Electronic Supporting Information

2,2,2-Trifluoroethanol as a Tool to Control Nucleophilic Peptide Arylation

D. Gimenez,^b A. Dose, ^b N. L. Robson,^b G. Sandford,^b S. L. Cobb^{b*} and C. R. Coxon^{a*}

^a School of Pharmacy and Biomolecular Sciences, Byrom Street Campus, Liverpool John Moores University, Liverpool, L3 3AF, U.K.

^b Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, U.K.

*Corresponding Authors E-Mail: c.r.coxon@ljmu.ac.uk; s.l.cobb@durham.ac.uk;

Materials and general methods4				
Model peptide tagging and stapling with perfluoroaromatics:	5			
General procedure for solution phase peptide tagging and stapling	5			
LC/MS analysis of small scale reactions, Entries 1-22	5			
Solvent effect: DMF vs. TFE, using DIPEA. Entries 1-12, Table1	5			
Effect of the base: DIPEA vs Cs ₂ CO ₃ . Entries 13-18, Table1	12			
Selective tagging of pep4. Entries 19-22, Table 2	16			
Isolation and characterization of compounds 4-14	18			
General methods				
Product 4	19			
General structure and characterization data	<mark>.20</mark>			
¹⁹ F-NMR	<mark>.20</mark>			
Product 5	20			
General structure and characterization data	<mark>.21</mark>			
QToF-LC/MS	<mark>.21</mark>			
QToF-MS/MS	<mark>.22</mark>			
¹⁹ F-NMR	<mark>.22</mark>			
Product 6	<mark>.23</mark>			
General structure and characterization data	<mark>.23</mark>			
QToF-LC/MS	<mark>.23</mark>			
QToF-MS/MS	<mark>.24</mark>			

¹⁹ F-NMR	<u>2</u> 4
Product 72	<mark>25</mark>
General structure and characterization data	<mark>25</mark>
QToF-LC/MS	<mark>25</mark>
QToF-MS/MS	<mark>26</mark>
¹⁹ F-NMR	<mark>26</mark>
Product 8	27
General structure and characterization data	27
QToF-LC/MS	27
QToF-MS/MS	<mark>28</mark>
¹⁹ F-NMR	<mark>28</mark>
Product 9	<u>29</u>
General structure and characterization data	<mark>29</mark>
QToF-LC/MS	<u>29</u>
QToF-MS/MS	<mark>30</mark>
¹⁹ F-NMR	<mark>30</mark>
Product 10	<mark>}1</mark>
General structure and characterization data	<mark>}1</mark>
QToF-LC/MS	<mark>}1</mark>
QToF-MS/MS	<mark>32</mark>
¹⁹ F-NMR	<mark>}2</mark>
Product 11	<mark>33</mark>
General structure and characterization data	<mark>}3</mark>
QToF-LC/MS	<mark>33</mark>
QToF-MS/MS	<mark>}4</mark>
¹⁹ F-NMR	<mark>34</mark>
Product 12	<mark>}5</mark>
General structure and characterization data	<mark>35</mark>
QToF-LC/MS	35
QToF-MS/MS	<mark>36</mark>
¹⁹ F-NMR	36
Product 13	<mark>}7</mark>
General structure and characterization data	<mark>}7</mark>
QToF-LC/MS3	37

QToF-MS/MS	<mark>.38</mark>
¹⁹ F-NMR	
Product 14	<mark>.39</mark>
General structure and characterization data	<mark>.39</mark>
QToF-LC/MS	
QToF-MS/MS	<mark>.40</mark>
¹⁹ F-NMR	40

Materials and general methods

All chemicals and solvents were analytical grade and used without further purification. Liquid chromatography-mass spectrometry (LC/MS; ESI+ mode) analyses were performed on a Acquity UPLC BEH C18 column (1.7 µm 2.1 mm x 50 mm) using a Waters Acquity UPLC system equipped with a photodiode array detector, providing absorbance data from 210 nm to 400 nm. A gradient with eluent I (0.1% HCOOH in water) and eluent II (0.1% HCOOH in acetonitrile) rising linearly from 5 to 95% of II during t=0.2-4.0 min was applied at a flow rate of 0.6 ml/min after 0.2 min of 95% solvent I initial equilibration. High-resolution QToF-LC/MS and QToF-MS/MS analyses were performed in a Acquity UPLC BEH C18 column (1.7 µm, 2.1 mm x 50 mm) using a Waters Acquity UPLC system coupled to Micromass QToF Premier mass spectrometer, also equipped with a photodiode array detector providing absorbance data from 210 nm to 400 nm. A gradient with eluent I (0.1% HCOOH in water) and eluent II (0.1% HCOOH in acetonitrile) rising linearly from 0 to 99% of II during t=0.0-5.0 min was applied at a flow rate of 0.6 ml/min. ¹⁹F NMR spectra studies were recorded at 376MHz in a Bruker Advance spectrometer at 298 K, using 8 scans with a relaxation delay of 1s. All data has been processed using Mestrenova® software.

Peptides (pep1-4) were prepared using conventional Fmoc/tBu SPSS procedures. Full experimental details and characterisation of **pep1-4** are given in -

D. Gimenez, C.A Mooney, A. Dose, G. Sandford, C.R. Coxon and S.L. Cobb, "Application of Pentafluoropyridine and Related Polyfluorinated Reagents in the Preparation of Modified Peptide Systems". *OB-ART-02-2017-000283*.

Model peptide tagging and stapling with perfluoroaromatics:

General procedure for solution phase peptide tagging and stapling

Solid crude peptides **pep1-3** (2 mg, approx. 2.5 μ mol) were dissolved in the DMF or TFE (0.5 mL) in a 1.5 mL plastic Eppendorf tube, to which a Cs₂CO₃ or DIPEA stock solution (50 mM in appropriate solvent, 0.5 mL) was added. Pentafluoropyridine (1) or hexafluorobenzene (3) was added in 5 equivalents and the tube was shaken vigorously at room temperature for 4.5 h. After removal of volatiles under vacuum, all products were redissolved in an 8:1:1 mixture of DMF/H₂O/MeCN (1mL) and characterised by LC/MS (ESI+). When formation of novel compounds was observed, 10-fold scaled reactions were employed in all cases for product isolation and purification in order to afford a complete characterisation. Scaled reactions were run under exactly the same conditions but in argon-flushed syringes, to avoid air bubbles where volatile aromatic compounds could concentrate. LC/MS data for crude reactions is provided next.

LC/MS analysis of small scale reactions **1-22**

Effect of the solvent: DMF vs. TFE, using DIPEA. Entries 1-12 from Table 1 (main article)

Entry 1: Ac-YCGGGCAL- NH₂ + HEXAFLUOROBENZENE in DMF/DIPEA:

Figure SI01. LC/MS traces at λ = 280 (middle panel) and λ = 220 nm (lower panel) of crude reaction of peptide **pep1** with hexafluorobenzene when using DIPEA as a base in DMF.

Entry 2: Ac-YSGGGSAL-NH₂ + HEXAFLUOROBENZENE in DMF/DIPEA:

Figure SI02. LC/MS traces at λ =220 nm of crude reaction of peptide **pep2** with hexafluorobenzene when using DIPEA as a base in DMF.

Figure SI03. LC/MS traces λ =220 nm of crude reaction of peptide **pep3** with hexafluorobenzene when using DIPEA as a base in DMF.

Entry 4: Ac-YCGGGCAL- NH₂ + PENTAFLUOROPYRIDINE in DMF/DIPEA:

Peak	Retention time	m/z	Identity
1	1.946	820	Starting peptide [M+MeCN] ⁺
2	2.706	1082	Double ArF addition [M+2ArF] ⁺
3	3.074	1138	[M+2ArF+TFA] ²⁺
4	3.175	1231	Triple ArF addition [M+3ArF] ⁺

Figure SI04. LC/MS traces at λ =280 nm of crude reaction of peptide **pep1** with pentafluoropyridine when using DIPEA as a base in DMF.

Figure SI05. LC/MS traces at λ =220 nm of crude reaction of peptide **pep2** with pentafluoropyridine when using DIPEA as a base in DMF.

Entry 6: Ac-YKGGGKAL- NH₂ + PENTAFLUOROPYRIDINE in DMF/DIPEA:

Figure SI6. LC/MS traces at λ =220 nm of crude reaction of peptide **pep3** with pentafluoropyridine when using DIPEA as a base in DMF.

Figure SI7. LC/MS traces at λ =220 nm of crude reaction of peptide **pep1** with hexafluorobenzene when using DIPEA as a base in TFE.

Figure SI8. LC/MS traces at λ =220 nm of crude reaction of peptide **pep2** with hexafluorobenzene when using DIPEA as a base in TFE.

Entry 9: Ac-YKGGGKAL- NH₂ + HEXAFLUOROBENZENE in TFE/DIPEA:

Figure SI9. LC/MS traces at λ =220 nm of crude reaction of peptide **pep3** with hexafluorobenzene when using DIPEA as a base in TFE.

Entry 10: Ac-YCGGGCAL- NH_2 + PENTAFLUOROPYRIDINE in TFE/DIPEA:

Figure SI10. LC/MS traces at λ =220 nm of crude reaction of peptide pep1 with pentafluoropyridine when using DIPEA as a base in TFE. Upper figure showing the scheme corresponding to adduct formation on the basis of the observed masses.

Entry 11: Ac-YSGGGSAL- NH₂ + PENTAFLUOROPYRIDINE in TFE/DIPEA:

Figure SI11. LC/MS traces at λ =220 nm of crude reaction of peptide **pep2** with pentafluoropyridine when using DIPEA as a base in TFE.

Entry 12: Ac-YKGGGKAL- NH₂ + PENTAFLUOROPYRIDINE in TFE/DIPEA:

Figure SI12. LC/MS traces at λ =220 nm of crude reaction of peptide **pep3** with pentafluoropyridine when using DIPEA as a base in TFE

Entry 13: Ac-YCGGGCAL- NH₂ + HEXAFLUOROBENZENE in TFE/Cs₂CO₃:

Figure SI13. LC/MS traces at λ =220 nm of crude reaction of peptide **pep1** with hexafluorobenzene when using Cs₂CO₃ as a base in TFE.

Entry 14: Ac-YSGGGSAL- NH₂ + HEXAFLUOROBENZENE in TFE/Cs₂CO₃:

Figure SI14. LC/MS traces at λ =220 nm of crude reaction of peptide **pep2** with hexafluorobenzene when using Cs₂CO₃ as a base in TFE.

Entry 15: Ac-YKGGGKAL- NH₂ + HEXAFLUOROBENZENE in TFE/Cs₂CO₃:

Figure SI15. LC/MS traces at λ =220 nm of crude reaction of peptide **pep3** with hexafluorobenzene when using Cs₂CO₃ as a base in TFE.

Figure SI16. LC/MS traces at λ =220 nm of crude reaction of peptide **pep1** with pentafluoropyridine when using Cs₂CO₃ as a base in TFE. Upper figure showing the scheme corresponding to adduct formation on the basis of the observed masses.

Figure SI17. LC/MS traces at λ =220 nm of crude reaction of peptide **pep2** with pentafluoropyridine when using Cs₂CO₃ as a base in TFE.

Entry 18: Ac-YKGGGKAL- NH₂ + PENTAFLUOROPYRIDINE in TFE/Cs₂CO₃

Figure SI18. LC/MS traces at λ =220 nm of crude reaction of peptide **pep3** with pentafluoropyridine when using Cs₂CO₃ as a base in TFE.

Entry 19: Ac- FKACGKGCA - NH₂ + HEXAFLUOROBENZENE in DMF/DIPEA

Figure SI19. LC/MS traces at λ =220 nm of crude reaction of peptide **pep4** with hexafluorobenzene when using DIPEA as a base in DMF.

Entry 20: Ac- FKACGKGCA - NH₂ + HEXAFLUOROBENZENE in TFE/DIPEA

Figure SI20. LC/MS traces at λ =220 nm of crude reaction of peptide **pep4** with hexafluorobenzene when using DIPEA as a base in TFE.

Entry 21: Ac- FKACGKGCA - NH₂ + PENTAFLUOROFYRIDINE in DMF/DIPEA

Figure SI21. LC/MS traces at λ =220 nm of crude reaction of peptide **pep4** with pentafluoropyridine when using DIPEA as a base in DMF.

Entry 22: Ac- FKACGKGCA - NH₂ + PENTAFLUOROFYRIDINE in TFE/DIPEA

Figure SI22. LC/MS traces at λ =220 nm of crude reaction of peptide **pep4** with pentafluoropyridine when using DIPEA as a base in TFE.

Isolation and characterization of compounds 4-14

General methods:

Products from large-scale reactions were purified and isolated by semi-preparative reverse phase HPLC performed on a Discovery Bio wide pore C₁₈-5 column from Supelco (5 µm, 25 cm × 10 mm), using a Pelkin-Elmer 200 LC pump coupled to a Waters 486 tuneable absorbance detector set at λ =220 nm. A gradient with eluent A (95:5:0.1%) H₂O:ACN:TFA) and eluent B (5:95:0.1% H₂O:ACN:TFA) was applied, where solvent B was firstly rose linearly from 0 to 100% during t=60 min and finally maintained isocratically for 5 min at a flow rate of 2 mL/min. Purified pooled fractions were then freeze-dried and the identity of the different compounds verified by LC/MS. The desired pure compounds were then further characterised by ¹⁹F NMR (2 mg/mL in H₂O/CD₃CN 50:50, unless otherwise stated), high resolution LC/MS-QToF and ion directed tandem mass spectrometry (MS/MS), allowing to obtain the characteristic rupture profile for each product. In MS/MS fragmentation analysis we have made use of the accepted nomenclature for fragment ions firstly proposed by Roepstorff and Fohlman (P. Roepstorff and J. Fohlman, Biol. Mass Spectrom. 1984, 11, 601-601.), and subsequently modified by Johnson et al. (R. S. Johnson, S. A. Martin, K. Biemann J. T. Stults and J. T. Watson, Anal. Chem., 1987, 59, 2621-2625). Note that, in peptides and proteins, ions arising from fragmentation series γ or b are expected to be predominant.

Product 4.

QToF LC/MS: Calculated *m/z*: 929.96, observed *m/z*: 931.49 $[M+H^+]^+$. Retention time: 2.400 min. Elemental composition: C₃₈ H₄₇ F₄ N₉ O₁₀ S₂.

Figure SI23. Structure, high resolution QToF-LC/MS trace at λ =280 nm and composition of isolated compound 4.

Figure SI24. ¹⁹F NMR spectrum of compound **4** as recorded in D₂O/MeCN 1:1 at room temperature.

Product 5.

QToF LC/MS: Calculated m/z: 1230.27, observed m/z: 1231.28 [M+H]⁺. Retention time: 3.442 min. Elemental composition: C₄₇ H₄₆ F₁₂ N₁₂ O₁₀ S₂.

QToF-MS/MS: Calculated *m*/*z*: 1103.18 [b7+H]⁺, 1032.81 [b6+H]⁺, 780.14 [b5+H]⁺, 722.11 [b4+H]⁺, 665.09 [b3+H]⁺, 608.07 [b2+H]⁺, 356.07 [b1+H]⁺, 495.15 [z4+H]⁺ Da.

Observed *m/z*: 1103.22 [b7+H]⁺, 1032.18 [b6+H]⁺, 780.17 [b5+H]⁺, 722.14 [b4+H]⁺, 665.12 [b3+H]⁺, 608.13 [b2+H]⁺, 355.08 [b1+H]⁺, 495.14 [z4+H]⁺ Da.

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -91.20 (m, 2F), -93.42 (m, 4F), -137.49 (m, 4F), -155.63 (m, 2F).

Figure SI25. Structure, high resolution QToF-LC/MS trace at λ =220 nm and composition of isolated compound 5.

Figure SI26. MS/MS analysis of compound **5** showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure SI27. ¹⁹F NMR spectrum of compound 5 as recorded in DMSO-d₆ at room temperature.

Product 6.

QToF LC/MS: Calculated *m/z*: 900.34, observed *m/z*: 901.34 $[M+H]^+$ Retention time: 2.375 min. Elemental composition: C₃₇ H₄₈ F₄ N₁₀ O₁₂.

QToF-MS/MS: Calculated *m/z*: 771.24 [b7+H]⁺, 700.20 [b6+H]⁺, 613.17 [b5+H]⁺, 499.12 [b3+H]⁺, 442.35 [b2+H]⁺, 355.07 [b1+H]⁺, 530.26 [z7+H]⁺, 443.23 [z6+H]⁺ Da.

Observed *m/z*: 771.27 [b7+H]⁺, 700.24 [b6+H]⁺, 613.19 [b5+H]⁺, 449.10 [b3+H]⁺, 442.08 [b2+H]⁺, 355.11 [b1+H]⁺, 530.26 [z7+H]⁺, 442.08 [z6+H]⁺ Da.

¹⁹F NMR (376 MHz, H₂O/MeOD 1:1) δ -91.32 (m, 2F), -155.98 (m, 2F).

Figure SI28. Structure, high resolution QToF-LC/MS trace at λ =220 nm and composition of isolated compound **6**.

Figure SI29. MS/MS analysis of compound **6** showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure SI30. ¹⁹F NMR spectrum of compound **6** as recorded in $H_2O/MeOD$ 1:1 at room temperature.

Product 7.

QToF LC/MS: Calculated m/z: 1280.44, observed m/z: 1281.45 [M+H]⁺ Retention time: 3.492 min. Elemental composition: C₅₃ H₆₀ F₁₂ N₁₄ O₁₀.

QToF-MS/MS:

Calculated *m/z*: 1152.34 [b7+H]⁺, 1081.30 [b6+H]⁺, 804.22 [b5+H]⁺, 691.2337 [b3+H]⁺, 747.20 [b4+H]⁺, 911.36 [z7+H]⁺, 634.28 [z6+H]⁺, 520.23 [z4+H]⁺ Da.

Observed *m/z*: 1152.40 [b7+H]⁺, 1082.36 [b6+H]⁺, 804.26 [b5+H]⁺, 690.23 [b3+H]⁺, 747.24 [b4+H]⁺, 911.36 [z7+H]⁺, 634.29 [z6+H]⁺, 520.23 [z4+H]⁺ Da.

¹⁹F NMR (376 MHz, H₂O/MeOD 1:1) δ -91.66 (m, 2F), -98.17 (m, 4F), -156.29 (m, 4F), -165.54 (m, 2F).

Figure SI31. Structure, high resolution QToF-LC/MS trace at λ =220 nm and composition of isolated compound 7.

Figure SI32. MS/MS analysis of compound **7** showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure SI33. ¹⁹F NMR spectrum of compound 7 as recorded in $H_2O/MeOD$ 1:1 at room temperature.

Product 8.

QToF LC/MS: Calculated m/z: 1081.28, observed m/z: 1082.19 [M+H]⁺ Retention time: 3.017 min. Elemental composition: C₄₂ H₄₇ F₈ N₁₁ O₁₀ S₂.

QToF-MS/MS:

Calculated m/z: 953.18 [b7+H]⁺, 882.14 [b6+H]⁺, 630.56 [b5+H]⁺, 573.51 [b4+H]⁺, 516.46 [b3+H]⁺ Da.

Observed *m/z*: 954.22 [b7+H]⁺, 883.18 [b6+H]⁺, 630.16 [b5+H]⁺, 573.16 [b4+H]⁺, 517.06 [b3+H]⁺ Da.

¹⁹F NMR (376 MHz, H₂O/ MeCN-*d*₃ 1:1) δ -94.02 (m, 2F), -94.16 (m, 2F), -138.01 (m, 2F), -138.32 (m, 2F).

Figure SI34. Structure, high resolution QToF-LC/MS trace and composition of isolated compound **8**.

Figure SI35. MS/MS analysis of compound **8** showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure SI36. ¹⁹F NMR spectrum of compound **8** as recorded in $H_2O/MeCN-d_3$ 1:1 at room temperature.

Product 9. (Mixture of regioisomers)

QToF LC/MS: Calculated m/z: 932.96, observed m/z: 989.36 [2M+TFA+H]²⁺ Retention time: 2.842 min. Elemental composition: C₃₇ H₄₈ F₄ N₁₀ O₁₀ S₂.

QToF-MS/MS:

Calculated *m/z*: 860.50 [2(b7/b'7)+TFA+H]²⁺, 789.95 [2(b6/b'6)+TFA+H]²⁺, 768.50 [2(z7/z'7) +TFA+H]²⁺, 629.25 [2b4+TFA+H]²⁺, 537.50 [2b'5+TFA+H]²⁺, 515.58 [2b2+TFA+H]²⁺, 480.63 [2b'5+TFA+H]²⁺, 423.61 [2b'3+TFA+H]²⁺, 366.59 [2b'2+TFA+H]²⁺ Da.

Observed *m/z*: 860.29 [2(b7/b'7) +TFA+H]²⁺, 789.25 [2(b6/b'6) +TFA+H]²⁺, 769.24 [2(z7/z'7)+TFA+H]²⁺, 629.17 [2b4+TFA+H]²⁺, 536.23 [2b'5+TFA+H]²⁺, 515.17 [2b2+TFA+H]²⁺, 479.21 [2b'4+TFA+H]²⁺, 422.19 [2b'3+TFA+H]²⁺, 365.17 [2b'2+TFA+H]²⁺ Da.

¹⁹F NMR (376 MHz, H₂O/ MeCN-*d*₃ 1:1) δ -94.05 (m, 2F), -94.18 (m, 2F), -138.01 (m, 2F), -138.31 (m, 2F).

Figure SI37. Structure, high resolution QToF-LC/MS trace at λ =220 nm and composition of isolated compound 9.

Figure SI38. MS/MS analysis of compound 9 showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure SI39. ¹⁹F NMR spectrum of compound **9** as recorded in $H_2O/MeCN-d_3$ 1:1 at room temperature.

Product 10. (Mixture of regioisomers)

QToF LC/MS: Calculated m/z: 1081.28, observed m/z: 1138.35 [2M+TFA+2H⁺]²⁺. Retention time: 3.300 min. Elemental composition: C₄₂ H₄₇ F₈ N₁₁ O₁₀ S₂.

QToF-MS/MS:

Calculated *m/z*: 938.64 [2(b6/b'6)+TFA+2H]²⁺, 919.18 [(b7/b'7)+TFA-4*f*Pyr+H]⁺, 848.15 [b6/b'6+TFA-4*f*Pyr+H]⁺, 778.61 [2(b'4)+TFA+H]²⁺, 722.59 [2b'3+TFA+H]²⁺, 686.60 [2b5 + TFA +H]²⁺, 664.57 [2b'3+ TFA +H]²⁺, 629.62 [2b4 + TFA +H]²⁺, 480.15 [2b5-4*f*Pyr+H]⁺, 423.13 [2b4-4*f*Pyr+H]⁺ Da.

Observed *m/z*: 939.24 [2(b6/b'6)+TFA+H]²⁺, 920.56 [(b7/b'7)+ TFA-4*f*Pyr+H]⁺, 849.17 [b6/b'6)+TFA-4*f*Pyr+H]⁺, 779.14 [2b'4+TFA+H]²⁺, 723.14 [2b'3+TFA+H]²⁺, 687.23 [2b5+TFA+H]²⁺, 664.12 [2b'3+TFA+H]²⁺, 630.18 [2b4+TFA+H]²⁺, 481.13 [2b5-4*f*Pyr+H]⁺, 424.08 [2b4-4*f*Pyr+H]⁺ Da.

¹⁹F NMR (376 MHz, H₂O/ MeCN-*d*₃ 1:1) δ -91.57 (m, 2F), -93.40 (m, 2F), -137.69 (m, 2F), -156.12 (m, 2F).

Figure SI40. Structure, high resolution QToF-LC/MS trace at λ =220 nm and composition of isolated compound **10**.

Figure SI41. MS/MS analysis of compound 10 showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure SI42. ¹⁹F NMR spectrum of compound **10** as recorded in $H_2O/MeCN-d_3$ 1:1 at room temperature.

Product 11.

QToF LC/MS: Calculated *m/z*: 1070.41, observed *m/z*: 1071.41 [M+H]⁺, 536.39 [M+2H]²⁺ Retention time: 1.875 min. Elemental composition: $C_{45} H_{62} F_4 N_{12} O_{10} S_2$.

QToF-MS/MS:

Calculated *m/z*: 881.32 [y8+H]⁺, 753.23 [y7+H]⁺, 536.22 [M+2H]²⁺, 492.67 [b8+2H]²⁺, 441.16 [y8+2H]²⁺ Da.

Observed *m/z*: 884.28 [y8+H]⁺, 757.26 [y7+H]⁺, 537.72 [M+2H]²⁺, 493.19 [b8+2H]²⁺, 442.66 [y8+2H]²⁺ Da.

¹⁹F NMR (376 MHz, H₂O/ MeCN-*d*₃ 1:1) δ -134.53 (m, 4F).

Figure SI43. Structure, high resolution QToF-LC/MS trace at λ =220 nm and composition of isolated compound 11.

Figure SI44. MS/MS analysis of compound 11 showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure SI45. ¹⁹F NMR spectrum of compound **11** as recorded in $H_2O/MeCN-d_3$ 1:1 at room temperature.

QToF LC/MS: Calculated *m/z*: 1520.39, observed *m/z*: 1521.41 [M+H]⁺. Retention time: 4.033 min. Elemental composition: C_{59} H₆₀ F₁₆ N₁₆ O₁₀ S₂.

QToF MS/MS:

Calculated m/z: 753.18 [M-NH₂+2H]²⁺, 717.66 [b8+2H]²⁺ Da.

Observed 754.18 [M-NH₂+2H]²⁺, 718.15 [b8+2H]²⁺ Da.

¹⁹F NMR (376 MHz, H₂O/ MeCN-*d*₃ 1:1) δ -93.99 (m, 4F), -98.06 (m, 4F), -138.14 (m, 4F), -165.38 (m, 4F).

Figure SI46. Structure, high resolution QToF-LC/MS trace at λ =220 nm and composition of isolated compound **12**.

Figure SI47. MS/MS analysis of compound **12** showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure SI48. ¹⁹F NMR spectrum of compound **12** as recorded in $H_2O/MeCN-d_3$ 1:1 at room temperature.

Product 13.

QToF LC/MS: Calculated *m/z*: 1222.41, observed *m/z*: 1223.41 [M+H]⁺, 612.20 [M+2H]²⁺. Retention time: 2.200 min. Elemental composition: C_{49} H₆₂ F₈ N₁₄ O₁₀ S₂.

QToF-MS/MS:

Calculated *m/z*: 1135.35 [b8+H]⁺, 1033.32 [y8+H]⁺, 905.23 [y7+H]⁺, 834.19 [y6+H]⁺, 612.05 [M+2H]²⁺, 518.16 [y8+2H]⁺, 389.22 [b3+H]⁺ Da.

Observed *m/z*: 1130.45 [b8+H]⁺, 1036.31 [y8+H]⁺, 908.22 [y7+H]⁺, 837.18 [y6+H]⁺, 613.44 [M+2H]²⁺, 518.94 [y8+2H]⁺, 389.22 [b3+H]⁺ Da.

¹⁹F NMR (376 MHz, H₂O/ MeCN-*d*₃ 1:1) δ -94.01 (m, 4F), -137.98 (m, 4F).

Figure SI49. Structure, high resolution QToF-LC/MS trace at λ =220 nm and composition of isolated compound 13.

Figure SI50. MS/MS analysis of compound **13** showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure SI51. ¹⁹F NMR spectrum of compound **13** as recorded in $H_2O/MeCN-d_3$ 1:1 at room temperature.

QToF LC/MS: Calculated m/z: 1073.42, observed m/z: 1130.49 [2M+TFA+H]²⁺. Retention time: 2.167 min. Elemental composition: C₄₄ H₆₃ F₄ N₁₃ O₁₀ S₂.

QToF-MS/MS:

Calculated *m/z*: 1058.40 [M-NH₂+H]⁺, 942.83 [2(y8/y'8) +TFA+2H]²⁺, 814.74 [2(y7/y'7) +TFA+2H]²⁺, 743.50 [2(y6/y'6) +TFA+2H]²⁺, 566.25 [Z'5+H]⁺, 537.71 [M+2H]²⁺, 566.7301 [z5+TFA+2H]²⁺, 389.22 [2b3/b'3+H]⁺ Da.

Observed *m/z*: 1059.40 [M-NH₂+H]⁺, 943.39 [2(y8/y'8)+ +TFA+2H]²⁺, 815.31 [2(y7/y'7)+TFA+2H]²⁺, 744.25 [2(y6/y'6)+TFA+2H]²⁺, 566.73 [z5'+H]⁺, 538.69 [M+2H]²⁺, 472.19 [2z5+TFA+2H]²⁺, 389.21 [b3/b'3+H]⁺ Da.

¹⁹F NMR (376 MHz, H₂O/ MeCN-*d*₃ 1:1) δ -93.39 (m, 2F), -138.12 (m, 2F).

Figure SI52. Structure, high resolution QToF-LC/MS trace at λ =220 nm and composition of isolated compound 14.

Figure SI53. MS/MS analysis of compound **14** showing its characteristic rupture pattern and the assignation of the main ions observed.

Figure SI54. ¹⁹F NMR spectrum of compound **14** as recorded in $H_2O/MeCN-d_3$ 1:1 at room temperature.