Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Enantioselective synthesis of 1,2,3,4-tetrahydroquinoline-4-ols and 2,3-dihydroquinolin-4(1*H*)-ones via a sequential asymmetric hydroxylation/diastereoselective oxidation process using *Rhodococcus equi* ZMU-LK19

Ke Li, Juxiang Wang, Kailin Wu, DaijunZheng, Xiaojian Zhou, Wenyong Han, Nanwei Wan, Baodong Cui and Yongzheng Chen*

Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.

Email: yzchen@zmc.edu.cn

Supporting Information Table of Contents

1. General experimental information	S1
2. Screening of whole-cell biocatalysts	S1
3. Cultivation of <i>R. equi</i> ZMU-LK19	S2
4. Optimization of reaction conditions	S2
5. Investigation of cosolvents	S3
6. Representative procedure for the synthesis of 2a and 3a	S3
7. Characterization data of compounds 2a-f , 3a-f	S3
8. X-ray crystal data for compound 2a	S8
9. The study on the process of asymmetric hydroxylation of (<i>R</i>)-1a and (<i>S</i>)-1a	S12
10. ¹⁸ O labeling experiments	S13
11. Biooxidation of (S)-1a with soluble cell-free extracts of R. equi ZMU-LK19	S14
12. Refrences	S14
13. ¹ H, ¹³ C NMR and HPLC spectra of 2a-f , 3a-f	S15

1. General experimental information

All reagents and solvents were obtained from commercial suppliers and used without further purification. 2-Methylquinoline, NADH and NADPH were purchased from J&K Chemicals, *rac*-2-methyl-1,2,3,4-tetrahydroquinoline were purchased from TCI. ¹⁸O₂ and H₂¹⁸O were bought from Xiya Chemicals. Water was distilled before use. All strains were isolated and preserved in our laboratory.

The reactions were monitored by TLC (silica gel 60 F₂₅₄). Column chromatography was performed on silica gel (200-400 mesh). ¹H NMR (400 MHz) chemical shifts were reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, br s= broad singlet, d = doublet, t = triplet, dd = doublet of doublets, dt = double of triplet, td = triplet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR (100 MHz) chemical shifts were reported in ppm (δ) from tetramethylsilane (TMS) with the solvent resonance as the internal standard. Enantiomeric excess was determined by HPLC analysis, it was performed on SPD-M20A equipped with an Chiralcel OJ-H chiral column (4.6 mm Φ ×250 mmL), Chiralcel OD-H chiral column (4.6 mm Φ ×250 mmL), Chiralpak AD-H chiral column (4.6 mm Φ ×250 mmL) and Chiralpak AS-H chiral column (4.6 mm Φ ×250 mmL) purchased from Daicel Chemical Industries. MS HR-ESI was performed on a micrOTOF-Q II 10203 mass spectrometer. Optical rotation data were determined by Autopol II-Rudolph Polarimeter. Melting points (Mp) were measured on a G-4 micromelting point apparatus and are uncorrected values. Absolute configuration of product were determined by X-ray diffraction.

	H Microorganism (x PBS buffer (5.) (±)-1a	g cdw/L) 0 mL) H, 24 h	OH N N H 2a	+ NH H 3a]	
entry	whole cells		2a		3a	l
entry	whole cens	yield (%) ^b	dr ^c	ee (%) ^d	yield $(\%)^b$	ee (%) ^c
1	Pseudomonas spicies ZMU-T01	5	>99:1	95	14	98
2	Pseudomonas monteilii ZMU-T02	4	81:19	86	8	>99
3	Pseudomonas monteilii ZMU-T03	6	79:21	87	14	98
4	Pseudomonas monteilii ZMU-T04	6	92:8	93	18	98
5	Pseudomonas monteilii ZMU-T05	5	97:3	90	15	99
6	Pseudomonas monteilii ZMU-T06	8	99:1	91	20	98
7	Pseudomonas monteilii ZMU-T07	3	75:25	83	7	98
8	Pseudomonas monteilii ZMU-T08	4	>99:1	89	12	98
9	Pseudomonas monteilii ZMU-T09	3	89:11	76	6	>99
10	Pseudomonas monteilii ZMU-T12	5	83:17	93	12	97
11	Pseudomonas monteilii ZMU-T13	6	95:5	84	19	98

2. Table S1 Screening of whole-cell biocatalysts^a

12	Pseudomonas monteilii ZMU-T14	4	74:26	83	8	99
13	Pseudomonas monteilii ZMU-T15	5	89:11	95	15	98
14	Pseudomonas monteilii ZMU-T16	0	-	-	0	-
15	Pseudomonas monteilii ZMU-T17	0	-	-	0	-
16	Rhodococcus equi ZMU-LK19	58	68:32	95	18	96

^{*a*} All reactions (5.0 mL) were performed in pH 7.0 (50.0 mM Na₂HPO₄/KH₂PO₄) containing (±)-1a (3.0×10^{-2} mmol, 6.0 mM) and whole cell (30 g cdw/L) at 30 °C and 250 rpm for 24 h. ^{*b*} Determined by HPLC analysis of the crude reaction mixture by the external standard method. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} Determined by chiral HPLC analysis for major diastereoisomer.

3. Cultivation of R. equi ZMU-LK19

R. equi ZMU-LK19 obtained by screening the soil sample from Guizhou Province in P. R. China was grown in M9-agar plates under ethylbenzene vapor, subsequently inoculated to 10 mL LB liquid medium. The culture was incubated at 30 °C and 250 rpm for 24 h and then transferred to 50 mL M9 liquid medium containing 50 μ L trace elements (1 mol/L HCl, 4.87 g/L FeSO₄·7H₂O, 4.12 g/L CaCl₂·2H₂O, 1.50 g/L MnCl₂·4H₂O, 1.05 g/L ZnSO₄, 0.3 g/L H₃BO₃, 0.25 g/L Na₂MoO₄·2H₂O, 0.15 g/L CuCl₂·2H₂O, 0.84 g/L Na₂EDTA·2H₂O), 100 μ L Mg₂SO₄ (1 M) and 50 μ L ethylbenzene. After the cell density reached 0.1 g cdw/L, a 15 mL tube containing 500 μ L ethylbenzene was added into the flask and used as carbon source. Then the culture was incubated at 30 °C and 250 rpm. After 24 h, the cells were harvested by centrifugation for immediate use.

4. Table S2 Optimization of reaction conditions^a

	(±)-	H ZMU- ZMU- PBS Temp 1a	odococcus LK19 (x g buffer (5.0 perature, ph	<i>equi</i> cdw/L)) mL) 1, 24 h	•	OH N + 2a	O N H 3a		
	coll donaite	auba aana				2a		3	a
entry	(a adm/L)	subs. conc.	t (°c)	pН	yield	1	ee	yield	ee
	(g cdw/L)	(mm)			(%) ^b	ar	(%) ^d	$(\%)^{b}$	(%) ^c
1	30	6	30	7	58	68:32	95	18	96
2	50	6	30	7	56	78:22	98	25	96
3	70	6	30	7	50	78:22	96	26	97
4	50	4	30	7	55	76:24	97	25	97
5	50	8	30	7	50	79:21	97	14	95
6	50	6	20	7	44	53:47	95	15	98
7	50	6	37	7	55	76:24	86	13	86
8	50	6	30	6	54	55:45	75	6	97
9	50	6	30	8	60	53:47	90	9	98

^{*a*} All reactions were performed in 5 mL PBS buffer (50 mM Na₂HPO₄/KH₂PO₄) and 250 rpm for 24 h. ^{*b*} determined by HPLC analysis of the crude reaction mixture by the external standard method. ^{*c*} Determined by chiral HPLC analysis for major diastereoisomer.

5. Table S3 Investigation of cosolvents^a

anter	an colvert		2a		3a		
entry	co-solvent	yield (%) ^b	dr ^c	ee (%) ^d	yield $(\%)^b$	ee (%) ^c	
1	None	83	59:41	96	9	99	
2	Glycerol	70	57:43	98	8	>99	
3	DMF	19	90:10	>99	0	-	
4	DMSO	86	54:46	99	4	>99	
5	MeOH	20	91:9	>99	1	>99	
6	EtOH	1	-	>99	0	-	
7	CH ₃ CN	2	-	>99	0	-	
8	THF	1	-	>99	0	-	
9	MTBE	4	90:10	>99	0	-	

^{*a*} All reactions (5.0 mL) were performed in pH 7.0 (50.0 mM Na₂HPO₄/KH₂PO₄) containing **1a** (3.0×10^{-2} mmol, 6.0 mM), *R. equi* ZMU-LK19 (50 g cdw/L) and the stated cosolvent (0.5 mL, 10% *v*/*v*) at 30 °C and 250 rpm for 6 h. ^{*b*} Determined by HPLC analysis of the crude reaction mixture by the external standard method. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} Determined by chiral HPLC analysis for major diastereoisomer.

6. Representative procedure for the synthesis of 2a and 3a (Table 1 entry 1)

The cells of *R. equi* ZMU-LK19 were suspended in 36 mL PBS buffer (50 mM Na_2HPO_4/KH_2PO_4 , pH 7.0) to a cell density of 50 g cdw/L, and (±)-1a (35.3 mg, 0.24 mmol, 6 mM) was added with 4 mL DMSO. The mixture was shaken at 30 °C and 250 rpm for 24 h. Then the mixture was extracted with EtOAc (3 × 50 mL) and the combined organic layer was dried over anhydrous Na_2SO_4 , filtered and concentrated in vacuo, generating brownish oil. The crude was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15:1) to afford the corresponding compound 2a as a yellowish solid (22.5 mg, 57% yield) and 3a as a yellowish solid (9.7 mg, 25% yield).

7. Characterization data of compounds 2a-f, 3a-f

(2*R*,4*R*)-2-methyl-1,2,3,4-tetrahydroquinoline-4-ol (2a): Yellowish solid, yield: 22.5 mg (57%). 96% *ee*, dr = 87:13 (>99% *ee* and 98:2 dr were obtained after recrystallization). Enantiomeric excess was determined by HPLC analysis using Chiralcel OJ-H column (90% hexane/2-propanol, flow 0.8 mL/min, λ 254 nm). t_R 28.3 min (minor); t_R 31.1 min (major). Mp: 101.9-102.7 °C. [α]_D²⁵ = 70.3 (*c* 1.0, CHCl₃, the optical rotation was determined by using the recrystallized product). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.20 (d, *J* = 7.6 Hz, 1H), 7.09 (t, *J* = 6.8 Hz, 1H), 6.68 (t, *J* = 7.2 Hz, 1H), 6.55 (d, *J* = 8.0 Hz, 1H), 4.71 (t, *J* = 2.8 Hz, 1H), 3.95 (br s, 1H), 3.58-3.51 (m, 1H), 2.00 (dt, *J* = 13.6 Hz, 2.4 Hz, 1H), 1.57-1.50 (m, 1H), 1.26 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 144.9, 130.4, 129.4, 122.4, 117.3, 114.7, 65.9, 41.8, 38.1, 22.1. IR (KBr) *v* 3541, 3331, 3125, 2960, 2921, 1611, 1512, 1400, 1155, 1029, 755 cm⁻¹. MS HR-ESI: m/z = [M + H]⁺ 164.1063 (calcd for C₁₀H₁₄NO m/z = 164.1070).

Table 1, entry 1

(*S*)-2-methyl-1,2,3,4-tetrahydroquinoline-4-one (3a)¹: Yellowish solid, yield: 9.7 mg (25%). 98% *ee* (>99% *ee* was obtained after recrystallization). Enantiomeric excess was determined by HPLC analysis using Chiralcel OJ-H column (90% hexane/2-propanol, flow 0.8 mL/min, λ 254 nm). t_R 21.7 min (minor); t_R 22.4 min (major). Mp: 94.7-95.9 °C. [α]_D²⁵ = -217.0 (*c* 1.0, CHCl₃, the optical rotation was determined by using the recrystallized product). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.83 (d, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H), 6.73 (t, *J* = 7.6 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 1H), 4.25 (br s, 1H), 3.82-3.76 (m, 1H), 2.64 (dd, *J* = 16.4 Hz, 3.6 Hz, 1H), 2.51-2.44 (m, 1H), 1.34 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 194.2, 151.7, 135.3, 127.6, 119.0, 118.1, 115.8, 49.2, 45.9, 21.5. IR (KBr) *v* 3414, 3325, 3128, 1656, 1615, 1400, 1152, 754 cm⁻¹. MS HR-ESI: m/z = [M + H]⁺ 162.0913 (calcd for C₁₀H₁₂NO m/z = 162.0913).

Table 1, entry 2

(2*R*,4*R*)-2-ethyl-1,2,3,4-tetrahydroquinolin-4-ol (2b): Yellowish solid, yield 18.2 mg (43%). 94% *ee*, dr = 65:35 (98% *ee* and 79:21 dr were obtained after recrystallization). Enantiomeric excess was determined by HPLC analysis using Chiralcel OJ-H column (90% hexane/2-propanol, flow 0.8 mL/min, λ 254 nm). t_R 22.8 min (minor); t_R 25.3 min (major). Mp: 129.2-129.6 °C. [α]_D²⁵ = 126.9 (*c* 1.0, CHCl₃, the optical rotation was determined by using the recrystallized product). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.21 (d, *J* = 7.6 Hz, 1H), 7.09 (t, *J* = 7.6 Hz, 1H), 6.68 (t, *J* = 7.2 Hz, 1H), 6.57 (d, *J* = 8.0 Hz, 1H), 4.75 (s, 1H), 3.39-3.32 (m, 1H), 2.07-2.03 (m, 1H), 1.60 (t, *J* = 7.6 Hz, 2H), 1.55-1.51 (m, 1H), 1.03 (td, *J* = 7.2 Hz, 1.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 144.9, 130.3, 129.4, 122.7, 117.3, 114.7, 65.9, 47.5, 35.7, 29.1, 10.0. IR (KBr) *v* 3291, 3135, 2925, 1609, 1486, 1400, 1260, 1034, 750 cm⁻¹. MS HR-ESI: m/z = [M + Na]⁺ 200.1053 (calcd for C₁₁H₁₅NO m/z = 200.1053).

(2*R*,4*R*)-2-propyl-1,2,3,4-tetrahydroquinolin-4-ol (2c): White solid, yield 17.0 mg (37%). >99% *ee*, dr = 99:1. Enantiomeric excess was determined by HPLC analysis using Chiralcel OJ-H column (90% hexane/2-propanol, flow 0.8 mL/min, λ 254 nm). t_R 17.6 min (minor); t_R 20.1 min (major). Mp: 113.9-114.5 °C. [α]_D²⁵ = 128.2 (*c* 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.20 (dd, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.09 (td, *J* = 8.0 Hz, 1.6 Hz, 1H), 6.67 (td, *J* = 7.6 Hz, 1.2 Hz, 1H), 6.56 (d, *J* = 8.0 Hz, 1H), 4.74 (t, *J* = 2.8 Hz, 1H), 3.46-3.40 (m, 1H), 2.04 (dt, *J* = 13.6 Hz, 2.8 Hz, 1H), 1.56-1.52 (m, 3H), 1.50-1.44 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 144.9, 130.4, 129.4, 122.7, 117.3, 114.8, 65.9, 45.9, 38.5, 36.3, 18.9, 14.4. IR (KBr) *v* 3415, 3272, 3134, 2959, 2928, 1612, 1490, 1400, 1033, 752 cm⁻¹. MS HR-ESI: m/z = [M + H]⁺ 192.1384 (calcd for C₁₂H₁₈NO m/z = 192.1383).

Table 1, entry 3

(*S*)-2-propyl-2,3-dihydroquinolin-4(1*H*)-one (3c): Yellowish solid, yield 11.0 mg (24%). 71% *ee* (80% *ee* was obtained after recrystallization). Enantiomeric excess was determined by HPLC analysis using Chiralcel OJ-H column (90% hexane/2-propanol, flow 0.8 mL/min, λ 254 nm). t_R 14.1 min (minor); t_R 15.3 min (major). Mp: 105.0-105.5 °C. [α]_D²⁵ = -175.1 (*c* 1.0, CHCl₃, the optical rotation was determined by using the recrystallized product). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.81 (d, *J* = 8.0 Hz, 1H), 7.31-7.26 (m, 1H), 6.71 (t, *J* = 7.6 Hz, 1H), 6.66 (d, *J* = 8.4 Hz, 1H), 4.34 (br s, 1H), 3.67-3.60 (m, 1H), 2.67 (dd, *J* = 16.4 Hz, 3.6 Hz, 1H), 2.50-2.43 (m, 1H), 1.64-1.57 (m, 2H), 1.45-1.40 (m, 2H), 0.97 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 194.3, 151.6, 135.3, 127.6, 119.2, 118.0, 115.9, 53.2, 44.0, 37.4, 18.7, 14.1. IR (KBr) *v* 3349, 3130, 2961, 1656, 1612, 1401, 1150, 761 cm⁻¹. MS HR-ESI: m/z = [M + H]⁺ 190.1219 (calcd for C₁₂H₁₆NO m/z = 190.1226).

Table 1, entry 4

(2S,4R)-2-isopropyl-1,2,3,4-tetrahydroquinolin-4-ol (2d): Yellow solid, yield 17.2 mg (37%).

97% *ee*, dr = 73:27 (>99% *ee* and 97:3 dr were obtained after recrystallization). Enantiomeric excess was determined by HPLC analysis using Chiralpak AD-H column (97% hexane/2-propanol, flow 0.5 mL/min, λ 254 nm). t_R 65.4 min (major); t_R 80.0 min (minor). Mp: 190.1-190.7 °C. [α]_D²⁵ = 156.0 (*c* 1.0, CHCl₃, the optical rotation was determined by using the recrystallized product). ¹H NMR (400 MHz, DMSO-*d*₆) δ /ppm = 7.02 (d, *J* = 7.2 Hz, 1H), 6.93-6.89 (m, 1H), 6.59 (d, *J* = 8.0 Hz, 1H), 6.44 (t, *J* = 7.2 Hz, 1H), 5.54 (s, 1H), 4.89 (d, *J* = 4.0 Hz, 1H), 4.49 (s, 1H), 3.14 (d, *J* = 11.6 Hz, 1H), 1.78-1.70 (m, 2H), 1.38-1.32 (m, 1H), 0.93 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ /ppm = 145.1, 130.3, 129.4, 122.5, 117.2, 114.8, 66.0, 51.4, 32.4, 32.3, 18.4. IR (KBr) *v* 3413, 3307, 3133, 2977, 2916, 1612, 1488, 1399, 1033, 753 cm⁻¹. MS HR-ESI: m/z = [M + H]⁺ 192.1374 (calcd for C₁₂H₁₈NO m/z = 192.1383).

Table 1, entry 4

(*R*)-2-isopropyl-2,3-dihydroquinolin-4(1*H*)-one (3d): Yellow solid, yield 7.1 mg (16%). 86% *ee*. Enantiomeric excess was determined by HPLC analysis using Chiralcel OD-H column (90% hexane/2-propanol, flow 1.0 mL/min, λ 254 nm). t_R 8.4 min (minor); t_R 13.4 min (major). Mp: 106.3-106.7 °C. [α]_D²⁵ = -78.3 (*c* 1.0, CHCl₃). ¹H NMR (400 MHz, CHCl₃) δ /ppm = 7.80 (dd, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.31-7.27 (m, 1H), 6.74-6.69 (m, 1H), 6.67 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 4.29 (br s, 1H), 3.40-3.44 (m, 1H), 2.63-2.49 (m, 2H), 1.89-1.84 (m, 1H), 1.01 (dd, *J* = 6.8 Hz, 2.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 194.7, 151.7, 135.3, 127.5, 119.2, 118.1, 116.0, 58.9, 40.7, 31.8, 18.5, 18.1. IR (KBr) *v* 3353, 3125, 2963, 1657, 1613, 1399, 1152, 758 cm⁻¹. MS HR-ESI: m/z = [M + H]⁺ 190.1221 (calcd for C₁₂H₁₆NO m/z = 190.1226).

Table 1, entry 5 OH

(2*S*,4*R*)-2-cyclopropyl-1,2,3,4-tetrahydroquinolin-4-ol (2e): Yellow solid, yield 24.3 mg (54%). 95% *ee*, dr = 73:27 (94:6 dr were obtained after recrystallization). Enantiomeric excess was determined by HPLC analysis using Chiralpak AS-H column (90% hexane/2-propanol, flow 1.0 mL/min, λ 254 nm), t_R 9.9 min (minor); t_R 10.9 min (major). Mp: 190.0-190.7 °C. [α]_D²⁵ = 208.1 (*c* 1.0, CHCl₃, the optical rotation was determined by using the recrystallized product). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.19 (d, *J* = 7.2 Hz, 1H), 7.09 (t, *J* = 7.2 Hz, 1H), 6.66 (t, *J* = 7.2 Hz, 1H), 6.57 (d, *J* = 8.0 Hz, 1H), 4.76 (s, 1H), 2.58-2.53 (m, 1H), 2.17 (d, *J* = 13.6 Hz, 1H), 1.77-1.70 (m, 1H), 0.96-0.88 (m, 1H), 0.56 (t, *J* = 8.8 Hz, 2H), 0.30 (d, *J* = 4.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 144.7, 130.3, 129.5, 122.4, 117.2, 114.5, 66.0, 52.2, 36.2, 16.7, 3.3, 2.1. IR (KBr) v 3412, 3270, 3130, 3020, 2917, 1612, 1487, 1400, 1049, 751 cm⁻¹. MS HR-ESI: $m/z = [M + H]^+$ 190.1223 (calcd for $C_{12}H_{16}NO m/z = 190.1226$).

Table 1, entry 5

(R)-3e

(*R*)-2-cyclopropyl-2,3-dihydroquinolin-4(1*H*)-one (3e): Yellow solid, yield 9.5 mg (21%). >99% *ee.* Enantiomeric excess was determined by HPLC analysis using Chiralcel OD-H column (90% hexane/2-propanol, flow 1.0 mL/min, λ 254 nm), t_R 10.2 min (minor); t_R 13.8 min (major). Mp: 121.3-122.3 °C. [α]_D²⁵ = -111.8 (*c* 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.81 (d, *J* = 8.0 Hz, 1H), 7.30 (t, *J* = 7.2 Hz, 1H), 6.74-6.67 (m, 2H), 4.50 (br s, 1H), 2.79-2.66 (m, 3H), 1.07 (s, 1H), 0.60 (d, *J* = 8.0 Hz, 2H), 0.29-0.26 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 194.2, 151.6, 135.4, 127.6, 119.2, 118.1, 115.8, 59.5, 44.4, 16.1, 3.4, 2.3. IR (KBr) *v* 3338, 3130, 2994, 1651, 1611, 1399, 1156, 761 cm⁻¹. MS HR-ESI: m/z = [M + H]⁺ 188.1062 (calcd for C₁₂H₁₄NO m/z = 188.1070).

Table 1, entry 6

OH (2R,4R)-2f

(2*R*,4*R*)-2-allyl-1,2,3,4-tetrahydroquinolin-4-ol (2f): White solid, isolated yield 16.2 mg (36%). dr = 86:14 (determined by ¹H NMR of chiral compound 2f). Mp: 97.7-98.1 °C. $[\alpha]_D^{25}$ = 131.6 (*c* 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ /ppm = 7.20 (d, *J* = 7.6 Hz, 1H), 7.11-7.07 (m, 1H), 6.68 (t, *J* = 7.2 Hz, 1H), 6.55 (d, *J* = 8.4 Hz, 1H), 5.91-5.80 (m, 1H), 5.24-5.18 (m, 2H), 4.75 (t, *J* = 2.8 Hz, 1H), 3.51-3.46 (m, 1H), 2.43-2.38 (m, 1H), 2.25-2.17 (m, 1H), 2.04 (dt, *J* = 13.6 Hz, 2.4 Hz, 1H), 1.58 (td, *J* = 12.4 Hz, 3.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ /ppm = 144.6, 134.8, 130.3, 129.5, 122.6, 118.5, 117.4, 114.7, 65.9, 45.1, 40.8, 36.3. IR (KBr) v 3469, 3413, 3263, 3130, 2919, 1614, 1489, 1400, 1034, 752 cm⁻¹. MS HR-ESI: m/z = [M + H]⁺ 190.1222. (calcd for C₁₂H₁₆NO m/z = 190.1226.

8. X-ray crystal data for compound 2a

Table S4Crystal data and structure refinement for 2a.

compound 2a	data
Empirical formula	C ₁₀ H ₁₃ NO
Formula weight	163.21
Temperature (K)	100(2)
Wavelength (Å)	1.54178
Crystal system	Orthorhombic
Space group	<i>P</i> 2 ₁
a (Å)	5.98420(10)
b (Å)	9.1040(2)
<i>c</i> (Å)	16.0223(3)
α (°)	90.00
β (°)	90.00
γ (°)	90.00
Volume (Å ³)	872.90(3)
Ζ	4
Density (calcd. mg/m ³)	1.242
Absorption coeff. (mm ⁻¹)	0.634
<i>F</i> (000)	352
θ range data collection	5.59-69.57
Limiting indices	-6≤h≤7, -10≤k≤7, -17≤l≤19
Reflections collected/unique	4936/1573
Completeness to θ = 69.57, %	97.2%
<i>R</i> (int)	0.0409
Data/restraints/parameters	1573/0/112
Goodness-of-fit on F^2	1.099
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	$R_1 = 0.0387, wR_2 = 0.1036$
<i>R</i> indices (all data)	$R_1 = 0.0387, wR_2 = 0.1036$
Largest diff. peak/hole [e/Å ³]	0.326/-0.372

atom	x	v	z	U(eq)	
O(4)	7033(2)	6293(1)	8289(1)	22(1)	
N(1)	9308(2)	2840(2)	7633(1)	19(1)	
C(9)	10835(3)	2446(2)	9017(1)	26(1)	
C(2)	9541(3)	3488(2)	8461(1)	18(1)	
C(8A)	7811(3)	3406(2)	7070(1)	17(1)	
C(4A)	6085(3)	4357(2)	7324(1)	17(1)	
C(5)	4506(3)	4823(2)	6742(1)	22(1)	
C(6)	4637(3)	4406(2)	5909(1)	26(1)	
C(4)	5981(3)	4869(2)	8220(1)	18(1)	
C(3)	7207(3)	3810(2)	8794(1)	19(1)	
C(7)	6383(3)	3497(2)	5657(1)	25(1)	
C(8)	7931(3)	2989(2)	6226(1)	22(1)	

Table S5Atomic coordinates ($Å \times 10^4$) and equivalent isotropic displacement parameters($Å^2 \times 10^3$) for **2a**. U(eq) is defined as 1/3 of the trace of the orthogonalized Uij tensor.

Table S6 Anisotropic displacement parameters ($Å^2 \times 10^4$) for **2a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U11+...+2hka \times b \times U12]$.

atom	U ₁₁	U ₂₂	U33	U ₂₃	U ₁₃	U ₁₂
O(4)	24(1)	10(1)	31(1)	-3(1)	5(1)	-1(1)
N(1)	22(1)	20(1)	16(1)	-2(1)	1(1)	6(1)
C(9)	33(1)	22(1)	23(1)	-1(1)	-9(1)	3(1)
C(2)	23(1)	16(1)	16(1)	-1(1)	-2(1)	-1(1)
C(8A)	22(1)	14(1)	16(1)	2(1)	1(1)	-3(1)
C(4A)	21(1)	12(1)	19(1)	2(1)	1(1)	-3(1)
C(5)	24(1)	14(1)	30(1)	5(1)	-3(1)	-2(1)
C(6)	32(1)	22(1)	24(1)	10(1)	-11(1)	-8(1)
C(4)	18(1)	13(1)	22(1)	-1(1)	5(1)	-3(1)
C(3)	27(1)	14(1)	14(1)	0(1)	2(1)	-3(1)
C(7)	39(1)	22(1)	15(1)	3(1)	-3(1)	-10(1)
C(8)	27(1)	20(1)	17(1)	-1(1)	4(1)	-3(1)

Table S7Bond lengths for 2a.

atom	atom	length/Å	atom	atom	length/Å
O(4)	C(4)	1.4454(18)	C(4A)	C(5)	1.394(2)
O(4)	H(4)	0.8400	C(4A)	C(4)	1.510(2)
N(1)	C(8A)	1.3718(19)	C(5)	C(6)	1.391(2)
N(1)	C(2)	1.4585(18)	C(5)	H(5)	0.9500
N(1)	H(1)	0.8800	C(6)	C(7)	1.393(3)

C(9)	C(2)	1.515(2)	C(6)	H(6)	0.9500
C(9)	H(9A)	0.9800	C(4)	C(3)	1.521(2)
C(9)	H(9B)	0.9800	C(4)	H(4A)	1.0000
C(9)	H(9C)	0.9800	C(3)	H(3A)	0.9900
C(2)	C(3)	1.524(2)	C(3)	H(3B)	0.9900
C(2)	H(2)	1.0000	C(7)	C(8)	1.379(2)
C(8A)	C(8)	1.407(2)	C(7)	H(7)	0.9500
C(8A)	C(4A)	1.408(2)	C(8)	H(8)	0.9500

Table S8Bond angles for 2a.

atom	atom	atom	angles/º	atom	atom	atom	angles/º
C(4)	O(4)	H(4)	109.5	C(6)	C(5)	H(5)	119.3
C(8A)	N(1)	C(2)	120.53(13)	C(4A)	C(5)	H(5)	119.3
C(8A)	N(1)	H(1)	119.7	C(5)	C(6)	C(7)	118.88(15)
C(2)	N(1)	H(1)	119.7	C(5)	C(6)	H(6)	120.6
C(2)	C(9)	H(9A)	109.5	C(7)	C(6)	H(6)	120.6
C(2)	C(9)	H(9B)	109.5	O(4)	C(4)	C(4A)	109.36(12)
H(9A)	C(9)	H(9B)	109.5	O(4)	C(4)	C(3)	108.19(13)
C(2)	C(9)	H(9C)	109.5	C(4A)	C(4)	C(3)	111.05(12)
H(9A)	C(9)	H(9C)	109.5	O(4)	C(4)	H(4A)	109.4
H(9B)	C(9)	H(9C)	109.5	C(4A)	C(4)	H(4A)	109.4
N(1)	C(2)	C(9)	109.27(13)	C(3)	C(4)	H(4A)	109.4
N(1)	C(2)	C(3)	107.99(12)	C(4)	C(3)	C(2)	110.60(12)
C(9)	C(2)	C(3)	112.51(13)	C(4)	C(3)	H(3A)	109.5
N(1)	C(2)	H(2)	109.0	C(2)	C(3)	H(3A)	109.5
C(9)	C(2)	H(2)	109.0	C(4)	C(3)	H(3B)	109.5
C(3)	C(2)	H(2)	109.0	C(2)	C(3)	H(3B)	109.5
N(1)	C(8A)	C(8)	119.83(14)	H(3A)	C(3)	H(3B)	108.1
N(1)	C(8A)	C(4A)	121.32(13)	C(8)	C(7)	C(6)	120.78(15)
C(8)	C(8A)	C(4A)	118.79(14)	C(8)	C(7)	H(7)	119.6
C(5)	C(4A)	C(8A)	119.41(14)	C(6)	C(7)	H(7)	119.6
C(5)	C(4A)	C(4)	120.91(14)	C(7)	C(8)	C(8A)	120.70(15)
C(8A)	C(4A)	C(4)	119.67(13)	C(7)	C(8)	H(8)	119.6
C(6)	C(5)	C(4A)	121.39(16)	C(8A)	C(8)	H(8)	119.6

Table S9Hydrogen atom coordinates ($Å^2 \times 10^4$) and isotropic displacement parameters ($Å^2 \times 10^3$)for 2a.

atom	x	У	z	U(eq)
H(4)	6069	6925	8416	33
H(1)	10135	2079	7494	23
H(9A)	9995	1529	9082	39

H(9B)	11057	2898	9566	39
H(9C)	12291	2235	8764	39
H(2)	10386	4432	8412	22
H(5)	3315	5439	6919	27
H(6)	3554	4735	5518	31
H(4A)	4384	4945	8398	21
H(3A)	6352	2882	8837	22
H(3B)	7320	4242	9359	22
H(7)	6510	3224	5086	30
H(8)	9090	2350	6045	26

$1 \text{ abic } 51_{\text{O}}$ 1 01 51011 alights 101 2a	Table S1) Torsion	angles for 2a
---	----------	-----------	---------------

a	b	c	d	angles/º
C(8A)	N(1)	C(2)	C(9)	165.86(13)
C(8A)	N(1)	C(2)	C(3)	43.19(18)
C(2)	N(1)	C(8A)	C(8)	166.35(13)
C(2)	N(1)	C(8A)	C(4A)	-16.3(2)
N(1)	C(8A)	C(4A)	C(5)	-175.44(14)
C(8)	C(8A)	C(4A)	C(5)	1.9(2)
N(1)	C(8A)	C(4A)	C(4)	5.1(2)
C(8)	C(8A)	C(4A)	C(4)	-177.47(13)
C(8A)	C(4A)	C(5)	C(6)	-2.0(2)
C(4)	C(4A)	C(5)	C(6)	177.39(13)
C(4A)	C(5)	C(6)	C(7)	0.3(2)
C(5)	C(4A)	C(4)	O(4)	-83.11(17)
C(8A)	C(4A)	C(4)	O(4)	96.30(15)
C(5)	C(4A)	C(4)	C(3)	157.56(14)
C(8A)	C(4A)	C(4)	C(3)	-23.03(19)
O(4)	C(4)	C(3)	C(2)	-69.58(15)
C(4A)	C(4)	C(3)	C(2)	50.44(16)
N(1)	C(2)	C(3)	C(4)	-59.79(16)
C(9)	C(2)	C(3)	C(4)	179.54(13)
C(5)	C(6)	C(7)	C(8)	1.5(2)
C(6)	C(7)	C(8)	C(8A)	-1.5(2)
N(1)	C(8A)	C(8)	C(7)	177.23(14)
C(4A)	C(8A)	C(8)	C(7)	-0.2(2)

Crystal struction determination of 2a.

Crystal data: C₁₀H₁₃NO, M = 163.21, orthorhombic, a = 5.98420(10) Å, b = 9.1040(2) Å, c = 16.0223(3) Å, $\alpha = 90.00^{\circ}$, $\beta = 90.00^{\circ}$, $\gamma = 90.00^{\circ}$, V = 872.90(3) Å³, T = 100(2) K, space group *P*212121, Z = 4, μ (CuK α) = 0.634 mm⁻¹,4963 reflections measured, 1573 independent reflections

 $(R_{int} = 0.0409)$. The final R_I values were 0.0387 $(I > 2\sigma(I))$. The final $wR(F^2)$ values were 0.1036 $(I > 2\sigma(I))$. The final R_I values were 0.0388 (all data). The final $wR(F^2)$ values were 0.1036 (all data). The goodness of fit on F^2 was 1.099. Flack parameter = -0.1(3). The Hooft parameter is - 0.01(9) for 615 Bijvoet pairs.

9.	Table S11	The study on the	process of asymmetric	hydroxylation of	f (<i>R</i>)-1a and (<i>S</i>)-1a ⁴
----	-----------	------------------	-----------------------	------------------	--

	time (h)	1h		2a			3 a		
entry	time (h)	substrate	yield (%) ^c	dr ^d	de (%) ^e	yield (%) ^c	<mark>ee</mark> (%) ^d		
1	0.25	(<i>R</i>)-1a	14	>99:1	>99	0	-		
2	0.5	(<i>R</i>)-1a	35	>99:1	>99	0	-		
3	0.75	(<i>R</i>)-1a	61	>99:1	>99	0	-		
4	1	(<i>R</i>)-1a	80	98:2	>99	0.1	14		
5	3	(<i>R</i>)-1a	70	98:2	>99	0.2	8		
6	5	(<i>R</i>)-1a	58	98:2	>99	0.8	26		
7	9	(<i>R</i>)-1a	55	98:2	>99	0.8	27		
8	0.25	(<i>S</i>)-1a	9	17:83	99	0	-		
9	0.5	(<i>S</i>)-1a	28	14:86	>99	0.3	>99		
10	0.75	(<i>S</i>)-1a	37	12:88	>99	0.6	>99		
11	1	(<i>S</i>)-1a	50	12:88	>99	1	>99		
12	3	(<i>S</i>)-1a	53	13:87	>99	10	>99		
13	5	(<i>S</i>)-1a	69	15:85	>99	14	>99		
14	9	(S)-1a	66	15:85	>99	15	>99		

^{*a*} All reactions (5.0 mL) were performed in pH 7.0 (50.0 mM Na₂HPO₄/KH₂PO₄) containing (*R*)-1a or (*S*)-1a (0.03 mmol, 6.0 mM) and *R. equi* ZMU-LK19 (50 g cdw/L) at 30 °C and 250 rpm. ^{*b*} Both (*R*)-1a and (*S*)-1a were synthesized with 98% *ee* according to the reported literatures.^{2 *c*} Determined by HPLC analysis of the crude reaction mixture by the external standard method. ^{*d*} Determined by chiral HPLC analysis. ^{*e*} Determined by chiral HPLC analysis for major diastereoisomer.

The cells of *R*. *equi* ZMU-LK19 were suspended in 5 mL PBS buffer (50 mM Na_2HPO4/KH_2PO_4 , pH 7.0) to a cell density of 50 g cdw/L, and (*R*)-1a or (*S*)-1a (0.03 mmol, 6 mM) was added, the mixture was shaken at 30 °C and 250 rpm. 7 Parallel reactions with (*R*)-1a or (*S*)-1a were stopped for monitoring at different time point, respectively. Every mixture was

extracted with EtOAc (5 mL) and the organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo, the crude reaction mixture was taken for the HPLC analysis to determine the yield, ee and dr.

Figure S1. The LC-MS spectra of blank control group.

Figure S2. The LC-MS spectra using $H_2^{18}O$ as solvent.

Figure S3. The LC-MS spectra under ${}^{18}O_2$ atmosphere.

11. Table S12 Biooxidation of (S)-1a with soluble cell-free extracts of R. equi ZMU-LK19^a

ontry 1		0.0.0070.000.0	(2 <i>S</i> ,4 <i>R</i>)- 2 a			(S)- 3 a	
entry	1	coenzyme	yield(%) ^b	dr^c	ee (%) ^d	yield $(\%)^b$	ee (%) ^c
1	(S)-1a	-	24	11:89	>99	4	>99
2	(S)-1a	NADPH	27	11:89	>99	5	>99
3	(S)-1a	NADH	66	12:88	>99	11	>99

^{*a*} Unless otherwise noted, all reactions (5.0 mL) were performed in buffer (50.0 mM Na₂HPO₄/KH₂PO₄, pH = 7.0) containing (*S*)-**1a** (5.0×10^{-3} mmol, 1.0 mM), cell density (50 g cdw/L), coenzyme (2.0 mM) at 30 °C and 250 rpm for 6 h. ^{*b*} Determined by HPLC analysis of the crude reaction mixture by the external standard method. ^{*c*} Determined by chiral HPLC analysis. ^{*d*} Determined by chiral HPLC analysis for major diastereoisomer.

12. Refrences

- (a) S. A. Bentley, S. G. Davies, J. A. Lee, P. M. Roberts and J. E. Thomson, *Org. Lett,*.
 2011, 13, 2544; (b) M. P. Paradisi and A. Romeo, *J. Chem. Soc., Perkin Trans. 1*, 1977, 596.
- Both (R)-1a and (S)-1a were synthesized with 98% ee values according to the reported literatures, see: (a) C. Wang, C. Li, X. Wu, A. Pettman and J. Xiao, Angew. Chem., Int. Ed., 2009, 48, 6524; (b) W. Tang, Y. Sun, L. Xu, T. Wang, Q. Fan, K.-H. Lamc and A. S. C. Chan, Org. Biomol. Chem., 2010, 8, 3464.

13. ¹H, ¹³C NMR and HPLC spectra of 2a-f, 3a-f

DA				
ID#	Ret. Time	Area	Height	Area %
1	22.959	2919790	106190	49.602
2	28.872	18520	623	0.315
3	32.154	19415	581	0. 330
4	34. 252	2928730	67510	49.754

mAU

ID#	Reat. Time	Area	Height	Area %
1	22.794	79698	3012	1.160
2	28.268	4265	133	0.062
3	31.147	6758017	175358	98.400
4	34.064	25925	662	0.377

PDA				
ID#	Reat. Time	Area	Height	Area %
1	22.484	2023054	66120	48. 111
2	23. 598	2181899	71501	51.889

PDA				
ID#	Reat. Time	Area	Height	Area %
1	21.668	102269	4808	0.217
2	22. 388	46994763	1421716	99.783

-4.7483

3.3856 3.3703 3.3703 3.3552 3.3552 3.3552 3.3552 3.3552

ID#	Ret. Time	Area	Height	Area %
1	19.830	1271506	51105	48.213
2	22.315	47383	1695	1. 797
3	24.934	46478	1506	1. 762
4	29.045	1271915	32729	48, 228

ID#	Reat. Time	Area	Height	Area %
1	20.170	1130354	44150	18.050
2	22.799	41751	1397	0.667
3	25.299	4914903	146558	78.482
4	30.030	175459	4382	2.802

nininininini

A.7470

1 254nm 4nm

ID#	Reat. Time	Area	Height	Area %
1	17.680	13540	494	0. 539
2	18.684	1243080	51906	49. 504
3	20.601	13299	434	0. 530
4	22.034	1241164	42895	49, 427

mAU

PDA				
ID#	Reat. Time	Area	Height	Area %
1	17.639	60500	2440	0.275
2	18.665	109636	4795	0. 497
3	20.083	21822534	710253	99.022
4	21.993	45463	1716	0.206

1k-059-H

'DA					
ID#	Reat. Time	Area	Height	Area %	
1	14.055	2905915	158778	49.905	
2	15.315	2916938	151354	50.095]

mAU

PDA				
ID#	Reat. Time	Area	Height	Area %
1	14.098	179757	9934	10. 240
2	15. 301	1575746	82526	89.760

ID#	Ret. Time	Area	Height	Area %
1	51.997	7707267	142541	48.751
2	55.013	7705158	130385	48.738
3	64.716	196423	2971	1.242
4	79.133	200492	2540	1.268

ID#	Reat. Time	Area	Height	Area %
1	52.368	192590	3420	2. 437
2	55.634	10013	167	0.127
3	65.363	7695574	113077	97.395
4	79.993	3207	69	0.041

S33

PDA				
ID#	Reat. Time	Area	Height	Area %
1	8.362	7018258	570975	49.840
2	13.406	7063412	349004	50.160

PDA				
ID#	Reat. Time	Area	Height	Area %
1	8. 423	711106	60340	7.468
2	13. 438	8810702	431564	92. 532

2.5504 2.5507 2.5507 2.5507 2.5507 2.5507 2.1548 1.7025 1.

Table 1, entry 5

ID#	Reat. Time	Area	Height	Area %
1	9.899	21886	1783	2.681
2	10.239	386121	26815	47.305
3	10.723	22115	1197	2.709
4	11.570	386115	20449	47.304

mAU

ID#	Reat. Time	Area	Height	Area %
1	9.875	136800	9518	2. 526
2	10. 233	14791	1382	0.273
3	10.883	4966597	249046	91. 701
4	11.518	297903	18493	5.500

1k-057-H

 $\underbrace{ \underbrace{ \begin{array}{c} 2.7913 \\ 2.7596 \\ 2.7203 \\ 2.6593 \\ 2.6593 \end{array} } }_{2.6593}$

0.2573

-1.0649

Table 1, entry 5

-4.4960.

PDA				5
ID#	Reat. Time	Area	Height	Area %
1	9.580	4428288	317797	50. 021
2	12.921	4424588	237003	49.979

mAU

PDA				
ID#	Reat. Time	Area	Height	Area %
1	10. 196	18628	1182	0. 321
2	13. 771	5793464	274749	99.679

