Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Enantioselective synthesis of an octahydroindolizine (indolizidine) alcohol using an enzymatic

resolution

Jing Zhang, Rao Kolluri, Salvador G. Alvarez, Mark Irving, Rajinder Singh and Matthew A. J.

Duncton*

Rigel, Inc., 1180 Veterans Boulevard, South San Francisco, CA 94080, United States

E.mail mattduncton@yahoo.com

Supplemental Information

<u>Contents</u>		PAGE				
DATA FOR (\pm)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-7-(1 <i>H</i>)-ONE 10						
DATA FOR (\pm)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL 13		S4-5				
DATA FOR (7 <i>S</i> ,8 <i>AS</i>)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL	9	S6-7				
DATA FOR (7 <i>S</i> ,8 <i>AS</i>)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL	9 , ACETIC ACID	S8-10				
MONOHYDRATE						
DATA FOR (7 <i>S</i> ,8 <i>AS</i>)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL	9 , MANDELIC ACID	S11-12				
DATA FOR (7 <i>S</i> ,8 <i>AS</i>)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-YL-						
4-methylbenzenesulfonate 17						
DATA FOR (7 <i>S</i> ,8 <i>AS</i>)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-YL-4-						
METHANESULFONATE 18						
DATA FOR $(7R, 8AS)$ -7-AZIDO-OCTAHYDRO-5,5-DIMETHYLINDOLIZINE 19						
DATA FOR $(7R, 8AS)$ -OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-AMINE 8						
DATA FOR $(7R, 8AS)$ -N-(2-CHLORO-5-FLUOROPYRIMIDIN-4-YL)-						
OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-AMINE 20						
DETERMINATION OF ABSOLUTE STEREOCHEMISTRY THROUGH SYNT	HESIS	S28-30				

¹H NMR FOR (±)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-7-(1*H*)-ONE 10

¹³C NMR FOR (±)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-(1*H*)-ONE 10

30.142

800.42

¹H NMR FOR (±)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL 13

¹³C NMR FOR (±)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL 13

¹H NMR FOR (7*S*, 8*AS*)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL 9

¹³C NMR FOR (7*S*, 8*AS*)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL 9

¹H NMR FOR (7*S*, 8*AS*)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL 9, ACETIC ACID SALT MONOHYDRATE

¹³C NMR FOR (7*S*, 8*AS*)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL 9, ACETIC ACID SALT MONOHYDRATE

X-RAY STRUCTURE FOR (7*S*, 8*AS*)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL 9, ACETIC ACID SALT MONOHYDRATE (NOTE: SEPARATE CIF FILE ALSO IN SUPPLEMENTAL INFORMATION)

¹H NMR FOR (7*S*, 8*AS*)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL 9, MANDELIC ACID SALT

¹³C NMR FOR (7*S*, 8*AS*)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-7-OL 9, MANDELIC ACID SALT

¹³C NMR FOR (7*S*, 8*AS*)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-4-METHYLBENZENESULFONATE 17

S14

COPY OF CHIRAL SFC FOR RACEMIC (±)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-4-METHYLBENZENESULFONATE

Column: Daicel Chemical Industries, Chiralcel AD-H, 4.6x250 mm

Mobile phase: 8% Isopropanol (IPA contains 0.1% diethylamine) / 92% CO₂; isocratic

Flow rate: 3 ml/min

Run time: 13-15 minutes

Temperature: 26.7°C

Detection: 254nm

SFC: TharSFC Investigator

COPY OF CHIRAL SFC FOR (7*S*, 8*AS*)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-4-METHYLBENZENESULFONATE 17

¹H NMR FOR (7*S*, 8*AS*)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-4-METHANESULFONATE 18

¹³C NMR FOR (7*S*, 8*AS*)-HEXAHYDRO-5,5-DIMETHYLINDOLIZIN-4-METHANESULFONATE 18

¹H NMR FOR (7*R*,8*AS*)-7-AZIDO-OCTAHYDRO-5,5-DIMETHYLINDOLIZINE 19

 $^{13}\mathrm{C}$ NMR for (7*R*,8*aS*)-7-Azido-octahydro-5,5-dimethylindolizine 19

¹H NMR FOR (7*R*,8*AS*)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-AMINE 8

¹³C NMR FOR (7*R*,8*AS*)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-AMINE 8

¹H NMR FOR (7*R*,8*AS*)-*N*-(2-CHLORO-5-FLUOROPYRIMIDIN-4-YL)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-AMINE 20

¹H NMR FOR (7*R*,8*AS*)-*N*-(2-CHLORO-5-FLUOROPYRIMIDIN-4-YL)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-AMINE 20

¹⁹F NMR FOR (7*R*,8*AS*)-*N*-(2-CHLORO-5-FLUOROPYRIMIDIN-4-YL)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-AMINE 20

COPY OF CHIRAL SFC FOR RACEMIC N-(2-CHLORO-5-FLUOROPYRIMIDIN-4-YL)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-AMINE

Column: Daicel Chemical Industries, Chiralcel AD-H, 4.6x250 mm

Mobile phase: 10% Methanol (MeOH contains 0.1% diethylamine) / 90% CO₂; isocratic

Flow rate: 3 ml/min

Run time: 8 minutes

Temperature: 30°C

Detection: 254nm

SFC: TharSFC Investigator

COPY OF CHIRAL SFC FOR (7*R*,8*AS*)-*N*-(2-CHLORO-5-FLUOROPYRIMIDIN-4-YL)-OCTAHYDRO-5,5-DIMETHYLINDOLIZIN-7-AMINE 20

Injection Info			Temp	30		
Inj Vol	10			Flow	3	
Solvent methanol 0.1% DEA			% Modifier 10			
Column AD-H 4.6mm			Pressure	101		
Sample 1662-130A		30A				
Well loca	tion P1: 5D		90	,		
Peak Info	£.					
Peak No	% Area	Area	RT (min)	Height (mV)	К'
1	100	1298.4313	5.46	83.4421		0.0056
Total:	100	1298.4313				

The absolute stereochemistry of amine 8 was determined *via* two (2) independent methods. As background, homochiral compound S1 below, could be prepared from molecule 20 [note: a racemic version of S1 was also available from (\pm) -12]. The following were then undertaken.

1. A co-crystal structure of PKC-theta protein with compound S1, indicated that compound S1 possessed the (7*R*, 8*aS*)-stereochemistry¹

Compound **S1** Co-crystal structure with PKC-theta indicated (7*R*, 8*aS*)-stereochemistry

An independent synthesis of compound S1, starting from homochiral *N*-Boc-(*S*)-homoproline, also known as L-Boc-homoproline (see Scheme S1).^{2,3}

Scheme S1. Synthesis of compound S1 from homochiral *N*-Boc-(*S*)-homoproline.^{2,3}

Synthesis as outlined in Scheme S1, gave compound S1 as a *ca*. 80:20 mixture of enantiomers (see below). The partial-racemization from this synthesis is thought to occur during the cyclization step (K₂CO₃ in MeOH), consistent with observations from the literature.²

The peak at 26.99 min (from an HPLC employing a chiral stationary-phase) was matched to compound **S1**. The peak at 42.69 min was matched to the enantiomeric compound **S2**, which was also available as a reference.

Similarly, compound **S2** could also be prepared using the method outlined in Scheme S1, except starting from homochiral *N*-Boc-(*R*)-homoproline (D-Boc-homoproline). This gave compound **S2** as a *ca*. 75:25 mixture of enantiomers (with compound **S1** being the other component - see HPLC trace below).

The peak at 26.77 min was matched to compound **S1**. The peak at 42.26 min was matched to the isomeric compound **S2**.

References and notes

- R. Singh, M. Duncton, J. Zhang, S. Alvarez, K. Tso, S. Holland, R. Yen, R. Kolluri, T. Heckrodt, Y. Chen, E. Masuda, H. Li, D. G. Payan, R. Kelley, *PCT Int. Appl.*, WO2013152198, 2013; *Chem. Abstr.*, 2013, **159**, 608680.
- 2. We used the methodology as outlined in M. J. Niphakis, B. J. Turunen, G. I. Georg, J. Org. Chem., 2010, **75**, 6793-6805.
- 3. We thank Rose Yen for technical assistance with this work.