compounds were tested by by DiscoverRx, USA using the assay KINOME*scan*TM.^[1] KINOME*scan*TM is a competition–binding assay with quantitative measurement of the ability of a compound to compete with an immobilized, active–site directed ligand. The assay utilizes three components: a DNA–tagged kinase; an immobilized ligand; and a test compound. The ability of the test compound to compete with the immobilized ligand is measured via quantitative PCR of the DNA tag.

KINOMEscanTM Assay Principle

Compounds that bind the kinase active site and directly (sterically) or indirectly (allosterically) prevent kinase binding to the immobilized ligand and consequently reduce the amount of kinase captured on the solid support (A & B). Conversely, test molecules that do not bind the kinase have no effect on the amount of kinase captured on the solid support (C) (Figure 6.2). The dissociation constants (K_d 's) for test compound–kinase interactions are calculated by measuring the amount of kinase captured on the solid support as a function of the test compound concentration by using a quantitative, precise and ultra–sensitive qPCR method that detects the associated DNA label (D).

KINOMEscanTM Assay Protocol (as provided by DiscoverRx)

For most assays, kinase-tagged T7 phage strains were grown in parallel in 24-well blocks in an *E*. *coli* host derived from the BL21 strain. *E. coli* were grown to log-phase and infected with T7 phage from a frozen stock (multiplicity of infection = 0.4) and incubated with shaking at 32°C until lysis (90-150 minutes). The lysates were centrifuged (6,000 x g) and filtered (0.2μ m) to remove

cell debris. The remaining kinases were produced in HEK-293 cells and subsequently tagged with DNA for qPCR detection. Streptavidin-coated magnetic beads were treated with biotinylated small molecule ligands for 30 minutes at room temperature to generate affinity resins for kinase assays. The liganded beads were blocked with excess biotin and washed with blocking buffer (SeaBlock (Pierce), 1 % BSA, 0.05 % Tween 20, 1 mM DTT) to remove unbound ligand and to reduce non-specific phage binding. Binding reactions were assembled by combining kinases, liganded affinity beads, and test compounds in 1x binding buffer (20 % SeaBlock, 0.17x PBS, 0.05 % Tween 20, 6 mM DTT). Test compounds were prepared as 40x stocks in 100% DMSO and directly diluted into the assay. All reactions were performed in polypropylene 384-well plates in a final volume of 0.04 ml. The assay plates were incubated at room temperature with shaking for 1 hour and the affinity beads were washed with wash buffer (1x PBS, 0.05 % Tween 20, 0.5 μ M non-biotinylated affinity ligand) and incubated at room temperature with shaking for 30 minutes. The kinase concentration in the eluates was measured by qPCR.

Binding Affinities (K_d 's)

The binding constants (K_d 's) were calculated with a standard dose–response curve using the Hill equation:

Response = $\frac{\text{Signal - Background}}{1 + (K_d^{\text{Hill Slope}}/\text{Dose}^{\text{Hill Slope}})}$

The Hill Slope was set to -1. Curves were fitted using a non–linear least square fit with the Levenberg–Marquardt algorithm.

References

[1] M. A. Fabian, W. H. Biggs, D. K. Treiber, C. E. Atteridge, M. D. Azimioara, M. G. Benedetti, T. A. Carter, P. Ciceri, P. T. Edeen, M. Floyd, J. M. Ford, M. Galvin, J. L. Gerlach, R. M. Grotzfeld, S. Herrgard, D. E. Insko, M. A. Insko, A. G. Lai, J.-M. Lelias, S. A. Mehta, Z. V. Milanov, A. M. Velasco, L. M. Wodicka, H. K. Patel, P. P. Zarrinkar, D. J. Lockhart, *Nat Biotech* 2005, *23*, 329-336.

B. Full set of binding constants and curves measured for balanol **1** and balanoids **1a–1e** against PKA/C isozymes.

The compounds were tested in duplicate experiments (Figure S2.2). The binding constants are tabulated in Table S2.1. The cross-references of compound/protein names and the assay codes are listed in Table S2.2.

	K_{d} (nM)							
Compound	РКА	РКСб	РКСє	РКСη	РКСӨ			
1	5.4	4.5	0.78	15	31			
1	6.4	4.5	0.78	14	19			
1 a	7.4	18	27	42	100			
1 a	8.4	16	11	35	130			
1b	7.3	13	28	13	150			
1b	6.5	16	21	18	130			
1c	6.5	5.3	0.42	13	25			
1c	6.3	4.5	0.39	13	24			
1d	8.4	19	130	19	640			
1d	10	20	93	20	520			
1e	40	19	49	10	770			
1e	47	18	26	14	930			

Table S2.1. K_d (nM) values of 1 and 1a–1e against PKA and PKC isozymes in duplicate experiments.

Table S2.2. Cross-references of compound/protein names and assay codes.

Compound	Assay code	Proteins	Protein code
1	ARP1	РКА	PKAC-alpha
1 a	ARP2	РКСб	PRKCD
1b	ARP3	ΡΚCε	PRKCE
1c	ARP4	РКСη	PRKCH
1d	ARP30	РКСӨ	PRKCQ
1e	ARP31	PKCi	PRKCI

Figure S2.2. Binding curve images of compounds 1 and 1a–1e provided by DiscoveRx.

III. Docking analysis.

A. Development of docking protocols using the balanol-PKA X-ray crystal structure 1BX6.

In order to find the optimum docking procedure which would reproduce the observed conformation of the balanol docked to PKA (1BX6), a few re-docking procedures were performed using the Molsoft ICM 3.7-2a Package (Neves et al. 2012). ICM exploits a Biased Probability Monte Carlo (BPMC) simulation (Abagyan & Totrov 1994) to find docking solutions. This Monte Carlo simulation globally optimizes internal coordinates of ligand within grid potential maps of a receptor binding site. The simulation involves four stages: (1) a random move which is applied to either the rotational, translational or conformational variables of the ligand in the binding pocket; (2) a minimization of differentiable terms of energy function; (3) a calculation of desolvation energy; and (4) a Metropolis selection criterion to accept or reject final minimized conformation. The stages are iteratively run until reaching the maximal number of steps. For the scoring function, ICM uses a weighted sum of ligand-receptor van der Waals interactions (with coefficients α_1 to α_5) of H-bond interactions (ΔE_{Hbond}), hydrogen bond donor-acceptor desolvation energy ($\Delta E_{HBDesol}$), solvation electrostatic energy upon ligand binding (ΔE_{SolEl}), hydrophobic free energy gain (ΔE_{HPhob}) and a size correction term proportional to the number of ligand atoms (Q_{Size}) together with an internal force field energy of the ligand (ΔE_{IntEF}) and free energy changes due to conformational energy loss upon ligand binding ($T\Delta S_{Tor}$), (Neves et al. 2012). The scoring function is expressed as follows:

$$\Delta G = \Delta E_{\text{IntFF}} + T\Delta S_{\text{Tor}} + \alpha_1 \Delta E_{\text{HBond}} + \alpha_2 \Delta E_{\text{HBDesol}} + \alpha_3 \Delta E_{\text{SolEl}} + \alpha_4 \Delta E_{\text{HPhob}} + \alpha_5 Q_{\text{Size}}$$

ICM also provides an option for semi-flexible docking through ligand and receptor complex refinement. The docking involves a two-step docking process. The first step is the docking of a flexible ligand and a rigid receptor and is followed by a refinement of the entire ligand-receptor complex. The procedure allows the side chains of the receptor to be fully flexible (Neves et al. 2012).

Before performing docking, molecules were assigned MMFF atom types for ligands and partial charges of protein atoms from library of ECEPP/3 residue templates. In addition, molecules were globally optimized to avoid steric clashes (Neves et al. 2012).

During the preliminary step of re-docking of balanol was carried out using two different approaches. In the first group of procedures (labelled group I), the approach of flexible ligand/rigid

receptor was used, while in the second (referred to as group II), the approach was to use flexible ligand/semi-flexible receptor docking simulation in which the side chain amino acid residues interacting with ligand were allowed to be flexible.

In group I docking, we investigated flexible ligand/rigid receptor docking simulations with or without water molecules as shown in the crystal structure, as well as running the simulation with different grid box size (25.09 x 26.63 x 24.07 Å or 32 x 32 x 32 Å). Docking simulations with and without water molecules were also conducted for the second group but without using the larger grid box size as the results from group I indicated that a smaller grid box size would be more reliable, which were then used exclusively for group II (flexible ligand and receptor side chain simulation). Seven replications were conducted for each simulation. The lowest root mean squared deviation (RMSD) for heavy atoms of the re-docked balanol conformation in each simulation were listed in Table S3.1.

Table S3.1	. The lowest RMSD for heav	y atoms of balanol in	1BX6 obtained by	various docking
protocols.				

Docking simulation procedures tested	The lowest RMSD from heavy atoms of balanol (Å)
Group I: Flexible ligand and rigid receptor	
In the presence of water molecules (25.09 x 26.63 x 24.07 Å)	1.01
In the absence of water molecules (25.09 x 26.63 x 24.07 Å)	1.03
Bigger size of grid box size (32 x 32 x 32 Å)	1.44
Group II: Flexible ligand and flexible side chain residues of the recep	tor interacting with ligand
In the presence of water molecules (25.09 x 26.63 x 24.07 Å)	0.74
In the absence of water molecules (25.09 x 26.63 x 24.07 Å)	0.73

The lowest RMSD values are 0.74 and 0.73 Å for group II procedures with or without water molecules respectively, suggesting that flexible ligand/semi-flexible receptor docking procedure would be more appropriate for assessing balanol binding to PKA. This is comparable to existing methods that have also found that inclusion of flexibility is important for optimal docking (Wong et al. 2005; Rezácová et al. 2008). Docking simulation with or without water molecules appeared to give comparable results, which is consistent with the observation that no water molecule appear in the key interactions identified in the crystallographic structure of balanol and PKA complex.

The least RMSD value of 0.73 Å without water molecules was the best outcome for method validation. The overlay of the X-ray complex structure 1BX6 and this docking simulated structure of balanol-PKA is shown in Figure S3.1. The docking method reproduced the binding mode of balanol with very slight changes in the azepane and benzophenone conformations.

В

Figure S3.1. Structural comparison between 1BX6 and docking simulated structure of balanol bound to PKA. (A) The X-ray structure of balanol in the ATP site from 1BX6 (balanol in red) overlaid with the docking simulation structure for the same site with balanol (balanol in gold). The protein backbone is shown in grey ribbons and the amino acid sidechains are shown in sticks. (B) Overlay of the two balanol structures alone (balanol from 1BX6 in red and balanol from docking simulation in gold).

B. Construction of the PKCE structural homology model (from PDB 3TXO and 1BX6).

X-Ray crystal structure for the human PKCε (Q02156) is unavailable yet, although there is a crystal structure (PDB: 3TXO) for human PKCη with naphthyridine bound in the adenine subsite of the ATP pocket. BLAST analysis (http://blast.ncbi.nlm.nih.gov/Blast.cgi) indicated 83.2% primary sequence homology (69.8 % identity) between PKCε and PKCη. Likewise, mouse PKA (PDB: 1BX6) and human PKCε showed 54.1% primary sequence homology (36.4% identity by CLUSTAL 2.1, http://www.ebi.ac.uk/Tools/msa/clustalo/) (McWilliam et al. 2013). The alignment of three proteins is shown in Figure S3.2.

Figure S3.2. Human PKCη (P24723), PKA mouse (P05132) and PKCε human (Q02156) alignment using CLUSTAL 2.1. "*" - identical residue; ":" - one of the following 'strong' groups is fully conserved residue; "." - one of the following 'weaker' groups is fully conserved.

The catalytic domain of protein kinases have two forms with either "open" or "closed" conformation, both of which can be bound to a ligand in the ATP site. The structure 3TXO shows the naphthyridine ligand bound in the "closed" conformation of the receptor, while in 1BX6, balanol is bound to the "open" conformation. PKC ε is likely to bind to balanol in a conformation analogous to that of PKA with balanol bound (Narayana et al. 1999). Hence, 1BX6 was used as the

main structural template to model the open conformation of PKCɛ around the ligand and 3TXO as a template for the rest of the protein.

Firstly, 3TXO and 1BX6 were structurally aligned using jCE algoritm (Prlic et al. 2010) to examine the equivalency of both structures. The result showed that the RMSD of their structures is 1.65 Å and they share identity and similarity at 34.23% and 51.35%, respectively. Next, the sequence of human PKC ϵ was aligned with the sequences of 3TXO and 1BX6 using CLUSTAL 2.1 and also edited manually to maintain the "open" conformation at the glycine-rich loop (GXGXXG) in 3TXO (Taylor et al. 2011).

The three dimensional model of human PKCɛ with bound balanol was built using Modeller 9.14 (Eswar et al. 2008). The resulting models were ranked using the DOPE score (Shen & Sali 2006). The score represents the quality of the model and the lower the score, the more native-like the corresponding model. The model was further assessed (Table S3.2) using Ramachandran plot on PROCHECK webserver (Laskowski et al. 2001).

Table S3.2. Statistics of Ramachandran plot of the PKCɛ structure homology model with balanol bound.

	Number of residues	%
Residues in most favoured regions	271	91.8
Residues in additional allowed regions	16	5.5%
Residues in generously allowed regions	6	2.0%
Residues in disallowed regions	2	0.7%

PROCHECK has suggested that a good quality model would be expected to have over 90% in the most favoured regions, based on an analysis of 118 structures of at least 2.0 Å resolution and R-factor no greater than 20%, (Laskowski et al. 2001). Thereby, the selected PKC ε model can be considered of good quality, with a score of 91.8% in the most favoured regions.

The docking simulated structure of balanol bound to PKC ε is compared to the crystal structure of balanol bound to PKA in Figure S3.3. The close contact between the benzophenone and the glycine-rich loop is similar in these two structures, and the key backbone H-bonding between the *p*-hydroxybenzamide phenol to the conserved Glu amino acid residue (Glu 121 in PKA and Glu 487 in PKC ε) is also maintained in both. However, the azepane conformation in these two structures is significantly different, with the azepane ring making more H-bonding interactions in the case of the PKC ε model. The key ligand-protein interactions in both structures are tabulated in Table S3.3.

Figure S3.3. The docking simulated structure of balanol bound to PKCε is compared to the crystal structure of balanol bound to PKA.

Table S3.3. Key amino acid residue contact comparison for balanol binding to mouse PKA (1BX6) and human PKC ϵ (from docking simulation). These amino acid residues are important in balanol binding in the ATP site according to 1BX6.

Key ATP binding contact

	Glycine rich loop	Catalytic lysine	Activation loop
PKA	⁴⁷ KTLGTGSFGRVMLVK	$\mathbf{W}^{72} \dots \mathbf{W}^{120} \mathbf{MEYV}^{72}$	AGGEMF ¹²⁹ ¹⁸⁴ DFG
PKC_{ϵ}	⁴¹² KVLGKGSFGKVMLAE	LKGKDEVYAVK ⁴³⁷ ⁴⁸⁶ MEYVN	NGGDLMF ⁴⁹⁶ ⁵⁵⁰ DFG

РКСє	Balanol motifs	Type ^a Subtype ^a Matching Balanol motif		Balanol motifs	Туре	Subtype	
residues				РКА			
				residues			
Lys416^	C2'-C7' ring	π- π	BB				
Gly417^	C2'-C7' ring	π- π	BB				
Ser418 [#]	С15′′- СО2Н	H-bond	BB	Ser53	С15′′- СО2Н	H-bond	BB
Phe419 [#]	С15′′- СО2Н	π -Anion	SC	Phe54	С4''-ОН	H-bond	BB
Phe419 [#]	C9"- C14" ring	π - π Stacking	SC	Phe54	C9"- C14" ring	π - π Stacking	SC
Phe419^	C8′=O	H-bond	BB	Phe54	C8''=O	H-bond	BB
Gly420^	C8′=O	H-bond	BB				
Gly420 [#]	С4''-ОН	H-bond	BB				
Val422 [#]	C1''=O	H-bond	BB	Val57	C1''=O	H-bond	BB
				Val57	C2'-C7' ring	π-Alkyl	SC
Ala435^	C2'-C7' ring	π-Alkyl	SC	Ala70	C2'-C7' ring	π-Alkyl	SC
				Lys72	С6″-ОН	H-bond	SC
Glu456 [#]	С10"-ОН	H-bond	SC				
				Met120	C2'-C7' ring	π-Alkyl	SC
Glu487^	С5'-ОН	H-bond	BB	Glu121	С5'-ОН	H-bond	BB
Val489^	С5'-ОН	H-bond	BB	Val123	С5'-ОН	H-bond	BB
Leu539^	C2'-C7' ring	π-σ	SC	Leu173	C2'-C7' ring	π-σ	SC
Asp550 [#]	С6''-ОН	H-bond	SC	Asp184	С6″-ОН	H-bond	SC
				Asp184	C9"- C14" ring	π -Anion	SC
Asp536*	N1	H-bond	BB				
Ala549^	C2'-C7' ring	π-σ	SC				

^a H-bond: hydrogen bond; BB : backbone; SC : side chain

^ p-Hydroxybenzamide moiety binding interactions

* Azepan moiety binding interactions

[#] Benzophenone moiety binding interactions

C. Docking simulation of balanoids to PKA/C using optimized docking simulation procedure.

Balanoids (1a, 1c, and 1d) were used for docking analysis using the mouse PKA crystal structure (1BX6) and the PKCɛ structural homology model (Figure S3.4). These balanoids were built by adding fluorine atoms at particular positions of the seven-membered azepane ring of the natural

balanol. Each balanoid was subjected to the optimised docking procedure and docked into PKA (see section A) with seven replication each. The simulation indicates that all balanoids have highly similar conformations and occupy the ATP site of PKA in similar positions and binding orientations (Figure S3.5).

Figure S3.4. Structures of balanol (1) and balanoids (1a, 1c, and 1d) used for docking analysis. Balanol 1: black; 1a: green; 1c: pink; and 1d: red. The colour codes are used throughout the section.

Figure S3.5. An overlay of the bound form of balanol with balanoids **1a**, **1c**, and **1d** in PKA (according to the same color codes as in Figure S3., Balanol **1**: black; **1a**: green; **1c**: pink; and **1d**: red) viewed from multiple angles. Pairwise overlay of the bound conformations of balanoids are also shown to highlight the similarities and differences in their conformations.

In particular, the benzophenone binding conformations are similar across balanol and the balanoids, which is consistent with the experimental observations that these compounds have similar binding affinities to PKA. In addition, the *p*-hydroxybenzamide binding conformations of these compounds

are also very similar, and the azepane moiety is the only part of that undergoes noticeable conformational changes. These results again suggest good correlation between the measure binding affinities and interaction profiles identified by the docking analysis.

Likewise, each balanoid was subjected to the optimised docking procedure (section B) with seven replicates each. The grid maps derived from the PKC ε structure homology model was used for the docking simulation. The calculated binding energies (ΔG°) were listed along with the experimental K_d in Table S3.4.

Table S3.4. Experimental K_d values of the balanoids binding to PKC ε and their calculated ΔG° obtained from docking simulation.

Balanoids	$K_{\rm d}$ (nM)	In K _d	Calculated ΔG°
1	0.73	-21.04	-26.11
7 1 a	19	-17.78	-23.75
9 1c	0.4	-21.64	-26.36
12 1d	110	-16.02	-21.44

Graphical plotting between $\ln K_d$ of the balanoids and calculated ΔG° showed good linear correlation (Figure 3.6).

Figure S3.6. Correlation between $\ln K_d$ and calculated ΔG° of binding between the balanoids and PKC ε .

As was the case with PKA, the bound ligand conformation to PKC ε is similar across the panel. In particular, the binding interactions of the benzophenone moiety appeared to be very conserved across all members. Larger conformational differences of the azepane ring appeared in the ribose-binding subsite and the *p*-hydroxybenzamide motif in the adenine subsite, with **1**, **1a**, and **1c** being comparable, and **1d** different from the other three (Figure 3.7).

Figure S3.7. An overlay of bound balanol/balanoids conformations in PKC ϵ (according to the same color codes as in Figure S3., Balanol 1: black; **1a**: green; **1c**: pink; and **1d**: red). Pairwise overlay of the bound conformations of balanoids are also shown to highlight the similarities and differences in their conformations.

Figure S3.8. Two-dimensional graphical representations of ligand-receptor interactions of balanoids (A) **1**, (B) **1a**, (C) **1c**, and (D) **1d** with PKCε. The interaction visualisation was generated using Discovery Studio Visualizer (Systèmes 2016).

In general, the key interactions, as identified earlier in section I between the benzophenone motif of balanol and PKA, are preserved here in the case of balanoids **1**, **1a**, **1c** and **1d** with PKC ε (Table S3.5, Figure S3.8, and Figure S3.9). These include: hydrogen bonds with hydroxyl of Ser418 and carboxyl of Glu456. The first ring also interacted with Phe419 via π - π interaction. Meanwhile, the Gly420 backbone and the side chain of Asp550 made hydrogen bonds with the second ring of benzophenone moiety. Those interactions suggest stabilisation of the benzophenone moiety of balanol analogues at the ATP binding site of PKC ε .

Figure S3.9. Ligand-receptor interactions of balanoids (A) **1**, (B) **1a**, (C) **1c**, and (D) **1d** with PKCε.

	Balanoll (1)			Balanol7 (1a)		Balanol9 (1c)			Balanol12 (1d)			
Residues	Balanol motifs	Type ^a	Subtype ^a	Balanol motifs	Туре	Subtype	Balanol motifs	Туре	Subtype	Balanol motifs	Туре	Subtype
Lys416^	C2'-C7' ring	π- π	BB	C2'-C7' ring	π- π	BB	C2'-C7' ring	π- π	BB	C2'-C7' ring	π- π	BB
Lys416*							C5-F	H-bond	BB	C6-F	H-bond	BB
Gly417^	C2'-C7' ring	π- π	BB									
Ser418 [#]	С15′′- СО ₂ Н	H-bond	BB	С15″- СО ₂ Н	H-bond	BB	С15′′- СО ₂ Н	H-bond	BB	С15′′- СО ₂ Н	H-bond	BB
Ser418 [#]	С15′′- СО ₂ Н	H-bond	SC	С15′′- СО ₂ Н	H-bond	SC	С15′′- СО ₂ Н	H-bond	SC	C15″- CO ₂ H	H-bond	SC
Phe419 [#]	С15′′- СО2Н	π-Anion	SC	С15′′- СО2Н	π- Anion	SC	С15′′- СО2Н	π- Anion	SC	С15′′- СО2Н	π- Anion	SC
Phe419 [#]	C9"- C14" ring	π-π Stacking	SC	C9"- C14" ring	π - π Stacking	SC	C9"- C14" ring	π - π Stacking	SC	C9"- C14" ring	π - π Stacking	SC
Phe419^	C8′=O	H-bond	BB	C8′=O	H-bond	BB	C8′=O	H-bond	BB			
Gly420^	C8′=O	H-bond	BB									
Gly420 [#]	С4"-ОН	H-bond	BB	С4''-ОН	H-bond	BB	С4''-ОН	H-bond	BB	С4''-ОН	H-bond	BB
Val422 [#]	C1''=O	H-bond	BB	C1''=O	H-bond	BB	С1″=О	H-bond				
Ala435^	C2'-C7' ring	π-Alkyl	SC	C2'-C7' ring	π-Alkyl	SC	C2'-C7' ring	π-Alkyl	SC	C2'-C7' ring	π-Alkyl	SC
Glu456 [#]	С10"-ОН	H-bond	SC	С10"-ОН	H-bond	SC	С10"-ОН	H-bond	SC	С10"-ОН	H-bond	SC
Glu487^	С5'-ОН	H-bond	BB	С5'-ОН	H-bond	BB	С5'-ОН	H-bond	BB	С5'-ОН	H-bond	BB
Val489^	С5'-ОН	H-bond	BB	С5'-ОН	H-bond	BB	С5'-ОН	H-bond	BB			
Asp493*				N1	H-bond	SC	N1	H-bond	SC	N1	H-bond	SC
Asp536*	N1	H-bond	BB	N1	H-bond	BB	N1	H-bond	BB			
Leu539^	C2'-C7' ring	π-σ	SC	C2'-C7' ring	π-σ	SC	C2'-C7' ring	π-σ	SC	C2'-C7' ring	π-σ	SC
Ala549^	C2'-C7' ring	π-σ	SC	C2'-C7' ring	π-σ	SC	C2'-C7' ring	π-σ	SC	C2'-C7' ring	π-σ	SC
Asp550 [#]	С6"-ОН	H-bond	SC	С6″-ОН	H-bond	SC	С6''-ОН	H-bond	SC	С6″-ОН	H-bond	SC
				C9"- C14" ring	π -Anion	SC	C9"- C14" ring	π -Anion	SC	C9"- C14" ring	π -Anion	SC

Table S3.5. Comparison of ligand-receptor interactions of balanoids 1, 1a, 1c, and 1d with PKCE.

^a H-bond: hydrogen bond; BB: backbone; SC: side chain. ^ Benzamide moiety binding interactions. * Azepan moiety binding interactions. # Benzophenone moiety binding interactions

The details of H-bonds are presented in Table S3.6. The balanoid 1c has the maxin H-bonds (12), followed closely by 1a (with 11) and 1 (10), while 1d has the leas bonds (8). These are consistent with the $\ln K_d$ values shown in Table S3.4, wher higher affinity than 1, 1a, and 1d. The interaction with Gly420 is specific to 1, balanoids interact with Asp493, which is not seen with 1.

	H-bond distances (Å)							
	Balanol1 (1)	Balanol7 (1a)	Balanol9 (1c)	Balanol12 (1d)				
Lys416			2.90	2.73				
Ser418	1.97	1.98	1.92	1.99				
Ser418	1.86	1.86	1.75	1.84				
Phe419	2.07	2.88	2.81					
Gly420	2.36							
Gly420	2.93	2.85	2.86	3.00				
Val422	3.06	2.97	2.96					
Glu456	2.47	1.80	1.83	1.84				
Glu487	1.85	2.13	2.07	2.48				
Val489	1.77	2.50	2.41					
Asp493		2.37	2.50	1.78				
Asp536	1.83	2.34	2.16					
Asp550	2.24	1.99	2.02	1.94				

Table S3.6. H-bond distances among balanoids in PKC binding site.

A comparison of **1c** bound to PKA and to PKC ε is informative in understand interactions that are unique to each complex (Figure S3.10). We note that the H-bor of **1c** and Asp493 of PKC ε (which is conserved among all balanoids; Table S3.6) it the case of PKA, where this residue is replaced by Glu127, which is beyond H-b from N1H. Furthermore, the interaction between F (on C5) of **1c** and the backbone Lys416 of PKC ε is replaced by a single interaction in PKA with the CO of equivalent residue, Thr51. A comparison of **1c** and **1d** bound to PKA is shown in F Table S3.7. The interactions in the azepane, benzophenone and the *p*-hydroxyber regions are comparable for these two compounds.

Figure S3.10. A comparison of **1c** docked on (A) PKA and (B) PKC ϵ . Two H-bond ring are missing in the complex of 1c and PKA.

Figure S3.11. Ligand-receptor interactions of balanoids (A) 1c, and (B) 1d with PKA.

	1c			1d		
Residues	Balanol motifs	Type ^a	Subtype ^a	Balanol motifs	Туре	Subtype
Thr51 [#]	C2"-C7" ring	π-Alkyl	BB	C2"-C7" ring	π-Alkyl	BB
Ser53 [#]	С15′′- СО ₂ Н	H-bond	BB	С15′′- СО2Н	H-bond	BB
Phe54 [#]	С15″- СО2Н	H-bond	BB	С15″- СО2Н	H-bond	BB
Phe54 [#]	С15″- СО2Н	π -Anion	side chain			
Phe54 [#]	C9"- C14" ring	π - π Stacking	SC	C9"- C14" ring	π - π Stacking	SC
Phe54 [#]	C8''=O	H-bond	BB	C8''=O	H-bond	BB
Val57 [^]	C2'-C7' ring	π-Alkyl	SC	C2'-C7' ring	π-Alkyl	SC
Val57 [#]				C1''=O	H-bond	BB
Ala70^	C2'-C7' ring	π-Alkyl	SC	C2'-C7' ring	π-Alkyl	SC
Lys72 [#]	С10"-ОН	H-bond	SC			
Lys72 [#]	C2"-C7" ring	π -Cation	SC	C2"-C7" ring	π - Cation	SC
Gln84 [#]				С15′′- СО ₂ Н	H-bond	SC
Glu91 [#]	С10"-ОН	H-bond	SC	С10"-ОН	H-bond	SC
Glu121^	С5'-ОН	H-bond	BB	С5'-ОН	H-bond	BB
Glu170*	N1	H-bond	BB	N1	H-bond	BB
Leu173^	C2'-C7' ring	π-σ	SC	C2'-C7' ring	π-σ	SC
Thr183 ^	C1′=O	H-bond	SC	C1′=O	H-bond	SC
Asp184 [#]	С6''-ОН	H-bond	SC	С6"-ОН	H-bond	SC
Asp184 [#]				C9"- C14" ring	π -Anion	SC

Table S3.7. Comparison of Non-covalent interaction of the balanoid 1c and 1d in PKA.

Asp184^{**}
^a H-bond: hydrogen bond; BB: backbone; SC: side chain.
^ Benzamide moiety
* Azepan moiety
Benzophenone moiety

D. References

- Abagyan, R. & Totrov, M., 1994. Biased Probability Monte Carlo Conformational Searches and Electrostatic Calculations for Peptides and Proteins. *Journal of molecular biology*, 235(3), pp.983–1002.
- Eswar, N. et al., 2008. Protein Structure Modeling with MODELLER. In B. Kobe, M. Guss, & T. Huber, eds. *Structural Proteomics High-Throughput Methods*. Methods in Molecular BiologyTM. Humana Press, pp. 145–159. Available at: http://dx.doi.org/10.1007/978-1-60327-058-8_8.
- Laskowski, R.A., MacArthur, M.W. & Thornton, J.M., 2001. PROCHECK: validation of protein structure coordinates. In M. G. Rossmann & E. D. Arnold, eds. *International Tables of Crystallography, Volume F. Crystallography of Biological Macromolecules*. The Netherlands: Kluwer Academic Publishers, pp. 722–725.
- McWilliam, H. et al., 2013. Analysis Tool Web Services from the EMBL-EBI. *Nucleic acids research*, 41(Web Server issue), pp.597–600.
- Narayana, N. et al., 1999. Crystal Structure of the Potent Natural Product Inhibitor Balanol in Complex with the Catalytic Subunit of cAMP-Dependent Protein Kinase. *Biochemistry*, 38(8), pp.2367–2376. Available at: http://dx.doi.org/10.1021/bi9820659.

Neves, M. a C., Totrov, M. & Abagyan, R., 2012. Docking and scoring with ICM: the benchmarking results and strategies for improvement. *Journal of computer-aided molecular design*, 26(6), pp.675–86. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3398187&tool=pmcentrez&render type=abstract [Accessed December 3, 2014].

- Prlic, A. et al., 2010. Pre-calculated protein structure alignments at the RCSB PDB website. *Bioinformatics (Oxford, England)*, 26(23), pp.2983–5. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3003546&tool=pmcentrez&render type=abstract [Accessed January 4, 2015].
- Rezácová, P. et al., 2008. Crystal structure and putative function of small Toprim domaincontaining protein from Bacillus stearothermophilus. *Proteins*, 70(2), pp.311–319.

Shen, M.-Y. & Sali, A., 2006. Statistical potential for assessment and prediction of protein structures. *Protein science : a publication of the Protein Society*, 15(11), pp.2507–24. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2242414&tool=pmcentrez&render type=abstract [Accessed September 29, 2014].

- Systèmes, D., 2016. Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2016.
- Taylor, S.S., Kornev, A.P. & Manuscript, A., 2011. Protein Kinases: Evolution of Dynamic Regulatory Proteins. *Trends in biochemical sciences*, 36(2), pp.65–77. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3084033/.
- Wong, C.F. et al., 2005. Molecular docking of balanol to dynamics snapshots of protein kinase A. *Proteins: Structure, Function and Genetics*, 61(4), pp.850–858.