Biosynthetic 4,6-Dehydratase Gene Deletion: Isolation of a Glucosylated Jadomycin Natural Product Provides Insight into the Substrate Specificity of Glycosyltransferase JadS

Stephanie M. Forget, ${ }^{\S}$ Jungwook Na, ${ }^{\S}$ Nicole E. McCormick, ${ }^{\dagger}$ David L. Jakeman, ${ }^{\dagger}{ }^{\dagger}{ }^{*}$
${ }^{\S}$ Department of Chemistry, Dalhousie University, PO Box 15,000, 6274 Coburg Rd., B3H 4R2, Canada
${ }^{\dagger}$ College of Pharmacy, Dalhousie University, PO Box 15,000, 5968 College St., B3H 4R2, Canada

1. Construction of deletion mutants

Methods

Escherichia coli strains were grown on Luria-Bertani/lysogeny broth (LB; tryptone 1\% (w/v), $\mathrm{NaCl} 1 \%(\mathrm{w} / \mathrm{v})$, and yeast extract $0.5 \%(\mathrm{w} / \mathrm{v})$) agar and cultured in LB liquid media in a rotary shaking incubator at 250 rpm and $37^{\circ} \mathrm{C}$. Streptomyces venezuelae strains were grown on maltose yeast extract media (MYM; maltose $0.4 \% ~(\mathrm{w} / \mathrm{v})$, yeast extract $0.4 \% ~(\mathrm{w} / \mathrm{v})$ and malt extract 1% $(\mathrm{w} / \mathrm{v}))$ agar and cultured in MYM liquid media in a rotary shaking incubator at 250 rpm and $30^{\circ} \mathrm{C}$ unless otherwise indicated. Kanamycin ($50 \mu \mathrm{~g} / \mathrm{mL}$), chloramphenicol ($25 \mu \mathrm{~g} / \mathrm{mL}$), apramycin ($50 \mu \mathrm{~g} / \mathrm{mL}$), and naladixic acid ($50 \mu \mathrm{~g} / \mathrm{ml}$) were added to the media when appropriate. E. coli ET12567 pUZ8002 was cultured with chloramphenicol and kanamycin.

Construction of pKC1139_- \mathbf{j} adT

A 1 kb fragment immediately upstream of jadT was amplified by PCR from S. venezuelae ISP5230 genomic DNA with the following primers; Primer 1: 5, GGTGGTAAGCTTGGCCGCGGAGCCGTACGAGGAGCTGATCGC, HindIII site is underlined, and Primer 2: 5, GGTGGTTGCATGGTCGTCGTCACCATATGTCATGCCGTCCCTCCGAGGAGCGCGTTG AG, NdeI site is underlined. A 1 kb fragment immediately downstream of $j a d T$ was amplified by PCR with the following primers; Primer 3: 5, GGTGGTTCGGAGGGACGGCATGACATATGGTGACGACGACCATGCAGGTGACCCCC CTG, NdeI site is underlined, and Primer 4: 5, GGTGGTTCTAGATCCGGCTCCGTACCGTCGTAGACGCCCCGC, XbaI site is underlined. Primer 2 and Primer 3 each contained an identical 40 bp long sequence to facilitate overlap extension PCR (OE-PCR). The upstream and downstream PCR fragments were used as templates for OE-PCR in which the two fragments anneal along the common 40 bp sequence act as self-primers (Figure S1). Extensive non-specific amplification was observed if Primer 1 and Primer 4 were included in the reaction at the outset, however this was reduced if these primers were added after the first 15 cycles of PCR. The PCR product provided the $\Delta j a d T$ deletion
cassette, which was digested with HindIII and XbaI, then ligated with $\mathrm{pKC1139}{ }^{2}$ (a gift form Dr. Russ Kerr, UPEI) and cloned into E. coli NovaBlue Giga competent cells. The plasmid pKC1139_ $\Delta j a d T$ was sub-cloned into E. coli ET12567 pUZ8002. It is necessary to clone pKC1139_djadT into the methylation deficient strain E. coli ET12567 pUZ8002 due to the methylation-specific restriction systems of Streptomyces.

Construction of S. venezuelae_ $\mathbf{\Delta j a d T}$ strain

Conjugation between E. coli ET12567 pUZ8002 pKC1139_ $\Delta j a d T$ and S. venezuelae ISP5230 was performed as previously described ${ }^{1}$ with minor modifications. The conjugation plates were overlayed with 1 mL of soft nutrient agar containing $0.5 \mathrm{mg} / \mathrm{mL}$ naladixic acid and $0.5 \mathrm{mg} / \mathrm{mL}$ apramycin. Potential exconjugants were patched to MYM agar containing naladixic acid and apramycin and incubated at $39^{\circ} \mathrm{C}$. The exconjugants were incubated at $39^{\circ} \mathrm{C}$ to select for single crossover recombination events, as the temperature sensitive replicon in $\mathrm{pKC1} 139$ is inactive above $34^{\circ} \mathrm{C} .{ }^{2}$ Potential exconjugants were patched to MYM agar containing apramycin and incubated at $30^{\circ} \mathrm{C}$, followed by several rounds of growth on MYM agar without antibiotics. Potential exconjugants were screened for apramycin sensitivity and apramycin sensitive colonies were screened for the deletion of $j a d T$ by PCR using Primer 1 and Primer 4. (Figure S2).

Figure S1. The 1 kb PCR fragments immediately upstream and downstream of $j a d T$ used for OE-PCR. The identical nucleotide sequences common to both fragments act as self-primers and include the final 17 bp of jadS (white), the jadS stop codon (diagonal stripes), an NdeI restriction site (dots), and the initial 17 bp of $j a d U$ (checks).
S. venezuelae ISP5230

S. venezuelae_djadT

A.

B.

Figure S2. (A.) The sugar biosynthetic genes of the jadomycin gene cluster in S. venezuelae ISP5230 and S. venezuelae_ $\Delta j a d T$. The locations of binding for Primer 1 and Primer 4 are indicated with black arrows. The expected size of the PCR product for each strain is indicated. (B.) Agarose gel of the PCR products of S. venezuelae_ $\Delta j a d T$ and S. venezuelae ISP5230 using Primer 1 and Primer 4.

Preparation of conjugation vector $\mathrm{pKC1139}$ _ $\Delta S V 0189$

A 0.9 kb region upstream of SVEN_0189(Sv0189) was amplified from S. venezuelae (ISP5230) genomic DNA using primers 5 and 6:
Primer 5: 5'-GGTGGTAAGCTTGTGTCCACGACCACCGAAAG-3' (HindIII site is underlined) Primer 6: 5'-CTGGATCTCCCGTGCGGACCACAGTAGACGAGACGATACGTATC-3' (32 bp overlap region is underlined)

A 1.3 kb downstream region was similarly amplified using primers 7 and 8 :
Primer 7: 5’-CTCGTCTACTGTGGTCCGCACGGGAGATCCAGGAGTCCATG-3' (32 bp overlap region is underlined)

Primer 8: 5'-GGTGGTCTAGACGGTGAAGGGATTCGGCGTGAC-3' (XbaI site is underlined)
Q5 DNA polymerase (New England Bioscience) was used for PCR reactions, following manufacturer protocols. The upstream and downstream PCR fragments were used as the template for OE-PCR amplification with the outer primers (primers 5 and 8) to produce the 2.2 kb deletion cassette. Non-specific binding was not observed when primers were added at the outset of the reaction, so the self-annealing step described before was not necessary. Digestion of the deletion cassette with HindIII and Xbal and ligation with linearized and calf intestinal alkaline phosphatase (CIP, New England Bioscience) treated pK1139 followed by transformation to NEB 5-alpha competent E. coli (high efficiency) resulted in the isolation of conjugal vector pKC1139_ $\Delta S v 0189$. The vector was sub-cloned to competent E. coli ET12567 pUZ8002.

Preparation of conjugation vector pKC1139_DjadS_DjadT

Regions upstream and downstream of the genes $j a d S$ and $j a d T$ site were amplified from S. venezuelae (ISP5230) genomic DNA. The 1.3 kb upstream fragment was amplified using primers 9 and 10.

Primer 9: 5'-GCAGAAGCTTGACCAGGTCCGCAACACG-3' (HindIII site is underlined)
Primer 10: 5’-CCTGCATGGTCGTCGTCACTTCTAGACATGGTTCTCTCTCCGC-3' (XbaI site is underlined)

A 1.1 kb downstream region was similarly amplified using primers 11 and 12 :
Primer 11: 5'- GCGGAGAGAGAACCATGTCTAGAAGTGACGACGACCATGCAGG-3' (XbaI site is underlined)

Primer 12: 5'- GCTGATGAATTCGGTCGTACTCGCCCTGC-3' (EcoRI site is underlined)
Cloning procedures were identical to those described for the assembly of pKC1139_ $\Delta S v 0189$, with the following exception: the upstream and downstream PCR fragments were successively ligated to pKC 1139 due using $\mathrm{Xbal} / E c o R I$ and $\mathrm{Xbal} /$ HindIII restriction sites, respectively. pKC1139_ $\Delta j a d S _4 j a d T$ was sub-cloned to competent E. coli ET12567 pUZ8002.

Intergenic conjugation and screening procedures for S. venezuelae_DjadS_DjadT, S. venezuelae_DjadT_USv0189, and S. venezuelae_USv0189 strains

Conjugation was performed as described above, with modifications as indicated, using the strains S. venezuelae_ $\Delta j a d T$ or S. venezuelae ISP5230 as recipients and E. coli ET12567 pUZ8002 harbouring pKC1139_ $\Delta S v 0189$ or pKC1139__jadS_DjadT as the conjugal donor. After overnight incubation, a soft nutrient agar overlay containing $50 \mu \mathrm{~g} / \mathrm{mL}$ apramycin and $25 \mu \mathrm{~g} / \mathrm{mL}$ naladixic acid was applied to the conjugation plates. After 4 days, potential exconjugants were patched to MYM ($50 \mu \mathrm{~g} / \mathrm{mL}$ apramycin) and incubated at $37^{\circ} \mathrm{C}$ (rather than $39^{\circ} \mathrm{C}$), enabling the bacteria to grow at a faster rate. Subsequent steps were performed at $30^{\circ} \mathrm{C}$, as before; potential exconjugants were patched to MYM agar containing apramycin, followed by three rounds of sporulation on MYM agar without antibiotics. At this point, colonies identified as having acquired sensitivity to apramycin were screened using isolated genomic DNA and primer pairs 5 and 8 , and 1 and 4 to identify single deletion mutants (S. venezuelae_ $\Delta S v 0189$) and double deletion mutants (S. venezuelae_ $\Delta j a d T _\Delta S v 0189$), respectively, and primers 13 (13: 5'-CTGGAGGAGAAGCCGGAGCACC-3') and 12 were used for identifying S. venezuelae $\Delta j a d S _\Delta j a d T$ double deletion mutants (Figure S3).

Figure S3. TAE-agarose gel (0.75%) showing PCR amplification products with primers 1 and 4 (lanes $1,3,5,7$); primers 5 and 8 (lanes $2,4,6,8$); and primers 12 and 13 (lanes 9 and 10) for indicated S.venezuelae strains.

References

1. Kieser, T., Bibb, M., Buttner, M., Chater, K., Hopwood, D. 2000. Practical Streptomyces genetics. Norwich: The John Innes Foundation. 613 p.
2. Bierman, R., Logan, K., O’brien, E.T., Seno, R., Nagaraja, R., and Schoner. B. (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene. 116: 43.

Bioinformatics analyses

Protein-protein homology searches were performed using blastp (http://blast.ncbi.nlm.nih.gov/Blast.cgi). GT1 family glycosyltransferases were identified from the CAZy database (http://www.cazy.org). Sequence alignments and percent identities were determined using ClustalOmega (1.2.1, https://www.ebi.ac.uk/Tools/msa/clustalo/).

```
Percent Identity Matrix - created by Clustal2.1
```

1: SVEN_0537	100.00	20.81	26.24	17.56	21.78	23.21
2: SVEN_3444	20.81	100.00	32.43	24.70	20.47	21.21
3: SVEN_6860	26.24	32.43	100.00	20.98	23.03	22.07
4: SVEN_5997	17.56	24.70	20.98	100.00	23.32	23.45
5: OleD	21.78	20.47	23.03	23.32	100.00	74.50
6: SVEN_0189	23.21	21.21	22.07	23.45	74.50	100.00

Figure S4. Identity matrix and phylogenetic tree generated by ClustalOmega (1.2.1) analysis.

SVEN_0537	AGRELRR
SVEN_3444	MVGLAVRLRE
SVEN_6860	MRTGRTPRQPTPRLRITSSPPMLGRRAPVGQTGGVRIVMMTAGSRGDVAPYTGLSAGLVR
SVEN_5997	RYLFTTIPGTSHTLPLVPLAHAALA
OleD	-MTTQTTPAHIAMFSIAAHGHVNPSLEVIRELVA
SVEN_0189	-MVVMTTTASRAHIAMFSIAAHGHVNPSLEVIRELVA
SVEN_0537	RGHHVSVLA--RSSAAPVVAESGLPCLP-------AED---FGGRRAFSATWWGTTGAAQ
SVEN_3444	LGAEVRVCAPPDEEFTELLYGIGVPPVPVGAPVRPLVTTVVPG---------STEGLA-
SVEN_6860	AGHEVTLA--AHGVFEPLVTGSGVRFRA--LPVDPRAELHSPRGRRLHD----ARTGAGK
SVEN_5997	AGHEVAFAA--SGPALRAANAAGLQTIAA------------AGD--EAAEPYE-ELIAK
Oled	RGHRVTYAI--PPVFADKVAATGARPVLYHSTL--------PGPD--ADPEAWGSTLLDN
SVEN_0189	RGHRVSYAV--PASFAEKVAATGATPVVYTSTL---------PT-D--DDPDAWGTELIDN $*$. *
SVEN_0537	YRAV-----------------VRAARETRAELLVTSVLCNGALLAAEALDLPVVVVGLSV
SVEN_3444	----KRVSDLIAAQFGAVAAAAEGCDALVAT---GPLPVTAGA--RSVAEKLGIRY
SVEN_6860	LVRLASMARSAADEMTAAL--VEVARE-GDVLLVGGALGPLGYAIAD--GLSVPAMGLHL
SVEN_5997	VTTSDLAQEFPGPKILPYV--SGIFGEVGARLV------EGVAEAARTWRADAVVFPPNH
OleD	VEPF-LN---DAIQALPQL--ADAYADDIPDLVLHDITSYPARVLARRWGVPAVSLSPNL
SVEN_0189	LEPF-LR---DAEQALPQL--AEAFDRDRPDLVLHDITSYPAPVLAHSWGVPAVSLWPNL

SVEN_0537	HLWDYRAGGDGEPHLGRTR---ESRTLDCRGILAATREEVGLAGRA--SRWDDPLL
SVEN_3444	VHASHTPVSLPSPHQ--PPPGRRGRPLPP-EV-SDNRELWDIDARNANEMFGEVLN----
SVEN_6860	Q-PLHPTGEFPAPVLGTRSLGAVGNRLSGRAVMTTVELLFADAVRSLRRRYGLVTT----
SVEN_5997	VAGLLAARMTGLPAVLHGI-------GTPRPVFAP--------ALAYLEPVAARLGVDLP
Oled	VAWKGYEEEVAEPMWREPR-------QTER------------GRAYYARFEA-------
SVEN_0189	VPWEGYEEEVAEPMLAELK--------ASPR--------------GKAYTRFAD----------- $*$
SVEN_0537	--GDALLLRGDPAL---EYPGGELPERVRFVGPMDWEP
SVEN_3444	--AHRAGIGLPPVDNVRDYAFTDSPWLATDPVLSPWRPTDL-----------------GVV
SVEN_6860	
SVEN_5997	APVADVEIDLNP------ASLTAPS----LGGPGGGGPAAAHRLPMRYTSYNGGA---EI
Oled	-WLKENGITEHP------DTFASHPPRSLVLIPKALQPH-ADRVDEDVYTFVGACQGDRA
SVEN_0189	-WLAEHGIDTDP------DRFVARPRRAIVLIPKALQPQ-ADRVDESVYTFVGACQGERA
SVEN_0537	--PGRGESEAVADHLARTGKPVVYVHLGRF--FGGRSLW--PRLNEAFT-GGPF
SVEN_3444	QTGAWLRPDERPLPPELV-AFLDAGTAPVYVGFGSM--PLGDAKGIARAAVGAIR-AQGR
SVEN_6860	VAGYWWPHETGRLSQELE-DFLAAGPPPVFVGLGSA--TVPDPERVSREIVTALR-TANV
SVEN_5997	PPGLLGR----------------GERPRVAVTLGSLAALYGEG-TMLREIVDGSA-DLGI
OleD	EEGGWQRPA-------------GAEKVVLVSLGSA--FTKQP-AFYRECVRAFGNLPGW
SVEN_0189	EQGTWQRPA--------------DAEKVVLVSLGSA--FTKLP-GFYRDCVEAFAGLPGW $* *: *$
SVEN_0537	QAVVEQGRSTEPQPGP--DADILLVRKPWMGPLVDLAGLVVANGTSAPVLAALLRGRPLA
SVEN_3444	RVVLSRGWAELGPIDD--RDDCFAVGEVNQQALFAEVAAVVHHGSAGTTTTAARAGAPQV
SVEN_6860	RGIVQRGWAGLDA--R--SDDILTVDEVPHSLLFPRTAAVVHHAGAGTTGAVLRAGVPSV
SVEN_5997	ELVITTGGAELPALTGSLPPHVTCVDWVPLRTLLASCDAIVHHGGMGSTFTAFDAGVPQL
Oled	HLVLQIGRKVTPAELGELPDNVEVHDWVPQLAILRQADLFVTHAGAGGSQEGLATATPMI
SVEN_0189	HVVLQIGKFVDPAELGTVPSNVEVRSWVPQLAILRQADGFVTHAGAGGSQEGLATGTPMV
SVEN_0537	LSPNGSEQPLLTGACV---RAGVAV---RDPKTPSADLSALLESAWHDEGLRTRARALGD
SVEN_3444	VVPQGADQSYWADRVD---DLGIGAAHAGPVA-TTASLSAALQVALAPG-TRARATAVAG
SVEN_6860	PVPVQFDAAFWASRLT---ALGTAPGAVPLRRLTSGALSEALVGATADGRHRTRARALAD
SVEN_5997	AIPLTGPESVSNGRVAADRGTGIVLDPPLSVPLTAATVKSSLHELLSNPAHRTAAAEVAA
Oled	AVPQAVDQF-GNADM--LQGLGVARKLATE-EATADLLRETALALVDDPEVARRLRRIQA
SVEN_0189	$\underset{*}{\text { AVPQAVDQF-GNADM--LQSLGVARHLPMD-EVTPERLRTAMLALLGDPEVARRAREIQE }}$
SVEN_0537	RLAAAGGAARAADIVERVAVASAIPKEDHEYAISRPR--
SVEN_3444	TVRADGAVVA-ARMLLEATPTRAEGAAT------R----
SVEN_6860	RLAAEDGVAPVLAALARLAP
SVEN_5997	EMREMPAPAATLVQLNALLGGTA----------------
Oled	EMAQEGGTRRAADLIEAELPARHERQEPV---GDRPNGG
SVEN_0189	SMAREGGTLRAADLIEAEI

Figure S5. Clustal Omega (1.2.1) alignment glycosyltransferase family 1 enzymes from S. venezuelae (ATCC 10712) and OleD. OleD and SVEN_0189 are 74\% identical, whereas JadS is 21% identical with them both.

2. Analysis of natural products for mutant strains, natural products isolation and sharacterization

General Methods

All reagents were purchased from commercial sources and used without further purification unless otherwise stated. Solvents used for all reactions and chromatographic methods were HPLC grade. Biotage SP1 ${ }^{\mathrm{TM}}$ unit was used to perform flash chromatography, using pre-packed normal phase silica columns ($12 \mathrm{~g}, 40 \mathrm{~g}$, and 80 g) from SiliCycle ${ }^{\mathbb{B}}$. Glassbacked thin layer chromatography (TLC) plates (SiliCycle ${ }^{\circledR}$) layered with $250 \mu \mathrm{~m}$ silica were
used to assess purity of compounds. Compounds were highly colored, thus ultraviolet (UV) light or visualization reagents were not required.

All compounds were characterized by liquid chromatography tandem-mass spectrometry (LC-MS/MS), high resolution mass spectrometry (HRMS), and 1D- and 2D-nuclear magnetic resonance (NMR) spectroscopy. Low resolution LC-MS/MS spectra were obtained on an Applied Biosystems hybrid triple quadrupole linear ion trap (2000Qtrap) mass spectrometer using an electrospray ionization (ESI) source. This was coupled to an Agilent 1100 high performance liquid chromatography (HPLC) instrument with a Phenomenex Kinetex $2.6 \mu \mathrm{~m}$ Hilic column ($150 \mathrm{~mm} \times 2.10 \mathrm{~mm}$). Samples were prepared in methanol and $5 \mu \mathrm{~L}$ aliquots were injected onto the column. Elution of compounds was accomplished using an isocratic gradient that is composed of $(7: 3) \mathrm{CH}_{3} \mathrm{CN}: 2 \mathrm{mM}$ ammonium acetate in water $(\mathrm{pH} 5.5)$ with a flow rate of $120 \mu \mathrm{~L} \mathrm{~min}^{-1}$ for 10 min . For low resolution LC-MS/MS, the instrument was used in positive mode (ESI+) for acquisition of all jadomycins. Enhanced product ionization (EPI) was performed with scans that were conducted over a range of $300-900 \mathrm{~m} / \mathrm{z}$ scanning for $[\mathrm{M}+\mathrm{H}]^{+}$and the appropriate jadomycin fragmentation. Spectra were analyzed using Analyst software version 1.4.1 (Applied Biosysthems). HRMS traces of all jadomycins were analyzed on a Bruker Daltonics MicroTOF Focus Mass Spectrometer using an ESI- source.

All ultraviolet-visible (UV-vis) spectroscopy was carried out on a SpectraMax Plus Microplate Reader (Molecular Devices). Samples were placed in a quartz cuvette (1 cm path length) and scanned over a range of $280-700 \mathrm{~nm}$ using 5 nm intervals in order to determine maximal absorbance wavelengths ($\lambda \max$).
${ }^{1} \mathrm{H}$ NMR and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ heteronuclear multiple bond correlation (HMBC) were recorded using a Bruker AV-III 700 MHz Spectrometer $\left({ }^{1} \mathrm{H}: 700 \mathrm{MHz},{ }^{13} \mathrm{C}: 150 \mathrm{MHz}\right)$ equipped with an ATMA 5 mm TCI cryoprobe located at the Canadian National Research Council Institute for Marine Biosciences (NRC-IMB) in Halifax, Nova Scotia. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ Correlation spectroscopy (COSY) and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ heteronuclear single quantum coherence (HSQC) experiments were recorded using a Bruker AV 500 MHz Spectrometer (${ }^{1} \mathrm{H}: 500 \mathrm{MHz},{ }^{13} \mathrm{C}: 125 \mathrm{MHz}$) equipped with an auto-tune and match (ATMA) broadband observe (BBFO) Smartprobe located at the Nuclear Magnetic Resonance Research Resource (NMR-3) facility (Dalhousie University). All spectra were recorded using methanol- d_{4}. Chemical shifts (δ) were given in ppm, and calibrated to residual solvent peaks; 3.31 and 79.0 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, respectively.

Media Composition

All media was prepared with distilled and de-ionized water. MYM broth [maltose ($4 \mathrm{~g} / \mathrm{L}$), yeast extract ($4 \mathrm{~g} / \mathrm{L}$), malt extract ($10 \mathrm{~g} / \mathrm{L}$), pH 7.0]; MYM agar [maltose $(4 \mathrm{~g} / \mathrm{L})$, yeast extract (4 $\mathrm{g} / \mathrm{L})$, malt extract ($10 \mathrm{~g} / \mathrm{L}$), agar ($15 \mathrm{~g} / \mathrm{L}$), pH 7.0$]$; MSM broth $\left[\mathrm{MgSO}_{4}(0.4 \mathrm{~g} / \mathrm{L})\right.$, MOPS (3.77 g / L), salt solution ($9 \mathrm{~mL} 1 \% \mathrm{w} / \mathrm{v} \mathrm{NaCl}, 1 \% \mathrm{w} / \mathrm{v} \mathrm{CaCl}_{2}$), $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(4.5 \mathrm{~mL} 0.2 \% \mathrm{w} / \mathrm{v})$, trace mineral solution (4.5 mL), pH 7.5]. Trace mineral solution $\left[\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(880 \mathrm{mg} / \mathrm{L})\right.$, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(39 \mathrm{mg} / \mathrm{L}), \mathrm{MnSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}(6.1 \mathrm{mg} / \mathrm{L}), \mathrm{H}_{3} \mathrm{BO}_{3}(5.7 \mathrm{mg} / \mathrm{L}),\left(\mathrm{NH}_{4}\right) 6 \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($3.7 \mathrm{mg} / \mathrm{L}$). All media was adjusted to pH 7 or 7.5 with 5 M NaOH or 5 M HCl as required. All solutions were autoclaved at $120^{\circ} \mathrm{C}$ for 30 minutes prior to use. 250 mL broth solution were autoclaved in 1 L glass Erlenmeyer flasks, and 125 mL of MYM agar was autoclaved in 250 mL glass Erenmeyer flasks.

Bacteria Maintenance and jadomycin production

S. venezuelae strains were maintained on MYM agar plates for 1-3 weeks for use in jadomycin productions. For long term storage, spore solutions were stored in 20% glycerol at $-70^{\circ} \mathrm{C}$.

General procedure for small scale productions with mutant strains

A small path of cells from a well-sporulated plate (1 week of growth) was used to inoculate MYM ($2 \times 25 \mathrm{~mL}$) and grown overnight at $30^{\circ} \mathrm{C}$ with agitation (250 rpm). The cells were pelleted in a 50 mL falcon tube by centrifugation at $3750 \mathrm{rpm}\left(4^{\circ} \mathrm{C}\right)$ for $10-30$ minutes. The cells were washed twice with MSM ($\sim 30 \mathrm{~mL}$), and re-suspended in 5 mL MSM. This cell suspension was used to inoculate MSM ($3 \times 25 \mathrm{~mL}$) supplemented with D-serine (60 mM), glucose (33 mM) and phosphate $(50 \mu \mathrm{M})$ to an initial OD600 value of ~ 0.6. Immediately, ethanol ($750 \mu \mathrm{~L}$ per 25 mL) was added to each flask to stimulate jadomycin production. Cultures were kept at $30^{\circ} \mathrm{C}$ with agitation (250 rpm) for 48 h . Bacterial growth was monitored by optical density at 600 nm $\left(\mathrm{OD}_{600}\right)$. Jadomycin and colored natural product production were monitored by absorbance of clarified culture media at 526 nm (Figure S6).

Figure S6. S. venezuelae_djadT mutant (blue), S. venezuelae_ $\Delta S v 0189$ (green), S. venezuelae_ $\Delta j a d T _\Delta S v 0189$ (grey), and S. venezuelae_ $\Delta j a d S \Delta j a d T$ mutant (yellow), growth curves measured at $600 \mathrm{~nm}\left(\mathrm{OD}_{600}\right)$ and measured at $526 \mathrm{~nm}\left(\mathrm{Abs}_{526}\right)$ estimating production of colored compounds.

General work-up and analysis of small scale productions

For each culture condition, 50 mL of the culture media was collected at 48 h . The cells were pelleted at 8000 rpm for $10-15$ minutes and the supernatant passed through $0.45 \mu \mathrm{M}$ filters. Cells were discarded. The supernatant was applied to a 2 g silica phenyl column (silicycle) that had been preconditioned with methanol $(10 \mathrm{~mL})$, followed by water $(30 \mathrm{~mL})$. The column was then washed with water $(50 \mathrm{~mL})$, and subsequently the coloured material bound to the column was eluted with methanol $(10 \mathrm{~mL})$. The methanol extract was concentrated and the recovered mass was determined for each strain: 10.4 mg material was obtained from the $\Delta j a d T$ strain, 5.7 mg from the $\Delta j a d S \Delta j a d T$ strain, 7.2 mg from the $\Delta S v 0189$ strain, and 3.0 mg from the $\Delta j a d T \Delta S v 0189$ strain. The extracts were analyzed by TLC and HPLC (Figures S7-S8).

Figure S7. Left: Cultures producing jadomycins after 48 h incubation. Centre: TLC (20 \% methanol/dichloromethane) of methanol extract for each strain as indicated alongside standards for jadomycin DS (JdDS) and glucosylated-JdDS (glc-JdDS); Right: TLC (20 \% methanol/dichloromethane) showing the methanol extract for the wildtype strain which produces primarily JdDS (purple spot), and the equivalent extract for the $\Delta j a d S \Delta j a d T$ strain that produces jadomycin aglycone (green spots) and no visible glucosylated species (absence of polar purple spots).

Figure S8. HPLC traces of the methanol extract from the phenyl column for indicated strains. c, chloramphenicol; a, jadomcyin aglycon; dig, JdDS; glc, glc-JdDS. For HPLC reversed-phase conditions see J. Am. Chem. Soc. 2015, 137, 3271-3275.

Large scale production with S. venezuelae_djadT

A $1 \times 1 \mathrm{~cm}$ lawn of S. venezuelae_ $\Delta j a d T$ was used to inoculate 250 mL MYM media $(2 \times 250$ mL in 1 L flasks). Growths were incubated at $30^{\circ} \mathrm{C}$ with agitation (250 rpm) for $16-24$ hours. The cell suspension was centrifuged at $3750 \mathrm{rpm}\left(4^{\circ} \mathrm{C}\right)$ for $30-45$ minutes. The supernatant was removed and the cell pellet was washed with 60 mL MSM without amino acid. The washing step was repeated more than twice to remove all of the nutrient rich MYM. The cell pellet was resuspended in 100 mL MSM without amino acid. Autoclaved MSM media containing D-serine ($60 \mathrm{mM}, 4 \times 250 \mathrm{~mL}$ in 1 L flasks) were supplemented with glucose (to a final concentration of 33 mM) and phosphate (to a final concentration of $50 \mu \mathrm{M}$) before being inoculated with the pregrowth S. venezuelae_ $\Delta j a d T$ cell suspension to an initial OD_{600} of 0.6 . Growths were ethanol shocked using 100% ethanol ($3 \% \mathrm{v} / \mathrm{v}$) and incubated at $30^{\circ} \mathrm{C}$ with agitation (250 rpm) for 48 hours. The pH of the media was readjusted to 7.5 after 24 hours with 5 M NaOH .

Extraction of natural products from bacterial cultures

Bacterial cells were removed via suction filtration through Whatman No. 5 filter paper, followed by $0.45 \mu \mathrm{~m}$ then $0.22 \mu \mathrm{~m}$ Millipore Durapore ${ }^{\circledR}$ membrane filters. The clear media was then passed through a reversed-phase SiliCycle ${ }^{\circledR}$ phenyl column (20 g), and washed with distilled water until flow-through was colorless ($\sim 2-4 \mathrm{~L}$) to remove all water-soluble material. Material was eluted from the column with 100% methanol and dried in vacuo to yield 20 mg crude material.

Purification of glucosylated jadomycin DS

A new purple compound of interest was observed by TLC analysis $\left(\mathrm{R}_{\mathrm{f}}=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}\right.$, $8: 2$) when compared to previously isolated jadomycin DS ($\mathrm{R}_{\mathrm{f}}=0.5$). The crude extract was brought up in a minimal volume of methanol and dichloromethane, and applied to a 40 g silica column preconditioned with methanol and dichloromethane. Isolation of the compound was accomplished using a gradient system comprised of methanol and dichloromethane with a flow rate of $30 \mathrm{~mL} / \mathrm{min}$ with collection of 6 mL fractions. To start, an initial isocratic gradient step using dichloromethane (4 column volumes (CV)) was performed. This was followed by a linearly increasing gradient of 0% to 20% methanol over 5 CV , which was then followed by an flat gradient of 40% methanol over 5 CV . Fractions of interest were identified visually for colour, and combined based on TLC analysis for the presence of the compound of interest. Combined fractions were concentrated to yield 3 mg of crude glucosylated jadomycin. TLC analysis ($\mathrm{R}_{\mathrm{f}}=0.2$, $\mathrm{DCM}: \mathrm{MeOH}, 8: 2$). NMR data can be found in Table 1; LRMS (ESI ${ }^{+}$): MS/MS ($55 \pi 6$) found $556[\mathrm{M}+\mathrm{H}]^{+}, 394\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right]^{+}$; HRMS (ESI^{-}): $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{12}$ requires 554.1304, found 554.1286. UV-Vis (1.6×10^{-3} and $2.0 \times 10^{-4} \mathrm{M}$, methanol): $\lambda_{\max }=285,380,520$.

Figure S9. LC-MS/MS fragmentation of the glucosylated jadomycin (parent ion $[\mathrm{M}+\mathrm{H}]^{+} 556$, showing $[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{(* *)}\right.$ and cleavage of the sugar $\left[\mathrm{M}+\mathrm{H}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right]^{+}\left({ }^{* *}\right)$.

Figure S10. Top: Comparison of glucosylated jadomycin DS (A and top HPLC trace), and jadomycin DS (B and bottom HPLC trace). Conditions: Normal phase silica eluant (8:2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH}$). For HPLC reversed-phase conditions see J. Am. Chem. Soc. 2015, 137, 32713275. Bottom: HMBC expansion showing the correlation between the anomeric proton of the glucose (H1") and C12 of the angycyclic backbone.

	9	8	7	6	5	4	3	2	1	ppm

Figure S7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the glucosylated jadomyen in methanol- $\mathrm{d}_{4}\left({ }^{1} \mathrm{H}: 700 \mathrm{MHz}\right)$.

Figure S8. ${ }^{13} \mathrm{C}$-NMR spectrum of the glucosylated jadomycin in methanol- $\mathrm{d}_{4}\left({ }^{13} \mathrm{C}: 176 \mathrm{MHz}\right)$.

Figure S9. COSY (${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$) NMR spectrum of glucosylated jadomycin in methanol- d_{4} (700 MHz).

Figure S10. Edited-HSQC $\left({ }^{1} \mathrm{H}^{13} \mathrm{C}\right)$ NMR spectrum of the glucosylated jadomycin in methanold_{4}.

Figure S11. HMBC $\left({ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right)$ NMR spectrum of the glucosylated jadomycin in methanol.

