Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

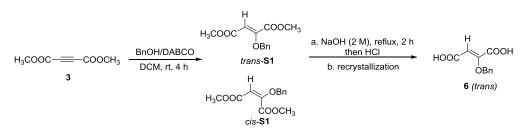
Rapid Chemoenzymatic Route to Glutamate Transporter Inhibitor

L-TFB-TBOA and Related Amino Acids

Haigen Fu, Sabry H. H. Younes, Mohammad Saifuddin, Pieter G. Tepper, Jielin Zhang, Erik Keller, André Heeres, Wiktor Szymanski, and Gerrit J. Poelarends*

Table of Contents

- I) General information
- II) Detailed experimental procedures
- III) NMR spectra
- IV) Chiral HPLC analysis
- V) References


I) General information

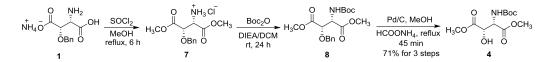
All chemicals were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO) or Thermo Fisher Scientific Co. unless stated otherwise. Solvents were purchased from Biosolve (Valkenswaard, The Netherlands) or Sigma-Aldrich Chemical Co. The boiling point of the petroleum ether used for chemical purification was 40-60 °C. Authentic sample of L-TFB-TBOA was purchased from Tocris Bioscience. Ingredients for buffers and media were obtained from Duchefa Biochemie (Haarlem, The Netherlands) or Merck (Darmstadt, Germany). A previously engineered variant of methylaspartate ammonia lyase (MAL-L384A) was overproduced in Escherichia coli and purified as described previously¹. Ni-Sepharose 6 fast flow resin and prepacked PD-10 Sephadex G-25 columns for protein purification were purchased from GE Healthcare Bio-Sciences (Little Chalfont, UK). Proteins were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under denaturing conditions on gels containing 10% polyacrylamide. The gels were stained with Coomassie brilliant blue. High performance liquid chromatography (HPLC) was performed with a Shimadzu LC-10AT HPLC with a Shimadzu SP-M10A ELSD detector. NMR analyses were performed on a Varian Inova 400 MHz machine at the NMR Center of the University of Groningen, or on a Brucker 500 MHz machine at the Drug Design laboratory of the University of Groningen. Chemical shifts (δ) are reported in parts per million (ppm). Optical rotations were measured on a Schmidt+Haensch Polartronic MH8 polarimeter with a 10 cm cell (c given in g/100 mL). Electrospray ionization orbitrap high resolution mass spectrometry (HRMS) was performed by the Mass Spectrometry core facility of the University of Groningen.

II) Detailed experimental procedures


1 Chemoenzymatic synthesis of L-TBOA (1) at multigram scale.

1.1 trans-2-benzyloxy fumaric acid (6)

To a stirred solution of dimethyl acetylenedicarboxylate (**3**, 2.84 g, 20.0 mmol) in DCM (150 mL) was added DABCO (0.22 g, 2.0 mmol) and benzyl alcohol (2.16 g, 20.0 mmol) at room temperature. After completion of the reaction (TLC monitoring), the solvent was removed under vacuum to provide crude products as a dark oil, which contained *trans*-**S1** and *cis*-**S1** isomers (*trans/cis* = 6/4). The crude product was dissolved in ethanol (50 mL) and subjected to basic hydrolysis using 2 M NaOH (50 mL) at reflux for 2 h. After complete hydrolysis, the reaction mixture was cooled to room temperature and extracted using EtOAc (2 x 50 mL). The aqueous layer was acidified with HCl (con.) until pH = 1 (ice-bath) and extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with brine (2 x 100 mL), dried over anhydrous Na₂SO₄ and evaporated to provide a dark yellow solid. Recrystallization was performed using hexane/Et₂O (v/v=1/3) to provide pure *trans*-2-benzyloxy-fumaric acid **6** (1.64 g, two steps yield 37%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.43 – 7.32 (m, 5H), 6.08 (s, 1H), 5.10 (s, 2H). The NMR data are in agreement with published data.¹ Following the same procedures, we prepared **6** at multigram-scale (35 g) from dimethyl acetylenedicarboxylate (**3**, 60 g) and benzyl alcohol (44.3 g).


1.2 (L-threo)-3-benzyloxyaspartate (1, L-TBOA)

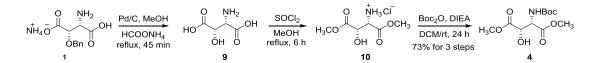
To a slowly stirred solution of *trans*-2-benzyloxy-fumaric acid **6** (2.44 g, 11 mmol) in 220 mL of buffer (5 M NH_3/NH_4Cl , 20 mM MgCl₂, pH = 9.5) was added MAL L384A¹ (0.01 mol%, 5 mL, 12.3 mg/mL), and the reaction mixture was incubated for 24 hours at room temperature. After completion of the enzymatic reaction (¹HNMR monitoring, >98% conversion), the reaction mixture was warmed up to 60 °C for 10 min until the

enzyme precipitated, followed by filtration through cotton to remove the white precipitates. Most of the water in the reaction mixture was evaporated under vacuum, then the resulting concentrated mixture was acidified with HCl (conc.) to pH = 1 (in an ice-bath). The acidified solution was loaded onto a column packed with cation-exchange resin (1000 g of Dowex 50W X8, 50-100 mesh), which was pre-treated with 2 M aqueous ammonia (4 column volumes, C.Vs.), 1 M HCl (2 C.Vs.) and distilled water (4 C.Vs.). The column was washed with water (2 C.Vs.) and the product was eluted with 2 M aqueous ammonia (2 C.Vs.). The ninhydrin-positive fractions were collected and lyophilized to yield the product L-TBOA (1) ammonium salt (white powder, 2.26 g, 80%). ¹H NMR (500 MHz, D₂O) δ 7.43 – 7.34 (m, 5H), 4.71 (d, *J* = 11.6 Hz, 1H), 4.47 (d, *J* = 11.6 Hz, 1H), 4.32 (d, *J* = 2.3 Hz, 1H), 3.99 (d, *J* = 2.3 Hz, 1H). NMR data are in agreement with published data.¹ Following the same procedures, we prepared L-TBOA at multigram-scale (1, 24.8 g) from **6** (25 g) in several batches.

2 Synthesis of chiral building block (4)

2.1 (L-threo)-dimethyl 2-amino-3-(benzyloxy)succinate hydrochloride (7)

To a stirred suspension of L-TBOA (1, 512 mg, 2 mmol) in dry MeOH (15 mL) at was added SOCl₂ (1.45 mL, 20 mmol) dropwise (in an ice-bath). After 20 minutes, the cooling system was removed and the reaction mixture was heated to reflux for 6 h. After completion of the reaction (TLC monitoring, MeOH/DCM 4:1, Rf = 0.8 ninhydrin), the reaction mixture was cooled to room temperature, and solvent was removed to provide crude product 7 as a white solid (580 mg, 96%). No purification was needed, the crude product 7 was directly used for the next step. ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.78 (s, 3H), 7.39 – 7.32 (m, 5H), 4.77 (d, *J* = 11.8 Hz, 1H), 4.64 (d, *J* = 3.6 Hz, 1H), 4.55 (d, *J* = 11.8 Hz, 1H), 4.46 (d, *J* = 3.6 Hz, 1H), 3.75 (s, 3H), 3.64 (s, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.36, 167.07, 136.64, 128.29 (2), 128.22 (2), 128.05, 75.19, 72.60, 54.07, 53.16, 52.83. HRMS: calcd. for C₁₃H₁₈NO₅ [M+H]⁺: 268.1180, found 268.1174.


2.2 (L-threo)-dimethyl 2-(benzyloxy)-3-[(tert-butoxycarbonyl)amino]succinate (8)

To a stirred solution of 7 (580 mg, 1.92 mmol) in dry DCM (20 mL) was added DIEA (495μ L, 3 mmol) and Boc₂O (436 mg, 2 mmol) under cooling in an ice-bath. After 10 minutes, the cooling was removed and the reaction mixture was stirred at room temperature for further 24 h. After completion of the reaction, the reaction mixture was diluted with DCM (20 mL), and washed with 0.5 M HCl (50 mL), saturated NaHCO₃ solution (50

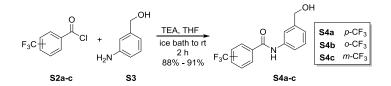
mL) and brine (50 mL). The organic layer was dried over Na₂SO₄ (s) and concentrated under vacuum to give crude product **8** as a clear oil (640 mg, 91%). No purification was needed, analytically pure product **8** was directly used for the next step. ¹H NMR (500 MHz, DMSO- d_6) δ 7.36 – 7.28 (m, 5H), 7.05 (d, J = 9.5 Hz, 1H), 4.67 (d, J = 11.9 Hz, 1H), 4.62 (dd, J = 9.5, 4.3 Hz, 1H), 4.47 (d, J = 4.3 Hz, 1H), 4.42 (d, J = 11.9 Hz, 1H), 3.67 (s, 3H), 3.60 (s, 3H), 1.36 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.72, 169.66, 155.44, 136.55, 128.43, 128.29 (2), 128.20 (2), 80.22, 76.75, 72.75, 56.01, 52.58, 52.45, 28.18 (3). HRMS: calcd. for C₁₈H₂₅NO₇Na [M+Na]⁺: 390.1523, found 390.1523.

2.3 (L-threo)-dimethyl 2-[(tert-butoxycarbonyl)amino]-3-hydroxy succinate (4)

To a stirred solution of **8** (640 mg, 1.75 mmol) in dry MeOH (15 mL) was added Pd/C (10%, 0.6 g) and HCOONH₄ (0.7 g). The mixture was heated to reflux for 45 min. After completion of the reaction, the reaction mixture was filtered through Celite and evaporated under vacuum to provide crude product **4**. Purification was conducted *via* flash chromatography (EtOAc/Petroleum ether, 15%, v/v) to provide compound **4** as clear oil (392 mg, 81%). ¹H NMR (500 MHz, CDCl₃) δ 5.29 (d, *J* = 9.5 Hz, 1H), 4.78 (dd, *J* = 9.3, 2.0 Hz, 1H), 4.69 (dd, *J* = 5.8, 2.0 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.22 (d, *J* = 5.7 Hz, 1H), 1.42 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 172.41, 169.85, 155.27, 80.41, 71.07, 56.12, 53.24, 52.94, 28.16 (3). HRMS: calcd. for C₁₁H₁₉NO₇Na [M+Na]⁺: 300.1054, found 300.1053. We prepared precursor **4** at multigram-scale (6.9 g) from **7** (9.8 g) following the same procedures.

2.4 (L-threo)-dimethyl 2-amino-3-hydroxy succinate (10)

To a stirred solution of **1** (256 mg, 1 mmol) in dry MeOH (10 mL) was added Pd/C (10%, 0.25 g) and HCOONH₄ (0.35 g). The mixture was heated to reflux for 45 min. Subsequently, the reaction mixture was filtered through Celite and washed with MeOH (10 mL). The filtrate was collected and evaporated under vacuum to provide product (L-*threo*)-3-hydroxy aspartate **9**. ¹H NMR (500 MHz, D₂O) δ 4.54 (d, *J* = 2.1 Hz, 1H), 4.06 (d, *J* = 2.1 Hz, 1H); ¹³C NMR (126 MHz, D₂O) δ 176.57, 172.39, 70.67 (d, *J* = 12.6 Hz), 56.94 (t, *J* = 32.8 Hz). HRMS: calcd. for C₄H₈NO₅ [M+H]⁺: 150.0397, found 150.0397.


In the subsequent step, compound 9 was dissolved in dry MeOH (10 mL), followed by dropwise addition of $SOCl_2$ (0.73 mL, 10 mmol) in an ice-bath. After 20 minutes, the cooling system was removed and the reaction

mixture was heated to reflux for 6 h. After completion of the reaction, the reaction mixture was cooled to room temperature and solvent was removed under vacuum to provide product **10** as white solid (192 mg, two-step yield 90%). No purification was needed, analytically pure product **10** was directly used for the next step. ¹H NMR (500 MHz, CDCl₃) δ 4.65 (d, J = 2.4 Hz, 1H), 3.92 (d, J = 2.4 Hz, 1H), 3.84 (s, 3H), 3.80 (s, 3H), 2.48 (brs, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.99 (2), 72.13, 56.73, 53.17, 52.85. HRMS: calcd. for C₆H₁₂NO₅ [M+H]⁺: 178.0710, found 178.0712.

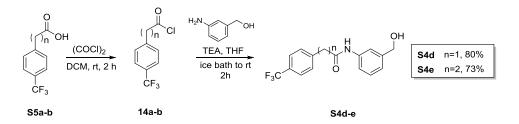
2.5 (L-threo)-dimethyl 2-[(tert-butoxycarbonyl)amino]-3-hydroxy succinate (4)

To a stirred solution of **10** (192 mg, 0.9 mmol) in dry DCM (10 mL) was added DIEA (330 μ L, 2 mmol) and Boc₂O (218 mg, 1 mmol) under cooling using an ice-bath. After 10 minutes, the cooling system was removed and the reaction mixture was stirred at room temperature for further 24 h. After completion of the reaction, the reaction mixture was diluted with DCM (10 mL), and washed with 0.5 M HCl (20 mL), saturated NaHCO₃ solution (20 mL) and brine (20 mL). The organic layer was dried over Na₂SO₄ (s). The solvent was evaporated under vacuum to give crude product **4**, which was purified *via* flash chromatography (EtOAc/Petroleum ether, 15%, v/v) to provide pure compound **4** as a clear oil (202 mg, 81%).

3. Synthesis of substituted benzyl bromide (5)

3.1 N-[3-(hydroxymethyl)phenyl]-4-(trifluoromethyl)benzamide (S4a)

To a stirred solution of 3-aminobenzyl alcohol (**S3**, 861 mg, 7.0 mmol) and 4-trifluoromethylbenzoyl chloride (**S2a**, 1.04 g, 5.0 mmol) in THF (30 mL) was added triethylamine (707 mg, 7.0 mmol) under cooling using an ice-bath . After 10 minutes, the cooling bath was removed and reaction was run at room temperature for further 2 h. After completion of the reaction, the reaction mixture was diluted with ethyl acetate (50 mL) and washed with 1 M aqueous HCl (3 x 50 mL), saturated aqueous NaHCO₃ (2 x 50 mL) and brine (100 mL). The organic layer was dried over Na₂SO₄ and evaporated under vacuum to give the crude product **S4a**. The product was precipitated from ethyl acetate/pentane to give pure **S4a** as a white powder (1.30 g, 88%). ¹H NMR (400 MHz, Methanol-*d*₄): δ 8.09 (d, *J* = 8.0 Hz, 2H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.71 (s, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.17 (d, *J* = 7.6 Hz, 1H), 4.62 (s, 2H); ¹⁹F NMR (376 MHz, Methanol-*d*₄) δ -64.5 (s). NMR data


are in agreement with published data.^[2, 3]

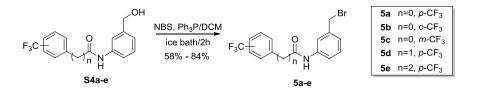
3.2 N-[3-(hydroxymethyl)phenyl]-2-(trifluoromethyl)benzamide (S4b).

Compound **S4b** was prepared from 3-aminobenzyl alcohol (**S3**, 861 mg, 7.0 mmol), 2-trifluoromethylbenzoyl chloride (**S2b**, 1.04 g, 5.0 mmol) and triethylamine (707 mg, 7.0 mmol) following a procedure similar to that used for **S4a**. The compound **S4b** was obtained as a white solid (1.32 g, 89%). ¹H NMR (400 MHz, DMSO- d_6) δ 10.46 (s, 1H), 8.32 (s, 1H), 8.28 (d, J = 8.0 Hz, 1H), 7.96 (d, J = 7.8 Hz, 1H), 7.80 – 7.76 (m, 2H), 7.69 (d, J = 8.1 Hz, 1H), 7.32 (t, J = 7.8 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 5.26 (t, J = 5.7 Hz, 1H), 4.53 (d, J = 5.6 Hz, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 163.94, 143.22, 138.71, 135.81, 131.87, 129.72, 129.19 (q, J = 32.8 Hz), 128.35, 128.12 (q, J = 3.8 Hz), 124.02 (q, J = 273.4 Hz), 124.26 (q, J = 3.8 Hz), 122.06, 118.89, 118.61, 62.87; ¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.13 (s). HRMS: calcd. for C₁₅H₁₃F₃NO₂ [M+H]⁺: 296.0893, found 296.0885.

3.3 N-[3-(hydroxymethyl)phenyl]-3-(trifluoromethyl)benzamide (S4c).

Compound **S4c** was prepared from 3-aminobenzyl alcohol (**S3**, 861 mg, 7.0 mmol), 3-trifluoromethylbenzoyl chloride (**S2c**, 1.04 g, 5.0 mmol) and triethylamine (707 mg, 7.0 mmol) by following a procedure similar to that used for **S4a**. The title compound was obtained as a white solid (1.35 g, 91%). ¹H NMR (500 MHz, DMSO- d_6) δ 10.54 (s, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.79 (t, J = 7.5 Hz, 1H), 7.72 – 7.68 (m, 3H), 7.53 (d, J = 8.3 Hz, 1H), 7.29 (t, J = 7.8 Hz, 1H), 7.06 (d, J = 7.6 Hz, 1H), 5.24 (t, J = 5.7 Hz, 1H), 4.50 (d, J = 5.7 Hz, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 165.56, 143.33, 138.81, 136.33, 132.62, 129.99, 128.52, 128.44, 126.32 (q, J = 6.3 Hz), 125.80 (q, J = 31.5 Hz), 123.82 (q, J = 273.4 Hz), 121.95, 118.05, 117.74, 62.88; ¹⁹F NMR (376 MHz, Methanol- d_4) δ -60.55 (s). HRMS: calcd. for C₁₅H₁₃F₃NO₂ [M+H]⁺: 296.0893, found 296.0886.

3.4 N-[3-(hydroxymethyl)phenyl]-2-[4-(trifluoromethyl)phenyl]acetamide (S4d).


To a stirred solution of 2-[4-(trifluoromethyl)phenyl]acetic acid (**S5a**, 0.50 g, 2.45 mmol) in dry DCM (20 mL) at room temperature was added oxalyl chloride solution (10 mL, 2 M in DCM) and one drop of dry DMF as

catalyst. The reaction was stirred at same temperature for further 2 h. Subsequently, solvents and access oxalyl chloride were removed under reduced pressure, and the resulting acid chloride **14a** was directly used for the next step.

The freshly prepared acid chloride **14a** was diluted with dry THF (30 mL) under ice-bath condition, after which 3-aminobenzyl alcohol (361 mg, 2.94 mmol) and triethylamine (297 mg, 2.94 mmol) were added. After 10 minutes, the cooling system was removed, and the reaction mixture was stirred for another 2 hours at room temperature. After completion of the reaction, the reaction mixture was diluted with ethyl acetate (100 mL) and washed with 1 M HCl (3 x 100 mL), saturated aqueous NaHCO₃ (100 mL) and brine (100 mL). The organic phase was dried over Na₂SO₄ and the solvent was partially evaporated. The product **S4d** was precipitated from EtOAc/Petroleum ether to give white powder (0.61 g, 80%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.22 (s, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.58 – 7.54 (m, 3H), 7.48 (d, *J* = 8.4 Hz, 1H), 7.23 (t, *J* = 7.8 Hz, 1H), 6.98 (d, *J* = 7.6 Hz, 1H), 5.19 (t, *J* = 5.7 Hz, 1H), 4.46 (d, *J* = 5.7 Hz, 2H), 3.76 (s, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.27, 143.25, 140.88, 138.92, 130.00 (2), 128.39, 127.29 (q, *J* = 32.8 Hz), 125.12 (2, q, *J* = 3.8 Hz), 124.39 (q, *J* = 272.2 Hz), 121.34, 117.45, 117.17, 62.79, 42.95; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.86 (s). HRMS: calcd. for C₁₆H₁₅F₃NO₂ [M+H]⁺: 310.1049, found 310.1049.

3.5 *N*-[3-(hydroxymethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]propanamide (S4e)

Compound **S4e** was prepared from 3-[4-(trifluoromethyl)phenyl]propanoic acid (**S5b**, 0.50 g, 2.29 mmol) following a procedure similar to that used for **S4d**. The title compound was obtained as a white solid (0.62 g, 73%). ¹H NMR (500 MHz, DMSO- d_6) δ 9.91 (s, 1H), 7.65 (d, J = 8.1 Hz, 2H), 7.54 (s, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.7 Hz, 1H), 7.22 (t, J = 7.8 Hz, 1H), 6.96 (d, J = 7.6 Hz, 1H), 5.18 (t, J = 5.7 Hz, 1H), 4.45 (d, J = 5.6 Hz, 2H), 3.00 (t, J = 7.6 Hz, 2H), 2.66 (t, J = 7.6 Hz, 2H). ¹³C NMR (126 MHz, DMSO- d_6) δ 169.96, 146.24, 143.16, 139.01, 129.13 (2), 128.33, 126.74 (q, J = 31.5 Hz), 125.12 (2, q, J = 3.8 Hz), 124.43 (q, J = 272.2 Hz), 121.10, 117.39, 117.12, 62.83, 37.30, 30.51; ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.74 (s). HRMS: calcd. for [M+H]⁺: C₁₇H₁₇F₃NO₂ 324.1206, found 324.1199.

3.6 N-[3-(bromomethyl)phenyl]-4-(trifluoromethyl)benzamide (5a)

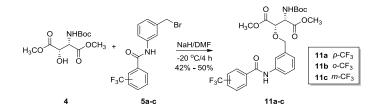
To a stirred solution of compound **S4a** (295 mg, 1.0 mmol) in DCM (20 mL), in an ice-bath, was added *N*bromosuccinimide (213 mg, 1.2 mmol) and triphenylphosphine (314mg, 1.2 mmol). The reaction was allowed to proceed at the same temperature for 2 h. After completion of the reaction, the solvent was evaporated and product **5a** was purified by flash column chromatography (EtOAc/Petroleum ether, 10%, v/v) to give a white powder (299 mg, 84%). ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.51 (s, 1H), 8.13 (d, *J* = 8.0 Hz, 2H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.89 (s, 1H), 7.68 (d, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 4.70 (s, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): -61.3 (s). HRMS: calcd. for C₁₅H₁₂BrF₃NO [M+H]⁺: 358.0049, found: 358.0047. NMR data are in agreement with published data.³

3.7 N-[3-(bromomethyl)phenyl]-2-(trifluoromethyl)benzamide (5b).

Compound **5b** was prepared from **S4b** (1.20 g, 4.07 mmol), NBS (866 mg, 4.88 mmol) and Ph₃P (1.28 g, 4.88 mmol) following a procedure similar to that used for **5a**. The title compound was obtained as a white solid (1.10 g, 76%). ¹H NMR (400 MHz, DMSO- d_6) δ 10.63 (s, 1H), 7.89 – 7.83 (m, 2H), 7.80 (t, J = 7.2 Hz, 1H), 7.72 (t, J = 7.4 Hz, 2H), 7.57 – 7.55 (m, 1H), 7.34 (t, J = 7.9 Hz, 1H), 7.20 (d, J = 7.7 Hz, 1H), 4.71 (s, 2H). ¹³C NMR (126 MHz, Methanol- d_4) δ 168.73, 140.52, 139.99, 137.31, 133.45, 131.21, 130.29, 129.47, 128.24 (q, J = 32.8 Hz), 127.51(q, J = 5.0 Hz), 126.38, 125.22 (q, J = 273.4 Hz), 122.01, 121.29, 33.73; ¹⁹F NMR (376 MHz, Methanol- d_4) δ -60.54 (s). HRMS: calcd. for C₁₅H₁₂BrF₃NO [M+H]⁺: 358.0049, found 358.0049.

3.8 N-[3-(bromomethyl)phenyl]-3-(trifluoromethyl)benzamide (5c).

Compound **5c** was prepared from **S4c** (1.10 g, 3.73 mmol), *N*-bromosuccinimide (794 mg, 4.47 mmol) and triphenylphosphine (1.17 g, 4.47 mmol) following a procedure similar to that used for **5a**. The title compound was obtained as a white solid (960 mg, 72%). ¹H NMR (500 MHz, DMSO- d_6) δ 10.55 (s, 1H), 8.31 (s, 1H), 8.28 (d, *J* = 7.9 Hz, 1H), 7.97 (d, *J* = 10.0 Hz, 1H), 7.91 (t, *J* = 1.7 Hz, 1H), 7.79 (t, *J* = 7.8 Hz, 1H), 7.72 (d, *J* = 9.1 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 1H), 4.72 (s, 2H); ¹³C NMR (126 MHz, Methanol- d_4) δ 167.04, 140.40, 139.99, 137.16, 132.31, 131.97 (q, *J* = 32.8 Hz), 130.62, 130.20, 129.34 (q, *J* = 3.8 Hz), 126.40, 125.57 (q, *J* = 5.0 Hz), 122.79, 122.04, 33.81; ¹⁹F NMR (376 MHz, Methanol- d_4) δ -64.16 (s). HRMS: calcd. for C₁₅H₁₂BrF₃NO [M+H]⁺: 358.0049, found 358.0049.


3.9 N-[3-(bromomethyl)phenyl]-2-[4-(trifluoromethyl)phenyl]acetamide (5d)

Compound **5d** was prepared from **S4d** (0.61 g, 1.97 mmol), NBS (419 mg, 2.36 mmol) and Ph₃P (618 mg, 2.36 mmol) following a procedure similar to that used for **5a**. The title compound was obtained as a white solid (0.47 g, 64%). ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 2.0 Hz, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.2 Hz, 1H), 7.27 (t, J = 7.8 Hz, 1H), 7.19 (s, 1H), 7.14 (d, J = 7.6 Hz, 1H), 4.43 (s, 2H), 3.78 (s, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 168.27, 143.25, 140.88, 138.92, 130.00 (2), 128.40, 127.29 (q, J = 32.8 Hz), 125.12 (2, q, J = 3.8 Hz), 124.39 (q, J = 272.2 Hz), 121.34, 117.45, 117.17, 62.78, 42.94; ¹⁹F NMR (376 MHz, Methanol- d_4) δ -63.94 (s). HRMS: calcd. for C₁₆H₁₄BrF₃NO [M+H]⁺: 372.0205, found 372.0205.

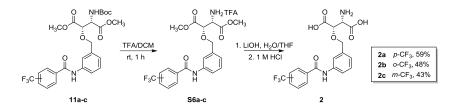
3.10 N-[3-(bromomethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]propanamide (5e)

Compound **5e** was prepared from **S4e** (0.60 g, 1.86 mmol), NBS (396 mg, 2.23 mmol) and Ph₃P (584mg, 2.23 mmol) following a procedure similar to that used for **5a**. The title compound was obtained as a white solid (0.42 g, 58%). ¹H NMR (500 MHz, Methanol- d_4) δ 7.61 (t, J = 1.7 Hz, 1H), 7.56 (d, J = 8.1 Hz, 2H), 7.45 – 7.39 (m, 3H), 7.25 (t, J = 7.9 Hz, 1H), 7.12 (d, J = 7.7 Hz, 1H), 4.50 (s, 2H), 3.07 (t, J = 7.7 Hz, 2H), 2.69 (t, J = 7.7 Hz, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 170.33, 146.33, 139.54, 138.61, 129.26 (2), 129.16, 126.92 (q, J = 31.5 Hz), 125.28 (2, q, J = 3.8 Hz), 124.57 (q, J = 272.2 Hz), 124.05, 119.91, 119.15, 37.42, 34.77, 30.59; ¹⁹F NMR (376 MHz, Methanol- d_4) δ -63.90 (s). HRMS: calcd. for C₁₇H₁₆BrF₃NO [M+H]⁺: 386.0362, found 386.0362.

4. Synthesis of L-TFB-TBOA (2a) and its derivatives (2b-c).

4.1 (L-*threo*)-dimethyl 2-[(*tert*-butoxycarbonyl)amino]-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy] succinate (11a)

To a stirred solution of compound 4 (50 mg, 0.18 mmol) in dry DMF (3 mL) was added 5a (129 mg, 0.36 mmol) at -20 °C. After 10 min, NaH (60% in mineral oil, 7.2 mg, 0.18 mmol) was added to the reaction mixture and the mixture was stirred at -20 °C for further 4 h. After completion of the reaction, the reaction mixture was quenched with cold water, extracted with EtOAc (3 x 20 mL), washed with brine (3 x 50 mL), and dried over Na₂SO₄. The solvent was evaporated to provide crude product **11a**, which was purified *via* flash chromatography (EtOAc/Petroleum ether, 15%, v/v) to give **11a** as a clear oil (45 mg, 45%). ¹H NMR (500 MHz, CDCl₃) δ 8.25


(s, 1H), 7.96 (d, J = 8.1 Hz, 2H), 7.70 (d, J = 8.1 Hz, 2H), 7.64 (d, J = 8.0 Hz, 1H), 7.53 (s, 1H), 7.31 (t, J = 7.8 Hz, 1H), 7.04 (d, J = 7.6 Hz, 1H), 5.36 (d, J = 9.9 Hz, 1H), 4.82 – 4.77 (m, 2H), 4.50 (d, J = 2.4 Hz, 1H), 4.36 (d, J = 11.9 Hz, 1H), 3.76 (s, 3H), 3.63 (s, 3H), 1.40 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.89, 169.76, 164.69, 155.55, 138.17, 137.93, 137.89, 133.59 (q, J = 32.8 Hz), 129.32, 127.75 (2), 125.86 (2, q, J = 3.8 Hz), 123.70 (q, J = 272.2 Hz), 124.56, 120.32, 120.08, 80.47, 77.29, 72.66, 56.13, 52.81, 52.62, 28.26 (3). HRMS: calcd. for C₂₆H₃₀F₃N₂O₈ [M+H]⁺: 555.1949, found 555.1954.

4.2 (L-*threo*)-dimethyl 2-[(*tert*-butoxycarbonyl)amino]-3-[3-[2-(trifluoromethyl)benzoylamino]benzyloxy] succinate (11b)

Compound **11b** was prepared from **4** (50 mg, 0.08 mmol), **5b** (129 mg, 0.36 mmol) and NaH (60% in mineral oil, 7.2 mg, 0.18 mmol) following a procedure similar to that used for **11a**. The title compound was obtained as clear oil (50 mg, 50%). ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 7.8 Hz, 1H), 7.65 – 7.58 (m, 5H), 7.48 (s, 1H), 7.34 (t, J = 7.8 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 5.35 (d, J = 10.0 Hz, 1H), 4.83 – 4.80 (m, 2H), 4.51 (d, J = 2.4 Hz, 1H), 4.38 (d, J = 12.0 Hz, 1H), 3.77 (s, 3H), 3.65 (s, 3H), 1.41 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.85, 169.77, 165.80, 155.55, 137.98, 137.81, 135.79, 132.38, 130.41, 129.40, 128.66, 127.40 (q, J = 31.5 Hz), 126.70 (q, J = 5.0 Hz), 124.73, 123.72 (q, J = 273.4 Hz), 120.02, 119.78, 80.39, 77.30, 72.63, 56.13, 52.83, 52.63, 28.29 (3). HRMS: calcd. for C₂₆H₃₀F₃N₂O₈ [M+H]⁺: 555.1949, found 555.1942.

4.3 (L-*threo*)-dimethyl 2-[(*tert*-butoxycarbonyl)amino]-3-[3-[3-(trifluoromethyl) benzoylamino]benzyloxy] succinate (11c)

Compound **11c** was prepared from **4** (50 mg, 0.08 mmol), **5c** (129 mg, 0.36 mmol) and NaH (60% in mineral oil, 7.2 mg, 0.18 mmol) following a procedure similar to that used for **11a**. The title compound was obtained as clear oil (42 mg, 42%). ¹H NMR (500 MHz, CDCl₃) δ 8.13 (s, 1H), 8.06 (d, *J* = 7.8 Hz, 1H), 7.99 (s, 1H), 7.83 – 7.80 (m, 1H), 7.65 (dt, *J* = 15.6, 7.9 Hz, 2H), 7.52 (s, 1H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.07 (d, *J* = 7.6 Hz, 1H), 5.36 (d, *J* = 10.0 Hz, 1H), 4.85 – 4.80 (m, 2H), 4.51 (d, *J* = 2.3 Hz, 1H), 4.39 (d, *J* = 11.9 Hz, 1H), 3.78 (s, 3H), 3.66 (s, 3H), 1.41 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.79, 169.67, 164.27, 155.44, 137.84, 137.72, 135.64, 131.38 (q, *J* = 32.8 Hz), 130.37, 129.50, 129.30, 128.52 (q, *J* = 2.5 Hz), 124.50, 124.11 (q, *J* = 5.0 Hz), 123.63 (q, *J* = 273.4 Hz), 120.13, 119.89, 80.34, 77.13, 72.52, 56.02, 52.73, 52.54, 28.17 (3). HRMS: calcd. for C₂₆H₃₀F₃N₂O₈ [M+H]⁺: 555.1949, found 555.1950.

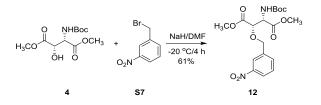
4.4 (L-threo)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (2a, L-TFB-TBOA)

To a stirred solution of **11a** (45 mg, 0.08 mmol) in dry DCM (2 mL), in an ice-bath, was added trifluoroacetic acid (0.8 mL) dropwise. After the complete addition of trifluoroacetic acid, the ice-bath was removed and the reaction was allowed to proceed at room temperature for further 1.5 h. After completion of the starting material, solvent was removed in vacuo to provide **S6a** quantitatively. Compound **S6a** was directly used for the next step without purification.

To a stirred solution of S6a in THF/H₂O (1:1, each 1 mL) was added LiOH (11.6 mg, 0.5 mmol) and the reaction mixture was stirred at room temperature for 2 h. After completion of the starting material, THF was removed in vacuo and the resulting aqueous solution was reverse extracted with EtOAc (1 mL). The aqueous layer was acidified with 1 M HCl (pH=1) until white precipitates appeared. The white precipitates were filtered through a Büchner funnel and washed with 5 mL of cold water. The obtained white solid was dried under vacuum over night to provide the final product **2a** (L-TFB-TBOA) (22 mg, two-step yield 59%, *de* >98%, *ee* >99%). ¹H NMR $(500 \text{ MHz}, \text{DMSO-}d_6) \delta 10.49 \text{ (s, 1H)}, 8.16 \text{ (d, } J = 8.1 \text{ Hz}, 2\text{H)}, 7.92 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H)}, 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H}), 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H}), 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H}), 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H}), 7.76 \text{ (s, 1H)}, 7.71 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H}), 7.76 \text{ (s, 1H)}, 7.71 \text{ (s,$ = 8.1 Hz, 1H), 7.35 (t, J = 7.8 Hz, 1H), 7.28 (d, J = 7.7 Hz, 1H), 4.83 (d, J = 10.6 Hz, 1H), 4.48 (d, J = 10.6 Hz, 1H), 4.13 (d, J = 9.5 Hz, 1H), 3.83 (d, J = 9.5 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 170.74, 168.42, 164.29, 138.68, 138.47, 138.40, 131.34 (q, J = 31.5 Hz), 128.62 (2), 128.36, 125.38 (2, q, J = 5.0 Hz), 124.17, 123.94 (q, J = 272.2 Hz), 120.42, 119.83, 75.09, 72.50, 53.35; ¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.32 (s). HRMS: calcd. for $C_{19}H_{18}F_{3}N_{2}O_{6}$ [M+H]⁺: 427.1112, found 427.1108. $[\alpha]_{D}^{25} = -55.0$ (c 0.60, DMSO). Comparison of the ¹H NMR data of 2a with the ¹H NMR data of chemically prepared racemic DL-erythro-S12a showed that the *de* of product **2a** is >98%. Chiral HPLC analysis: CROWNPAK CR-I (+) 150 x 3 mm. Phase A: ACN+0.5%TFA, phase B: H₂O+0.5% TFA, A/B = 98:2. Flow rate 0.4 mL/min, column temperature 25 °C, detected by ELSD at 35 °C, t_R (L-threo-2a) = 2.8 min, ee >99%. Following the same procedures, we prepared 2a at multigram-scale (2.3 g) from 11a (4.15 g).

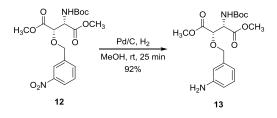
4.5 (L-threo)-3-[3-[2-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (2b)

Compound **2b** was prepared from **11b** (45 mg, 0.08 mmol) following a procedure similar to that used for **2a**. The title compound was obtained as a white solid (16 mg, two-step yield 43%, de > 98%, ee > 99%). ¹H NMR (400

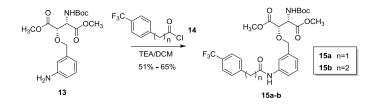

MHz, DMSO-*d*₆) δ 10.56 (s, 1H), 7.85 (d, *J* = 7.7 Hz, 1H), 7.79 (t, *J* = 7.5 Hz, 1H), 7.73 – 7.66 (m, 3H), 7.62 (d, *J* = 7.8 Hz, 1H), 7.34 – 7.26 (m, 2H), 4.80 (d, *J* = 10.5 Hz, 1H), 4.46 (d, *J* = 10.5 Hz, 1H), 4.11 (d, *J* = 9.4 Hz, 1H), 3.81 (d, *J* = 9.3 Hz, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 170.58, 168.41, 165.56, 138.56, 138.46, 136.22, 132.60, 130.00, 128.50 (2), 126.32 (q, *J* = 5.0 Hz), 125.78 (q, *J* = 31.5 Hz), 124.14, 123.79 (q, *J* = 274.7 Hz), 119.52, 118.95, 74.84, 72.69, 53.13; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -57.91 (s). HRMS: calcd. for C₁₉H₁₈F₃N₂O₆ [M+H]⁺: 427.1112, found 427.1106. [α]_D²⁵ = -53.1 (*c* 0.43, DMSO). Chiral HPLC analysis: CROWNPAK CR-I (+) 150 x 3 mm. Phase A: ACN+0.5%TFA, phase B: H₂O+0.5% TFA, A/B = 98:2. Flow rate 0.4 mL/min, column temperature 25 °C, detected by ELSD at 35 °C, t_R (L-*threo*-2b) = 2.6 min, *ee* >99%.

4.6 (L-threo)-3-[3-[3-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (2c)

Compound **2c** was prepared from **11c** (42 mg, 0.076 mmol) following a procedure similar to that used for **2a**. The title compound was obtained as a white solid (18 mg, two-step yield 48%, *de* >98%, *ee* >99%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.51 (s, 1H), 8.31 (s, 1H), 8.28 (d, *J* = 8.0 Hz, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.79 (t, *J* = 7.8 Hz, 1H), 7.73 (d, *J* = 7.7 Hz, 2H), 7.35 (t, *J* = 7.8 Hz, 1H), 7.27 (d, *J* = 7.6 Hz, 1H), 4.81 (d, *J* = 10.7 Hz, 1H), 4.47 (d, *J* = 10.7 Hz, 1H), 4.11 (d, *J* = 8.9 Hz, 1H), 3.77 (d, *J* = 9.0 Hz, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.14, 168.88, 164.38, 138.90, 138.83, 136.16, 132.33, 130.20, 129.61 (q, *J* = 32.8 Hz), 128.83, 128.62 (q, *J* = 3.8 Hz), 124.72 (q, *J* = 3.8 Hz), 124.67, 124.46 (q, *J* = 273.4 Hz), 120.99, 120.39, 75.44, 73.01, 53.73; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -61.08 (s). HRMS: calcd. for C₁₉H₁₈F₃N₂O₆ [M+H]⁺: 427.1112, found 427.1112. [α]_D²⁵ = -50.7 (*c* 0.43, DMSO). Chiral HPLC analysis: CROWNPAK CR-I (+) 150 x 3 mm. Phase A: ACN+0.5%TFA, phase B: H₂O+0.5% TFA, A/B = 98:2. Flow rate 0.4 mL/min, column temperature 25 °C, detected by ELSD at 35 °C, t_R (L-*threo*-2c) = 2.7 min, *ee* >99%.


5. Synthesis of L-TFB-TBOA derivatives from protected meta-NH₂-TBOA (13)

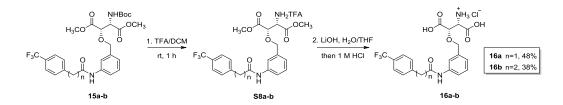
5.1 (L-threo)-dimethyl 2-(3-nitrobenzyloxy)-3-[(tert-butoxycarbonyl)amino] succinate (12)



To a stirred solution of compound **4** (277 mg, 1.08 mmol) in dry DMF (5 mL) was added bromomethyl-3nitrobenzene (**S7**, 466 mg, 2.16 mmol) at -20 °C. After 10 min, NaH (60% in mineral oil, 43 mg, 1.08 mmol) was added to the reaction mixture and the mixture was stirred at -20 °C for further 4 h. After completion of the reaction, the reaction mixture was quenched with cold water and extracted with EtOAc (3 x 30 mL). The combined organic layers were washed with brine (3 x 50 mL), dried over Na₂SO₄ and evaporated to provide crude product **12**, which was purified *via* flash chromatography (EtOAc/Petroleum ether, 17%, v/v) to give pure **12** as a clear oil (275 mg, 61%). ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, *J* = 8.1 Hz, 1H), 8.12 (s, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.52 (t, *J* = 7.9 Hz, 1H), 5.31 (d, *J* = 10.0 Hz, 1H), 4.92 – 4.87 (m, 2H), 4.56 (d, *J* = 2.4 Hz, 1H), 4.48 (d, *J* = 12.1 Hz, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 1.42 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.72, 169.39, 155.44, 148.41, 139.10, 133.77, 129.56, 123.18, 122.66, 80.55, 78.15, 71.74, 56.12, 53.04, 52.72, 28.28 (3). HRMS: calcd. for C₁₈H₂₄N₂O₉Li [M+Li]⁺: 419.1636, found 419.1638.

5.2 (L-threo)-dimethyl 2-(3-aminobenzyloxy)-3-[(tert-butoxycarbonyl)amino] succinate (13)

To a stirred solution of **12** (275 mg, 0.67 mmol) in dry MeOH (10 mL) was added Pd/C 10% (50.0 mg) under nitrogen atmosphere. The reaction was stirred under H₂ atmosphere (balloon) for 25 min at room temperature. After completion of the reaction, the reaction mixture was filtered through Celite and washed with MeOH (5 mL). The filtrate was concentrated under vacuum to provide product **13** as a colorless oil (235 mg, 92%). ¹H NMR (500 MHz, CDCl₃) δ 7.10 (t, *J* = 7.7 Hz, 1H), 6.62 – 6.60 (m, 2H), 6.57 (d, *J* = 2.0 Hz, 1H), 5.37 (d, *J* = 9.9 Hz, 1H), 4.79 (dd, *J* = 10.0, 2.3 Hz, 1H), 4.72 (d, *J* = 11.9 Hz, 1H), 4.47 (d, *J* = 2.3 Hz, 1H), 4.26 (d, *J* = 12.0 Hz, 1H), 3.77 (s, 3H), 3.68 (s, 2H), 3.64 (s, 3H), 1.42 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.93, 169.85, 155.59, 146.72, 137.83, 129.46, 118.50, 114.98, 114.89, 80.31, 76.64, 72.82, 56.13, 52.73, 52.57, 28.31 (3). HRMS: calcd. for C₁₈H₂₆F₃N₂O₇Li [M+Li]⁺:389.1895, found 389.1895.

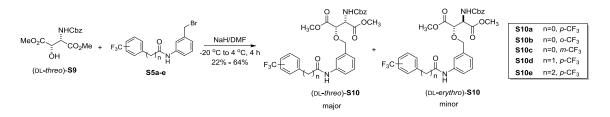

5.3 (L-*threo*)-dimethyl 2-[(*tert*-butoxycarbonyl)amino]-3-[3-[2-[4-(trifluoromethyl)phenyl]acetamido] benzyloxy] succinate (15a)

To a stirred solution of 13 (80 mg, 0.21 mmol) in dry DCM (2 mL), in an ice-bath, was added TEA (64 mg, 0.63

mmol), followed by dropwise addition of acid chloride solution (**14a**, 100 mg in 1 mL of DCM, 0.42 mmol). After 10 min, the ice-bath was removed and the reaction was kept at room temperature for further 2 h. After completion of the reaction, the solvent was evaporated under vacuum and the resulting residue was extracted with EtOAc (3 x 10 mL). The combined organic layers were washed with 1 M aqueous HCl (30 mL), saturated aqueous NaHCO₃ solution (50 mL), brine (50 mL), and dried over Na₂SO₄. The solvent was evaporated to provide crude product, which was purified *via* flash chromatography (EtOAc/Petroleum ether, 30%, v/v) to give pure **15a** as a clear oil (77 mg, 65%). ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 3H), 7.30 – 7.27 (m, 2H), 7.21 (s, 1H), 7.00 (d, *J* = 7.6 Hz, 1H), 5.32 (d, *J* = 10.0 Hz, 1H), 4.81 (dd, *J* = 9.9, 2.4 Hz, 1H), 4.76 (d, *J* = 11.9 Hz, 1H), 4.47 (d, *J* = 2.3 Hz, 1H), 4.33 (d, *J* = 11.8 Hz, 1H), 3.77 (s, 2H), 3.77 (s, 3H), 3.60 (s, 3H), 1.42 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.83, 169.75, 168.38, 155.55, 138.63, 137.91, 137.70, 129.83 (2), 129.18, 125.92 (2, q, *J* = 3.8 Hz), 124.14 (q, *J* = 272.2 Hz), 124.25, 119.81, 119.58, 80.46, 77.23, 72.65, 56.10, 52.74, 52.60, 44.26, 28.25 (3). HRMS: calcd. for C₂₇H₃₁F₃N₂O₈Li [M+Li]⁺: 575.2187, found 575.2192.

5.4 (L-*threo*)-dimethyl 2-[(*tert*-butoxycarbonyl)amino]-3-[3-[3-[4-(trifluoromethyl)phenyl] propanamido|benzyloxy| succinate (15b)

Compound **15b** was prepared from **13** (80 mg, 0.21 mmol), TEA (64 mg, 0.63 mmol) and acid chloride solution (**14b**, 100 mg in 1 mL of DCM, 0.45 mmol) following a procedure similar to that used for **16a**. The title product was obtained as a clear oil (75 mg, 61%). ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 7.8 Hz, 1H), 7.36 – 7.33 (m, 3H), 7.27 (t, *J* = 8.0 Hz, 1H), 7.22 (s, 1H), 6.99 (d, *J* = 7.4 Hz, 1H), 5.33 (d, *J* = 9.9 Hz, 1H), 4.81 (dd, *J* = 9.9, 2.3 Hz, 1H), 4.76 (d, *J* = 11.9 Hz, 1H), 4.48 (d, *J* = 2.4 Hz, 1H), 4.34 (d, *J* = 11.8 Hz, 1H), 3.77 (s, 3H), 3.62 (s, 3H), 3.10 (t, *J* = 7.5 Hz, 2H), 2.67 (t, *J* = 7.5 Hz, 2H), 1.41 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.85 (2), 169.77, 155.56, 144.91, 137.95, 137.78, 129.26, 128.89 (2), 125.64 (2, q, *J* = 3.8 Hz), 124.35 (q, *J* = 272.2 Hz), 124.11, 119.72, 119.49, 80.44, 77.24, 72.69, 56.13, 52.78, 52.63, 38.87, 31.17, 28.30 (3). HRMS: calcd. for C₂₈H₃₄F₃N₂O₈ [M+H]⁺: 583.2268 found 583.2265.


5.5 (L-threo)-3-[3-[2-[4-(trifluoromethyl)phenyl]acetamido]benzyloxy]aspartate (16a)

Compound **16a** was prepared from **15a** (70 mg, 0.12 mmol) following a procedure similar to that used for **2a**. The title compound was obtained as a white solid (26 mg, two-step yield 48%, *de* >98%, *ee* >99%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.59 (s, 1H), 7.67 (d, *J* = 8.1 Hz, 2H), 7.61 – 7.56 (m, 4H), 7.23 (t, *J* = 7.7 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 4.73 (d, *J* = 10.9 Hz, 1H), 4.43 (d, *J* = 10.9 Hz, 1H), 4.17 (d, *J* = 7.9 Hz, 1H), 3.80 (s, 2H), 3.79 (d, *J* = 8.3 Hz, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 170.95, 168.45 (2), 141.03, 138.91, 138.41, 130.07 (2), 128., 127.26 (q, *J* = 31.5 Hz), 125.08 (2, q, *J* = 3.8 Hz), 124.42 (q, *J* = 272.2 Hz), 123.24, 118.92, 118.41, 75.42, 72.40, 53.63, 42.85; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.84 (s). HRMS: calcd. for C₂₀H₂₀F₃N₂O₆ [M+H]⁺: 441.1268, found 441.1268. [α]_D²⁵ = -46.7 (*c* 0.45, DMSO). Comparison of the ¹H NMR data of 16a with the ¹H NMR data of chemically prepared racemic DL-*erythro*-**S12d** showed that *de* of product 16a is >98%. Chiral HPLC analysis: CROWNPAK CR-I (+) 150 x 3 mm. Phase A: ACN+0.5%TFA, phase B: H₂O+0.5% TFA, A/B = 98:2. Flow rate 0.4 mL/min, column temperature 25 °C, detected by ELSD at 35 °C, t_R (L-*threo*-16a) = 2.6 min, *ee* >99%.

5.6 (L-threo)-3-[3-[3-[4-(trifluoromethyl)phenyl]propanamido]benzyloxy]aspartate (16b)

Compound **16b** was prepared from **15b** (75 mg, 0.13 mmol) following a procedure similar to that used for **2a**. The title compound was obtained as a white solid (22 mg, two-step yield 38%, *de* >98%, *ee* >99%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.23 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.54 (s, 1H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.10 (d, *J* = 7.6 Hz, 1H), 4.69 (d, *J* = 11.0 Hz, 1H), 4.40 (d, *J* = 11.0 Hz, 1H), 4.16 (d, *J* = 7.0 Hz, 1H), 3.72 (d, *J* = 7.0 Hz, 1H), 2.99 (t, *J* = 7.6 Hz, 2H), 2.69 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 171.31, 170.12, 168.46, 146.29, 138.97, 138.46, 129.16 (2), 128.29, 126.72 (q, *J* = 31.5 Hz), 125.12 (2, q, *J* = 3.8 Hz), 124.45 (q, *J* = 272.2 Hz), 122.91, 118.73, 118.29, 75.94, 72.13, 53.94, 37.27, 30.57; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.72 (s). HRMS: calcd. for C₂₁H₂₂F₃N₂O₆ [M+H]⁺: 455.1424 found 455.1425. [α]_D²⁵ = -34.3 (*c* 0.42, DMSO). Chiral HPLC analysis: CROWNPAK CR-I (+) 150 x 3 mm. Phase A: ACN+0.5%TFA, phase B: H₂O+0.5% TFA, A/B = 98:2. Flow rate 0.4 mL/min, column temperature 25 °C, detected by ELSD at 35 °C, t_R (L-*threo*-16b) = 2.6 min, *ee* >99%.

6. Synthesis of DL-TFB-TBOA and its derivatives as chiral reference compounds The chemical synthesis of compound (DL-*threo*)-**S9** has been described elsewhere.⁴

6.1 (DL-*threo*)-dimethyl 2-[(benzyloxycarbonyl)amino]-3-[3-[4-(trifluoromethyl)benzoylamino] benzyloxy] succinate. (DL-*threo*-S10a)

To a stirred solution of compound (DL-*threo*)-**S9** (156 mg, 0.5 mmol) in dry DMF (3 mL) was added **5a** (358 mg, 1.0 mmol) at -20 °C. After 10 min, NaH (60% in mineral oil, 20 mg, 0.5 mmol) was added to the reaction mixture and the mixture was stirred at -20 °C for further 2 h. Subsequently, the reaction mixture was warmed up to 4 °C and stirred for another 2 h. After completion of the reaction, the reaction mixture was quenched with cold water and extracted with EtOAc (3 x 20 mL), washed with brine (3 x 50 mL), and dried over Na₂SO₄. The solvent was evaporated under vacuum to provide crude product, which was purified *via* flash chromatography (EtOAc/Petroleum ether, 25%, v/v) to give (DL-*threo*)-**S10a** as a clear oil (190 mg, 64%). ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 7.97 (d, *J* = 8.1 Hz, 2H), 7.72 (d, *J* = 8.2 Hz, 2H), 7.66 (d, *J* = 8.1 Hz, 1H), 7.52 (s, 1H), 7.35 – 7.29 (m, 6H), 7.05 (d, *J* = 7.6 Hz, 1H), 5.62 (d, *J* = 9.8 Hz, 1H), 5.08 (d, *J* = 1.9 Hz, 2H), 4.89 (dd, *J* = 9.9, 2.4 Hz, 1H), 4.80 (d, *J* = 11.9 Hz, 1H), 4.54 (d, *J* = 2.4 Hz, 1H), 4.39 (d, *J* = 11.8 Hz, 1H), 3.74 (s, 3H), 3.66 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.62, 164.60, 156.26, 138.18, 137.90, 137.87, 136.14, 133.66 (q, *J* = 273.4 Hz), 120.28, 120.00, 77.12, 72.75, 71.04, 67.35, 56.55, 52.95, 52.68. HRMS: calcd. for C₂₉H₂₈F₃N₂O₈ [M+H]⁺: 589.1792, found 589.1794. In addition, a mixture of (DL-*threo*)-**S10a** and (DL-*erythro*)-**S10a** (50 mg, 16%, *threo/erythro* = 1:2) was obtained.

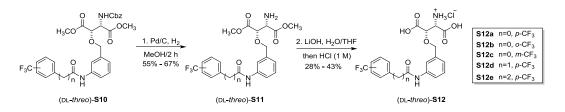
6.2 (DL-threo)-dimethyl 2-[(benzyloxycarbonyl)amino]-3-[3-[2-(trifluoromethyl)benzoylamino]

benzyloxy]succinate. (DL-threo-S10b)

Compound (DL-*threo*)-**S10b** was prepared from (DL-*threo*)-**S9** (156 mg, 0.5 mmol), **5b** (359 mg, 1.0 mmol) and NaH (60% in mineral oil, 20 mg, 0.5 mmol) following a procedure similar to that used for (DL-*threo*)-**S10a**. The title product (DL-*threo*)-**S10b** was obtained as a clear oil (130 mg, 44%). ¹H NMR (500 MHz, CDCl₃) δ 8.08 (s, 1H), 7.67 (d, J = 7.5 Hz, 1H), 7.55 – 7.50 (m, 5H), 7.33 – 7.27 (m, 6H), 7.03 (d, J = 7.5 Hz, 1H), 5.62 (d, J = 9.8 Hz, 1H), 5.03 (s, 2H), 4.84 (dd, J = 9.9, 2.4 Hz, 1H), 4.76 (d, J = 11.9 Hz, 1H), 4.51 (d, J = 2.4 Hz, 1H), 4.35 (d, J = 11.9 Hz, 1H), 3.70 (s, 3H), 3.62 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.51, 169.42, 165.91, 156.14,

137.91, 137.63, 136.07, 135.66, 132.12, 130.14, 129.17, 128.48 (2), 128.39, 128.13, 127.90 (2), 127.21 (q, J = 32.8 Hz), 126.49 (q, J = 5.0 Hz), 124.50, 123.60 (q, J = 273.4 Hz), 120.00, 119.80, 76.93, 72.63, 67.14, 56.41, 52.80, 52.50. HRMS: calcd. for C₂₉H₂₈F₃N₂O₈ [M+H]⁺: 589.1792, found 589.1797.

6.3 (DL-*threo*)-dimethyl 2-[(benzyloxycarbonyl)amino]-3-[3-[3-(trifluoromethyl)benzoylamino]benzyloxy] succinate. (DL-*threo*-S10c)


Compound (DL-*threo*)-**S10c** was prepared from (DL-*threo*)-**S9** (161 mg, 0.52 mmol), **5c** (370 mg, 1.04 mmol) and NaH (60% in mineral oil, 24 mg, 0.52 mmol) following a procedure similar to that used for (DL-*threo*)-**S10a**. The title product (DL-*threo*)-**S10c** was obtained as a clear oil (144 mg, 47%). ¹H NMR (500 MHz, CDCl₃) δ 8.13 (s, 1H), 8.06 (d, J = 7.8 Hz, 1H), 7.97 (s, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.67 – 7.61 (m, 2H), 7.52 (s, 1H), 7.37 – 7.31 (m, 6H), 7.06 (d, J = 7.6 Hz, 1H), 5.60 (d, J = 9.9 Hz, 1H), 5.09 (d, J = 2.4 Hz, 2H), 4.89 (dd, J = 9.8, 2.3 Hz, 1H), 4.82 (d, J = 11.9 Hz, 1H), 4.54 (d, J = 2.3 Hz, 1H), 4.41 (d, J = 11.9 Hz, 1H), 3.75 (s, 3H), 3.67 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.52, 169.51, 164.26, 156.13, 137.74, 136.04, 135.63, 131.37 (q, J = 32.8 Hz), 130.36, 129.49, 129.30, 128.53, 128.50 (2), 128.17, 128.00, 127.96, 124.48, 124.12 (q, J = 3.8 Hz), 120.18, 119.90, 76.96, 72.62, 67.24, 56.43, 52.85, 52.58. HRMS: calcd. for C₂₉H₂₈F₃N₂O₈ [M+H]⁺: 589.1792, found 589.1794.

6.4 (DL-*threo*)-dimethyl 2-[(benzyloxycarbonyl)amino]-3-[3-[2-[4-(trifluoromethyl)phenyl]acetamido] benzyloxy] succinate. (DL-*threo*-S10d)

Compound (DL-*threo*)-**S10d** was prepared from (DL-*threo*)-**S9** (100 mg, 0.32 mmol), **5d** (239 mg, 0.64 mmol) and NaH (60% in mineral oil, 13 mg, 0.32 mmol) following a procedure similar to that used for (DL-*threo*)-**S10a**. The title product (DL-*threo*)-**S10d** was obtained as a clear oil (60 mg, 43%). ¹H NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.47 – 7.44 (m, 4H), 7.34 – 7.30 (m, 6H), 7.24 (t, J = 7.8 Hz, 1H), 6.99 (d, J = 7.6 Hz, 1H), 5.59 (d, J = 9.9 Hz, 1H), 5.08 (d, J = 2.5 Hz, 2H), 4.87 (dd, J = 9.9, 2.4 Hz, 1H), 4.74 (d, J = 11.8 Hz, 1H), 4.50 (d, J = 2.4 Hz, 1H), 4.33 (d, J = 11.8 Hz, 1H), 3.73 (s, 5H), 3.60 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 169.61, 169.55, 168.25, 156.25, 138.54, 137.84, 137.67, 136.14, 129.86 (2), 129.25, 128.61(2), 128.29, 128.06 (2), 126.00 (2, q, J = 3.8 Hz), 125.98, 124.30, 119.81, 119.55, 77.04, 72.73, 67.34, 56.52, 52.89, 52.67, 44.35. HRMS: calcd. for C₃₀H₃₀F₃N₂O₈ [M+H]⁺: 603.1949, found 603.1950. In addition, a mixture of (DL-*threo*)-**S10d** and (DL-*erythro*)-**S10d** (20 mg, 14%, *threo/erythro* = 1:2) was obtained.

6.5 (DL-*threo*)-dimethyl 2-[(benzyloxycarbonyl)amino]-3-[3-[3-[4-(trifluoromethyl)phenyl]propanamido] benzyloxy] succinate. (DL-*threo*-S10e)

Compound (DL-*threo*)-**S10e** was prepared from (DL-*threo*)-**S9** (125 mg, 0.40 mmol), **5e** (313 mg, 0.81 mmol) and NaH (60% in mineral oil, 16 mg, 0.40 mmol) following a procedure similar to that used for (DL-*threo*)-**S10a**. The title product (DL-*threo*)-**S10e** was obtained as a clear oil (54 mg, 22%). ¹H NMR (500 MHz, CDCl₃) δ 7.54 (s, 1H), 7.51 (d, J = 8.0 Hz, 2H), 7.35 – 7.29 (m, 9H), 7.23 (d, J = 7.9 Hz, 1H), 6.97 (d, J = 7.6 Hz, 1H), 5.62 (d, J = 9.8 Hz, 1H), 5.07 (s, 2H), 4.87 (dd, J = 9.8, 2.4 Hz, 1H), 4.73 (d, J = 11.8 Hz, 1H), 4.51 (d, J = 2.3 Hz, 1H), 4.33 (d, J = 11.7 Hz, 1H), 3.73 (s, 3H), 3.60 (s, 3H), 3.06 (t, J = 7.6 Hz, 2H), 2.64 (t, J = 7.6 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 170.05, 169.61, 169.53, 156.25, 144.94, 138.07, 137.58, 136.10, 129.17, 128.82 (2), 128.57 (2), 128.48 (q, J = 34.0 Hz), 128.25 (2), 128.01 (2), 125.54 (q, J = 3.8 Hz), 124.32 (q, J = 272.2 Hz), 123.98, , 119.76, 119.53, 77.00, 72.78, 67.30, 56.50, 52.85, 52.61, 38.63, 31.09. HRMS: calcd. for C₃₁H₃₂F₃N₂O₈ [M+H]⁺: 617.2105, found 617.2108.

6.6 (DL-*threo*)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (DL-*threo*-S12a, DL-TFB-TBOA)

To a stirred solution of (DL-*threo*)-**S10a** (190 mg, 0.32 mmol) in dry MeOH (10 mL) was added Pd/C 10% (10.0 mg) under nitrogen atmosphere. The reaction mixture was stirred under H_2 atmosphere (balloon) for 2 h at room temperature. After completion of the reaction, the reaction mixture was filtered through Celite and washed with MeOH (5 mL). The filtrate was concentrated under vacuum to provide product (DL-*threo*)-**S11a** as a clear oil (88 mg, 61%). No purification was needed, the product (DL-*threo*)-**S11a** was directly used for the next step.

To a stirred solution of (DL-*threo*)-**S11a** (88 mg, 0.19 mmol) in THF/H₂O (1:1, each 1.5 mL) was added LiOH (24 mg, 1.0 mmol) and the reaction mixture was stirred at room temperature for 2 h. After completion of the starting material, THF was removed in vacuo and the resulting aqueous solution was reverse extracted with EtOAc (1 mL). The aqueous layer was acidified with 1 M HCl (pH=1) until white precipitates appeared. The white precipitates were filtered through a Büchner funnel and washed with 5 mL of cold water. The white solid was dried under vacuum overnight to provide the product (DL-*threo*)-**S12a** (DL-TFB-TBOA) (35 mg, two steps yield 43%). ¹H NMR (500 MHz, DMSO- d_6) δ 10.48 (s, 1H), 8.16 (d, *J* = 8.1 Hz, 2H), 7.92 (d, *J* = 8.2 Hz, 2H),

7.75 (s, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.35 (t, J = 7.8 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 4.83 (d, J = 10.6 Hz, 1H), 4.48 (d, J = 10.6 Hz, 1H), 4.12 (d, J = 9.5 Hz, 1H), 3.82 (d, J = 9.5 Hz, 1H); ¹³C NMR (126 MHz, DMSOd₆) δ 170.54, 168.44, 164.29, 138.69, 138.46, 138.31, 131.34 (q, J = 32.8 Hz), 128.59 (2), 128.39, 125.39 (2, q, J = 5.0 Hz), 124.28, 123.94 (q, J = 273.4 Hz), 120.50, 119.87, 74.72, 72.71, 53.11; ¹⁹F NMR (376 MHz, DMSOd₆) δ -61.33 (s). HRMS: calcd. for C₁₉H₁₈F₃N₂O₆ [M+H]⁺: 427,1112, found 427,1111. Chiral HPLC analysis: CROWNPAK CR-I (+) 150 x 3 mm. Phase A: ACN+0.5%TFA, phase B: H₂O+0.5% TFA, A/B = 98:2. Flow rate 0.4 mL/min, column temperature 25 °C, detected by ELSD at 35 °C, t_R (D-*threo*-**S12a**) = 2.4 min, t_R (L-*threo*-**S12a**) = 2.8 min.

6.7 (DL-erythro)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (DL-erythro-S12a)

Compound (DL-*erythro*)-**S12a** was prepared from the mixture of (DL-*threo*)-**S10a** and (DL-*erythro*)-**S10a** (50 mg, 16%, *threo/erythro* = 1:2), following a procedure similar to that used for (DL-*threo*)-**S12a**. The title product (DL-*erythro*)-**S12a** was obtained as a white solid (7 mg, two steps yield 44%, *erythro/threo* = 93:7). ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.50 (s, 1H), 8.15 (d, *J* = 8.1 Hz, 2H), 7.92 (d, *J* = 8.2 Hz, 2H), 7.73 (d, *J* = 9.2 Hz, 1H), 7.68 (s, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.17 (d, *J* = 7.7 Hz, 1H), 4.59 (d, *J* = 11.4 Hz, 1H), 4.45 (d, *J* = 11.4 Hz, 1H), 4.12 (d, *J* = 1.5 Hz, 1H), 4.07 (d, *J* = 1.3 Hz, 1H); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -61.33 (s). HRMS: [M+H]⁺ calcd for: C₁₉H₁₈F₃N₂O₆ 427,1112, found 427,1108.

6.8 (DL-threo)-3-[3-[2-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (DL-threo-S12b)

Compound (DL-*threo*)-**S12b** was prepared from (DL-*threo*)-**S10b** (130 mg, 0.22 mmol) following a procedure similar to that used for (DL-*threo*)-**S12a**. The pure title product (DL-*threo*)-**S12b** was obtained as a white solid (24 mg, two steps yield 38%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.59 (s, 1H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.79 (t, *J* = 7.5 Hz, 1H), 7.72 – 7.67 (m, 2H), 7.63 (d, *J* = 10.4 Hz, 2H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.25 (d, *J* = 7.6 Hz, 1H), 4.76 (d, *J* = 10.8 Hz, 1H), 4.45 (d, *J* = 10.8 Hz, 1H), 4.13 (d, *J* = 8.2 Hz, 1H), 3.73 (d, *J* = 8.2 Hz, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 170.89, 168.39, 165.59, 138.60, 138.54, 136.22, 132.60, 130.01, 128.55, 128.49, 126.32 (q, *J* = 5.0 Hz), 125.80 (q, *J* = 31.5 Hz), 124.01, 123.81 (q, *J* = 274.7 Hz), 119.41, 118.93, 75.35, 72.45, 53.51; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -57.91(s). HRMS: calcd. for C₁₉H₁₈F₃N₂O₆ [M+H]⁺: 427.1112, found 427.1112. Chiral HPLC analysis: CROWNPAK CR-I (+) 150 x 3 mm. Phase A: ACN+0.5%TFA, phase B: H₂O+0.5% TFA, A/B = 98:2. Flow rate 0.4 mL/min, column temperature 25 °C, detected by ELSD at 35 °C, t_R (D-*threo*-S12b) = 2.3 min, t_R (L-*threo*-S12b) = 2.6 min.

6.9 (DL-threo)-3-[3-[3-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (DL-threo-S12c)

Compound (DL-*threo*)-**S12c** was prepared from (DL-*threo*)-**S10c** (144 mg, 0.24 mmol) following a procedure similar to that used for (DL-*threo*)-**S12a**. The pure title product (DL-*threo*)-**S12c** was obtained as a white solid (25 mg, two steps yield 41%). ¹H NMR (400 MHz, DMSO- d_6) δ 10.56 (s, 1H), 8.31 (d, J = 10.7 Hz, 2H), 7.96 (d, J = 7.7 Hz, 1H), 7.80 – 7.73 (m, 3H), 7.34 (t, J = 7.7 Hz, 1H), 7.25 (d, J = 7.6 Hz, 1H), 4.79 (d, J = 10.8 Hz, 1H), 4.47 (d, J = 10.8 Hz, 1H), 4.13 (d, J = 8.3 Hz, 1H), 3.74 (d, J = 8.3 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 171.05, 168.41, 163.94, 138.57, 138.41, 135.66, 131.96, 129.69, 129.15 (q, J = 32.8 Hz), 128.31, 128.12 (q, J = 3.8 Hz), 124.40 (q, J = 32.8 Hz), 124.02 (q, J = 273.4 Hz), 123.96, 120.45, 119.93, 75.54, 72.30, 53.72; ¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.08 (s). HRMS: calcd. for C₁₉H₁₈F₃N₂O₆ [M+H]⁺: 427.1112, found 427.1110. Chiral HPLC analysis: CROWNPAK CR-I (+) 150 x 3 mm. Phase A: ACN+0.5%TFA, phase B: H₂O+0.5% TFA, A/B = 98:2. Flow rate 0.4 mL/min, column temperature 25 °C, detected by ELSD at 35 °C, t_R (D-*threo*-**S12c**) = 2.7 min.

6.10 (DL-threo)-3-[3-[2-[4-(trifluoromethyl)phenyl]acetamido]benzyloxy]aspartate (DL-threo-S12d)

Compound (DL-*threo*)-**S12d** was prepared from (DL-*threo*)-**S10d** (60 mg, 0.10 mmol) following a procedure similar to that used for (DL-*threo*)-**S12a**. The title product (DL-*threo*)-**S12d** was obtained as a white solid (7 mg, two steps yield 28%). ¹H NMR (500 MHz, DMSO- d_6) δ 10.32 (s, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 7.6 Hz, 4H), 7.26 (t, J = 8.1 Hz, 1H), 7.18 (d, J = 7.6 Hz, 1H), 4.76 (d, J = 10.6 Hz, 1H), 4.43 (d, J = 10.6 Hz, 1H), 4.09 (d, J = 9.4 Hz, 1H), 3.80 (d, J = 9.5 Hz, 1H), 3.77 (s, 2H); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.84 (s). HRMS: calcd. for C₂₀H₂₀F₃NO₆ [M+H]⁺: 441.1268, found 441.1268. Chiral HPLC analysis: CROWNPAK CR-I (+) 150 x 3 mm. Phase A: ACN+0.5%TFA, phase B: H₂O+0.5% TFA, A/B = 98:2. Flow rate 0.4 mL/min, column temperature 25 °C, detected by ELSD at 35 °C, t_R (D-*threo*-**S12d**) = 2.3 min, t_R (L-*threo*-**S12d**) = 2.6 min.

6.11 (DL-erythro)-3-[3-[2-[4-(trifluoromethyl)phenyl]acetamido]benzyloxy]aspartate (DL-erythro-S12d)

Compound (DL-*erythro*)-**S12d** was prepared from the mixture of (DL-*threo*)-**S10d** and (DL-*erythro*)-**S10d** (20 mg, 14%, *threo/erythro* = 1:2) following a procedure similar to that used for (DL-*threo*)-**S12a**. The title product (DL-*erythro*)-**S12d** was obtained as a white solid (2 mg, two steps yield 35%, *erythro/threo* = 88:12). ¹H NMR (500 MHz, DMSO- d_6) δ 10.28 (s, 1H), 7.69 (d, J = 8.1 Hz, 2H), 7.56 (t, J = 8.4 Hz, 3H), 7.46 (s, 1H), 7.27 (t, J = 7.9

Hz, 1H), 7.08 (d, J = 7.7 Hz, 1H), 4.54 (d, J = 11.4 Hz, 1H), 4.40 (d, J = 11.4 Hz, 1H), 4.10 (s, 1H), 4.06 (d, J = 1.3 Hz, 1H), 3.77 (s, 2H); ¹⁹F NMR (376 MHz, DMSO- d_6) δ -60.84(s). HRMS: calcd. for C₂₀H₂₀F₃NO₆ [M+H]⁺: 441.1268, found 441.1268.

6.12 (DL-threo)-3-[3-[3-[4-(trifluoromethyl)phenyl]propanamido]benzyloxy]aspartate (DL-threo-S12e)

Compound (DL-*threo*)-**S12e** was prepared from (DL-*threo*)-**S10e** (54 mg, 0.087 mmol) following a procedure similar to that used for (DL-*threo*)-**S12a**. The pure title product (DL-*threo*)-**S12e** was obtained as white solid (8 mg, two steps yield 31%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.96 (s, 1H), 7.65 (d, *J* = 8.1 Hz, 2H), 7.54 – 7.47 (m, 4H), 7.24 (t, *J* = 7.8 Hz, 1H), 7.15 (d, *J* = 7.7 Hz, 1H), 4.73 (d, *J* = 10.7 Hz, 1H), 4.41 (d, *J* = 10.7 Hz, 1H), 4.08 (d, *J* = 8.8 Hz, 1H), 3.74 (d, *J* = 8.8 Hz, 1H), 3.00 (t, *J* = 7.6 Hz, 2H), 2.67 (t, *J* = 7.6 Hz, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.72; HRMS: calcd. for C₂₁H₂₂F₃N₂O₆ [M+H]⁺: 455,1424, found 455,1423. Chiral HPLC analysis: CROWNPAK CR-I (+) 150 x 3 mm. Phase A: ACN+0.5%TFA, phase B: H₂O+0.5% TFA, A/B = 98:2. Flow rate 0.4 mL/min, column temperature 25 °C, detected by ELSD at 35 °C, t_R (D-*threo*-**S12e**) = 2.2 min, t_R (L-*threo*-**S12e**) = 2.6 min.

Chemoenzymatic product 2a	Authentic reference ^[c]	(DL-threo)-S12a	(DL-erythro)-S12a
L-TFB-TBOA	L-TFB-TBOA	DL-TFB-TBOA	DL-TFB-EBOA
F ₃ C		F ₃ C	F ₃ C
10.49 (s, 1H)	10.48 (s, 1H)	10.48 (s, 1H)	10.50 (s, 1H)
8.16 (d, <i>J</i> = 8.1 Hz, 2H)	8.16 (d, <i>J</i> = 8.1 Hz, 2H)	8.16 (d, <i>J</i> = 8.1 Hz, 2H)	8.15 (d, <i>J</i> = 8.1 Hz, 2H)
7.92 (d, <i>J</i> = 8.2 Hz, 2H)	7.92 (d, <i>J</i> = 8.2 Hz, 2H)	7.92 (d, <i>J</i> = 8.2 Hz, 2H)	7.92 (d, <i>J</i> = 8.2 Hz, 2H)
7.76 (s, 1H)	7.75 (s, 1H)	7.75 (s, 1H)	7.73 (d, <i>J</i> = 9.2 Hz, 1H)
7.71 (d, <i>J</i> = 8.1 Hz, 1H)	7.71 (d, <i>J</i> = 7.9 Hz, 1H)	7.71 (d, <i>J</i> = 8.5 Hz, 1H)	7.68 (s, 1H)
7.35 (t, <i>J</i> = 7.8 Hz, 1H)	7.35 (t, <i>J</i> = 7.8 Hz, 1H)	7.35 (t, <i>J</i> = 7.8 Hz, 1H)	7.36 (t, <i>J</i> = 7.9 Hz, 1H)
7.28 (t, <i>J</i> = 7.7 Hz, 1H)	7.28 (d, <i>J</i> = 7.6 Hz, 1H)	7.28 (d, <i>J</i> = 7.6 Hz, 1H)	7.17 (d, <i>J</i> = 7.7 Hz, 1H)
4.83 (d, <i>J</i> = 10.6 Hz, 1H)	4.83 (d, <i>J</i> = 10.6 Hz, 1H)	4.83 (d, <i>J</i> = 10.6 Hz, 1H)	4.59 (d, <i>J</i> = 11.4 Hz, 1H)
4.48 (d, <i>J</i> = 10.6 Hz, 1H)	4.48 (d, <i>J</i> = 10.6 Hz, 1H)	4.48 (d, <i>J</i> = 10.6 Hz, 1H)	4.45 (d, <i>J</i> = 11.4 Hz, 1H)
4.13 (d, <i>J</i> = 9.5 Hz, 1H)	4.12 (d, <i>J</i> = 9.6 Hz, 1H)	4.12 (d, J = 9.5 Hz, 1H)	4.12 (d, J = 1.5 Hz, 1H)
3.83 (d, <i>J</i> = 9.5 Hz, 1H)	3.82 (d, J = 9.6 Hz, 1H)	3.82 (d, J = 9.5 Hz, 1H)	4.07 (d, J = 1.3 Hz, 1H)

Table S1. Comparison of the ¹H-NMR data of **TFB-TBOA**^[a] and **TFB-EBOA**^[b].

[a] **TFB-TBOA**, (*threo*)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate.

[b] TFB-EBOA, (erythro)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate.

[c] Authentic sample of L-TFB-TBOA was purchased from Tocris Bioscience.

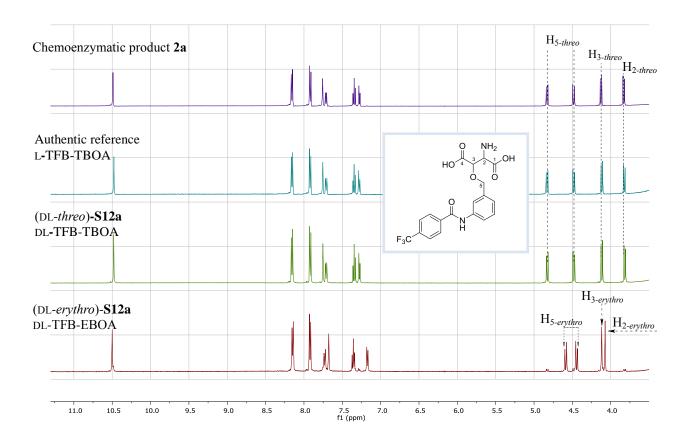
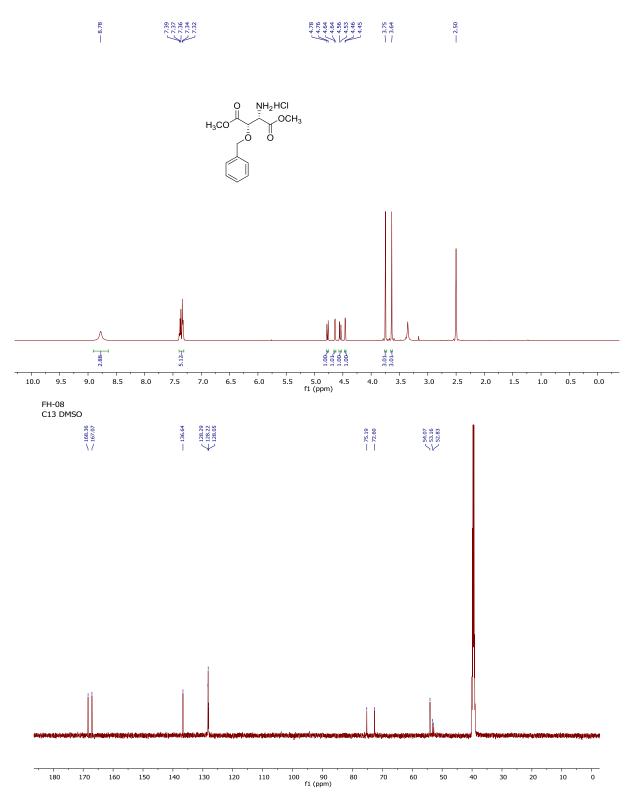


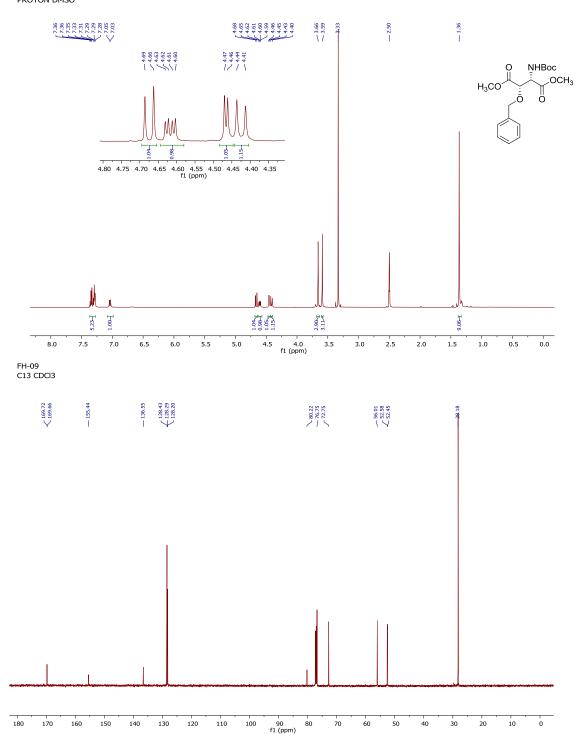
Figure S1. Comparison of the ¹H-NMR spectra of TFB-TBOA and TFB-EBOA.

Table S2. Optical rotation of L-TFB-TBOA and its derivatives.

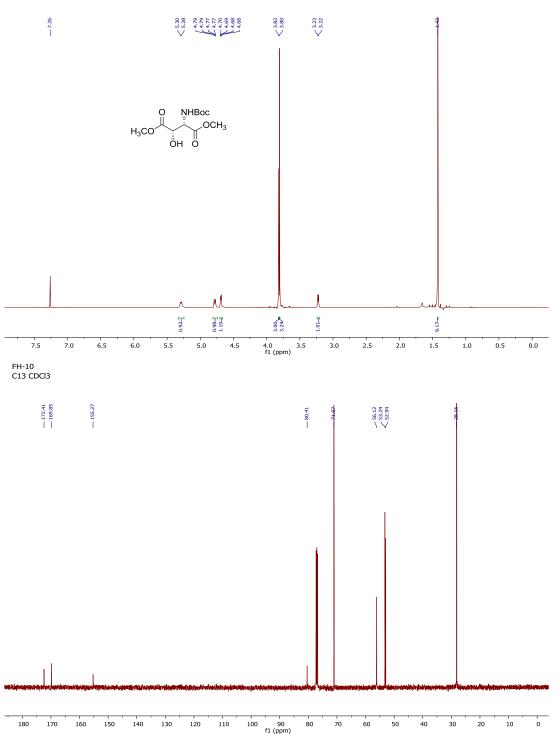

HOY							
Entry	No.	R	n	Optical rotation			
				$\left[\alpha\right]_{D}^{25}$			
1	Authentic sample	<i>p</i> -CF ₃	0	– 52.6 (<i>c</i> 0.60, DMSO)			
	L-TFB-TBOA						
2	2a	<i>p</i> -CF ₃	0	– 55.0 (<i>c</i> 0.60, DMSO)			
3	2b	o-CF ₃	0	– 53.1 (<i>c</i> 0.43, DMSO)			
4	2c	<i>m</i> -CF ₃	0	– 50.7 (<i>c</i> 0.43, DMSO)			
5	16a	<i>p</i> -CF ₃	1	– 46.7 (<i>c</i> 0.45, DMSO)			
6	16b	<i>p</i> -CF ₃	2	– 34.3 (<i>c</i> 0.42, DMSO)			

O NH₃CI OH

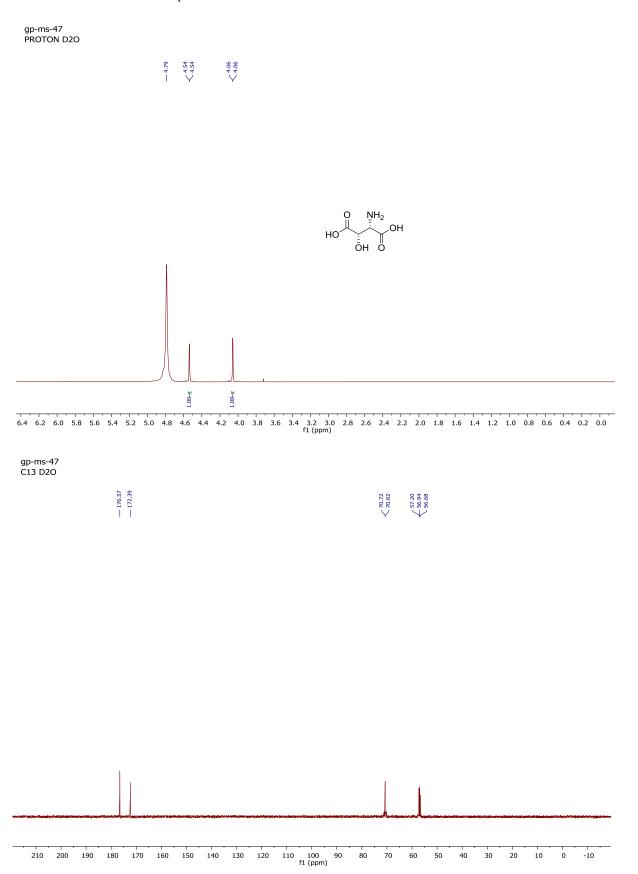
III) NMR spectra


 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound 7

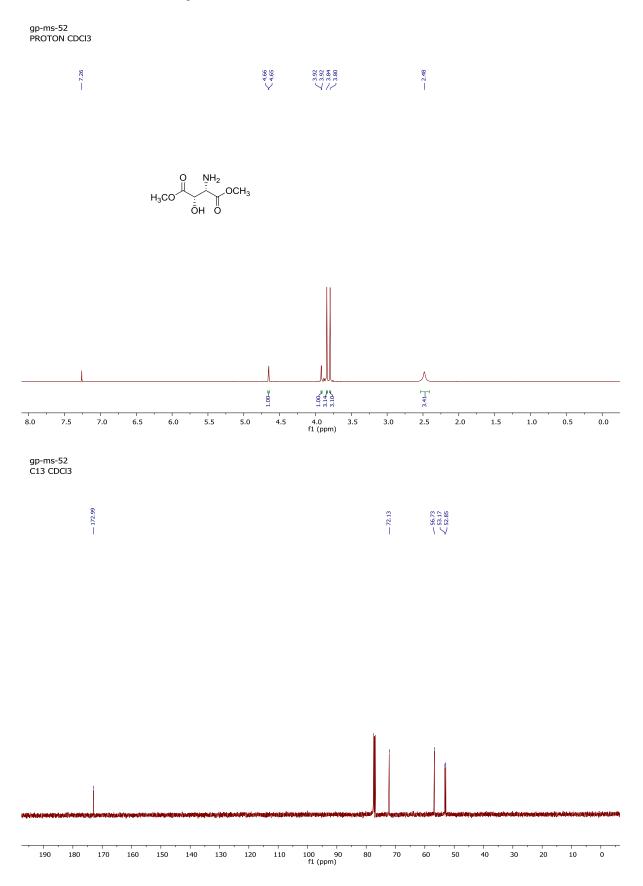
FH-08 PROTON DMSO

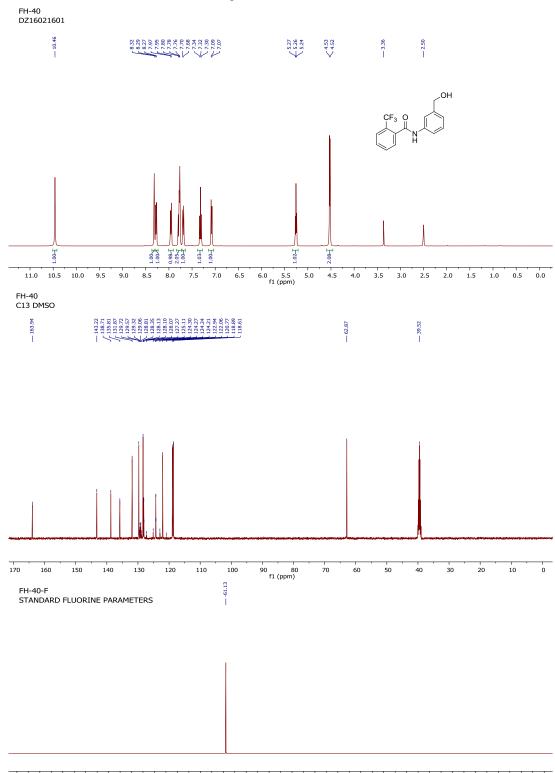

¹H NMR and ¹³C NMR of compound **8**

FH-09-peak-1 PROTON DMSO

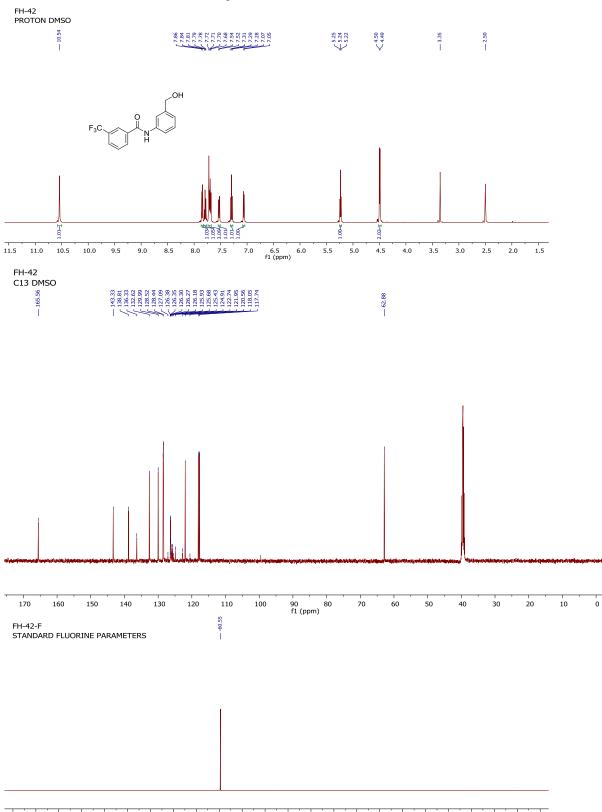


$^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound 4

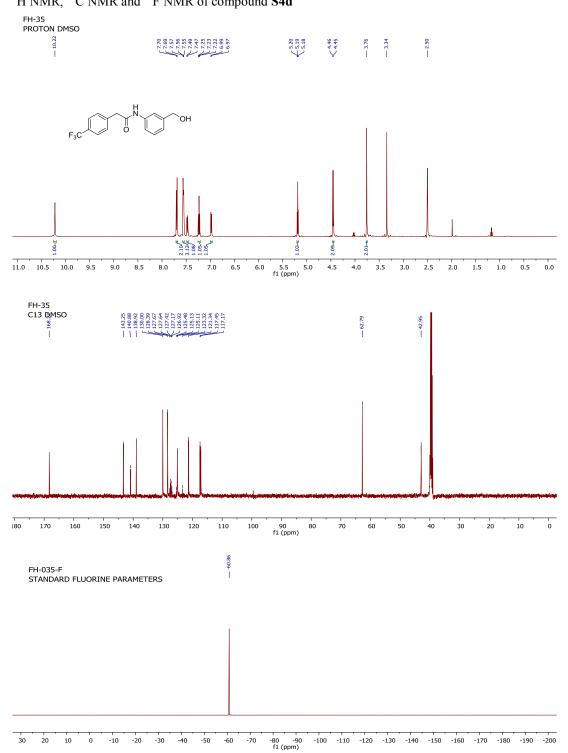

FH-10 PROTON CDCl3


¹H NMR and ¹³C NMR of compound **9**

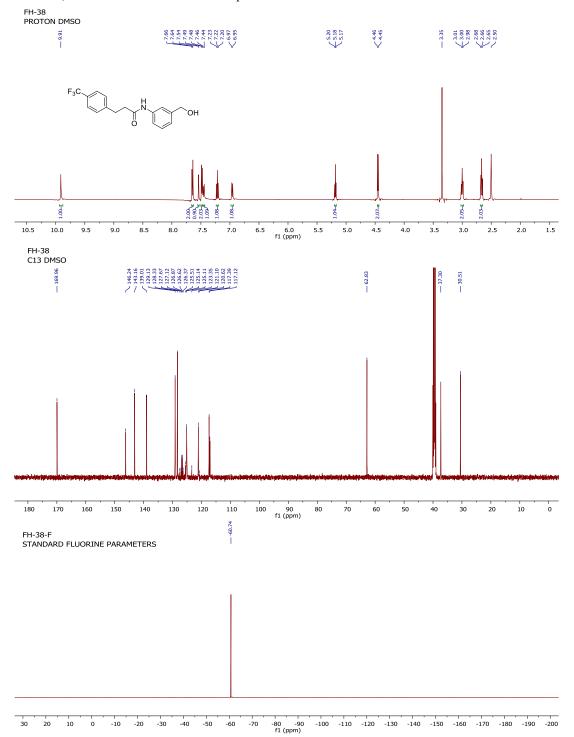
¹H NMR and ¹³C NMR of compound **10**

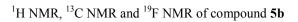


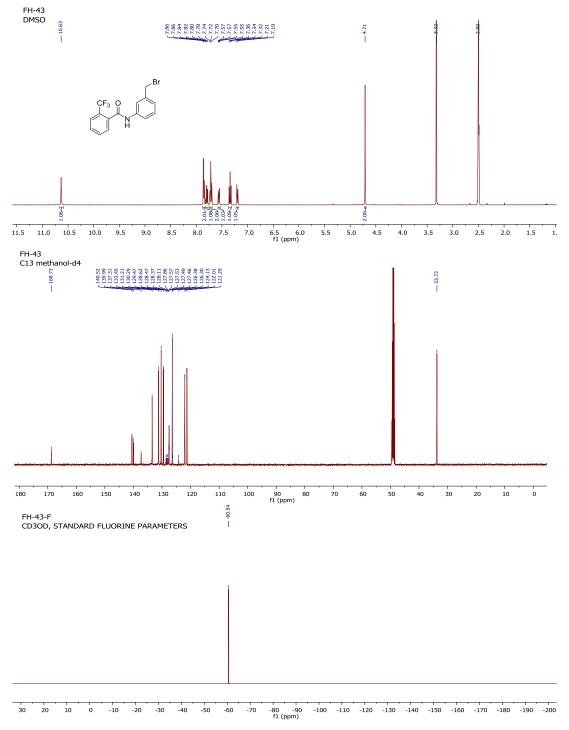
 $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and $^{19}\mathrm{F}$ NMR of compound $\mathbf{S4b}$

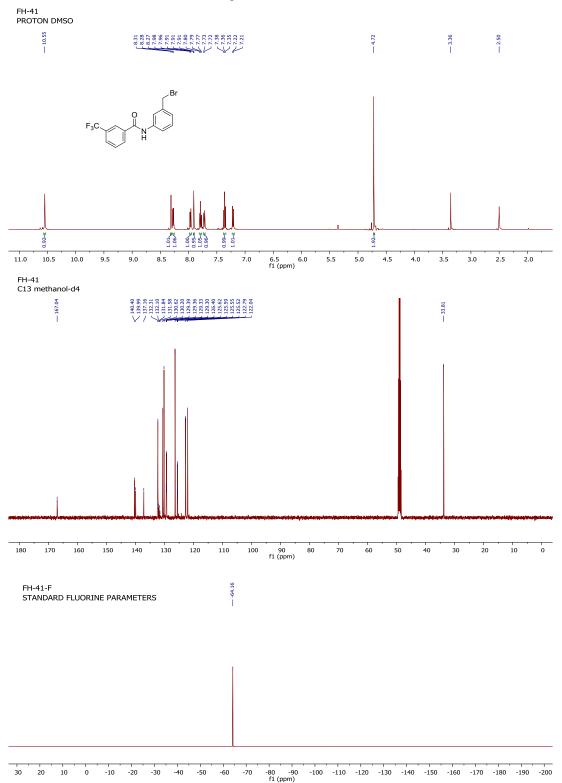

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

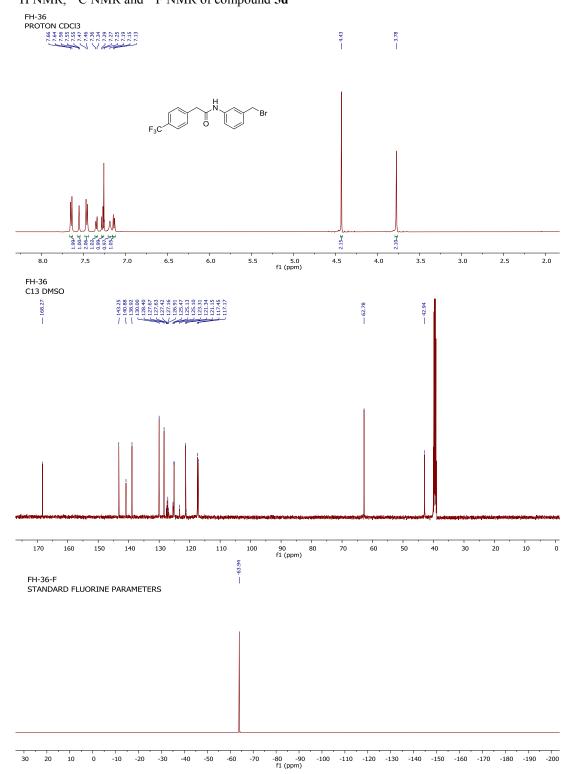
 $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and $^{19}\mathrm{F}$ NMR of compound $\mathbf{S4c}$



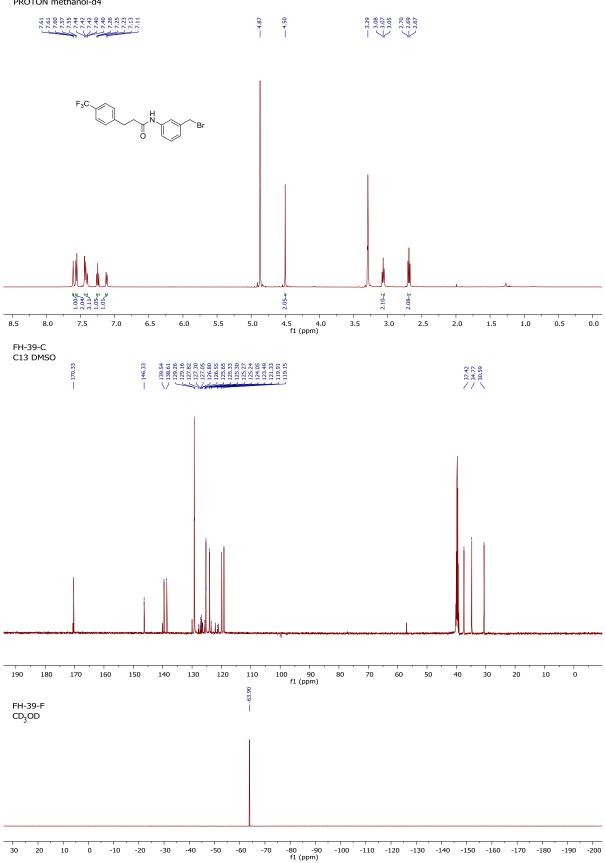

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fil (ppm)


 $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and $^{19}\mathrm{F}$ NMR of compound $\mathbf{S4d}$

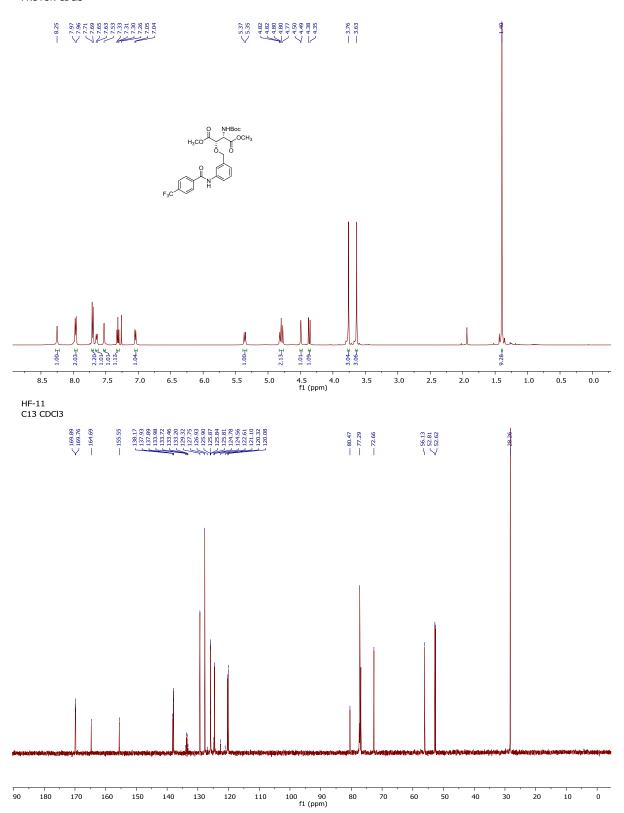

 $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and $^{19}\mathrm{F}$ NMR of compound $\mathbf{S4e}$



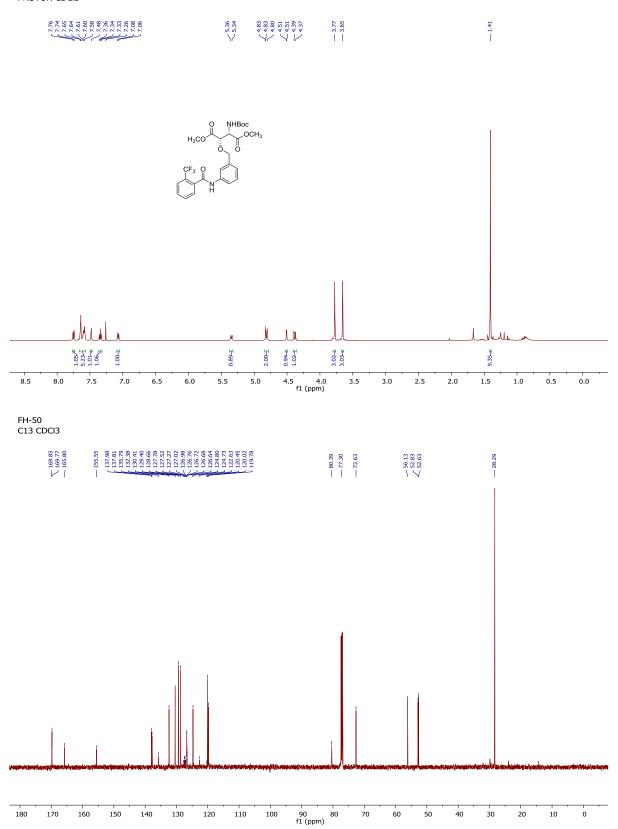
 ^1H NMR, ^{13}C NMR and ^{19}F NMR of compound 5c



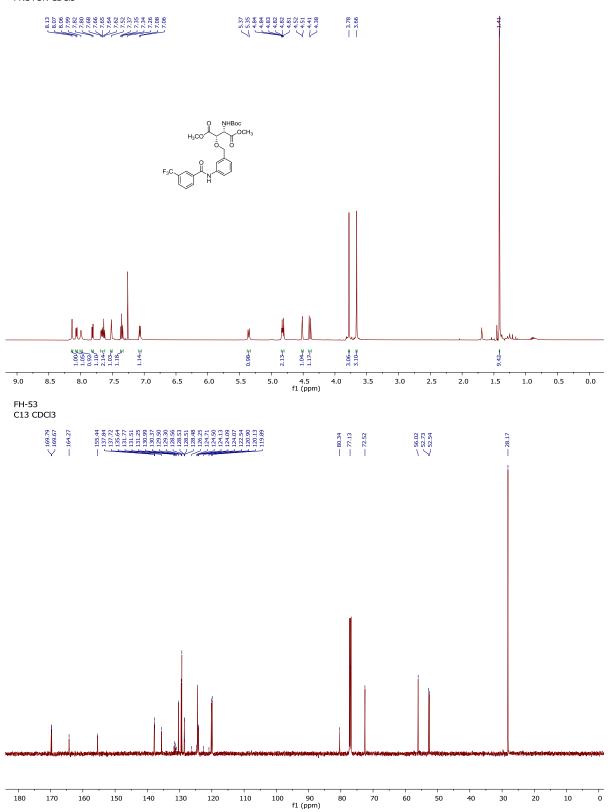
 $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and $^{19}\mathrm{F}$ NMR of compound $\mathbf{5d}$


 $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and $^{19}\mathrm{F}$ NMR of compound $\mathbf{5e}$

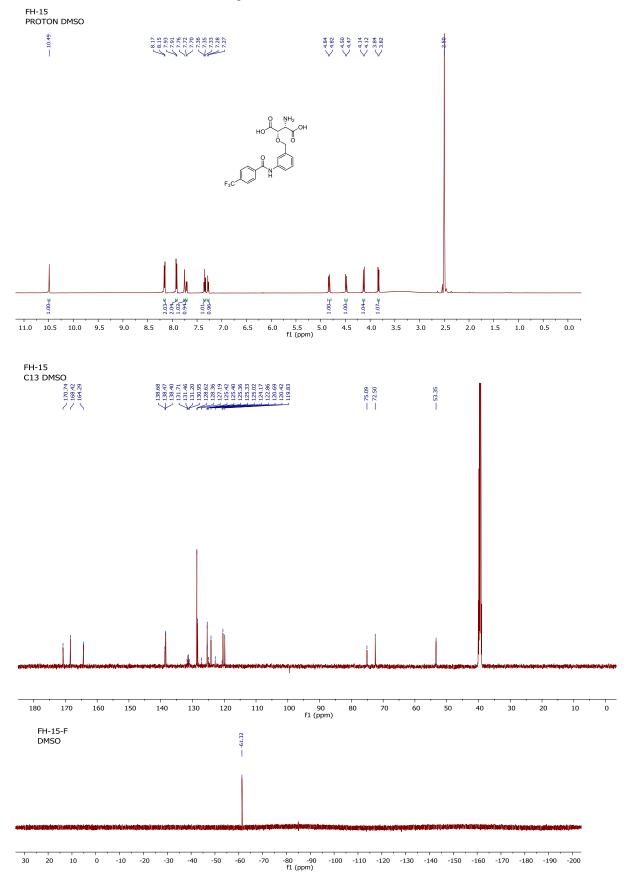
FH-39 PROTON methanol-d4


¹H NMR and ¹³C NMR of compound **11a**

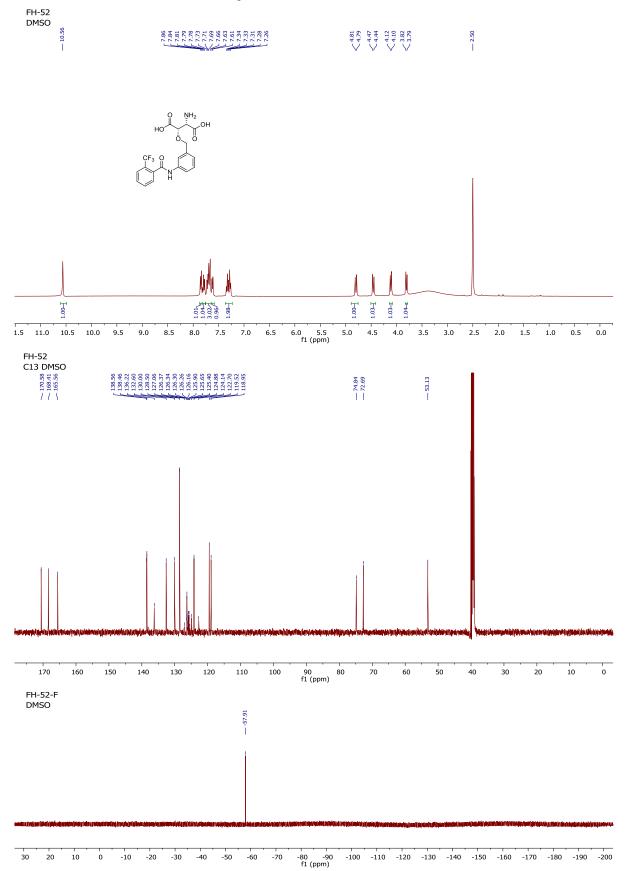
FH-11 PROTON CDCI3

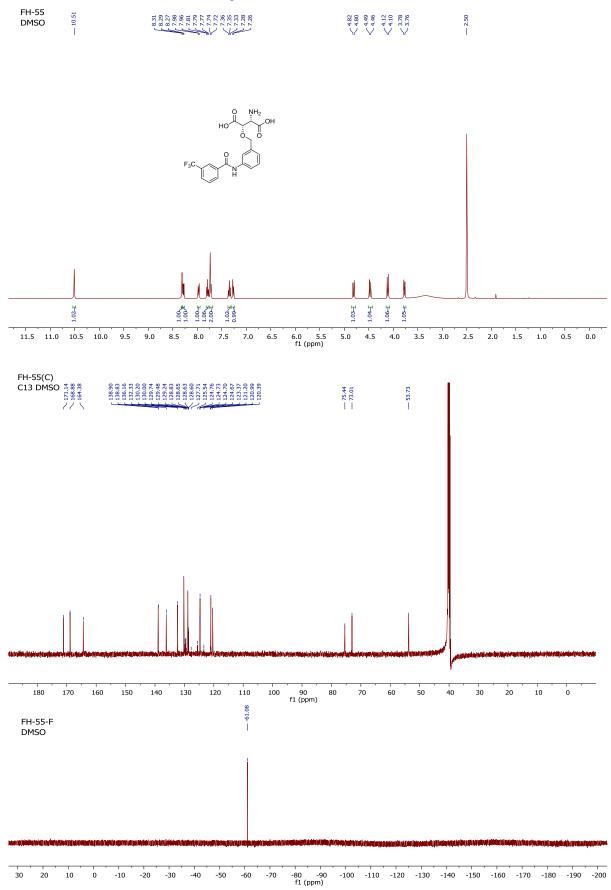

¹H NMR and ¹³C NMR of compound **11b**

FH-50 PROTON CDCl3



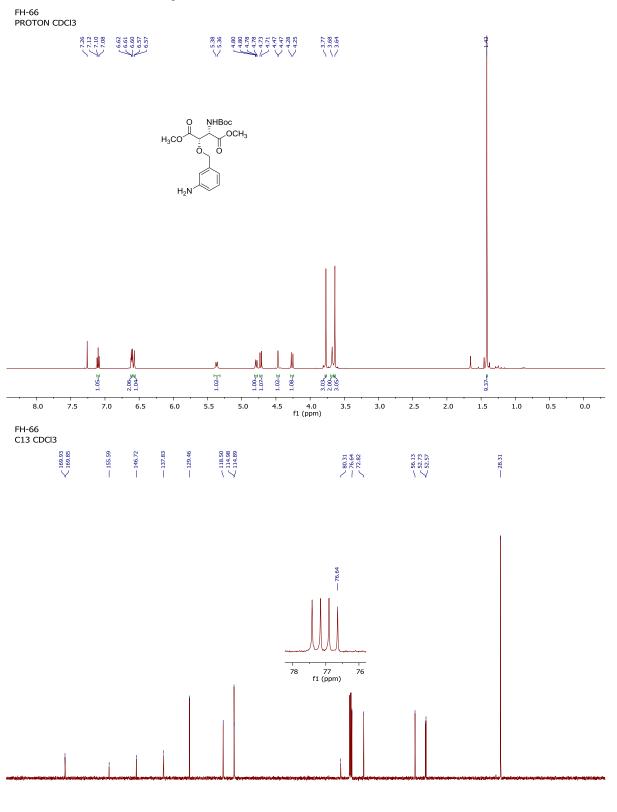
¹H NMR and ¹³C NMR of compound **11c**


FH-53 PROTON CDCl3


 ^1H NMR, ^{13}C NMR and ^{19}F NMR of compound $\bm{2a}$

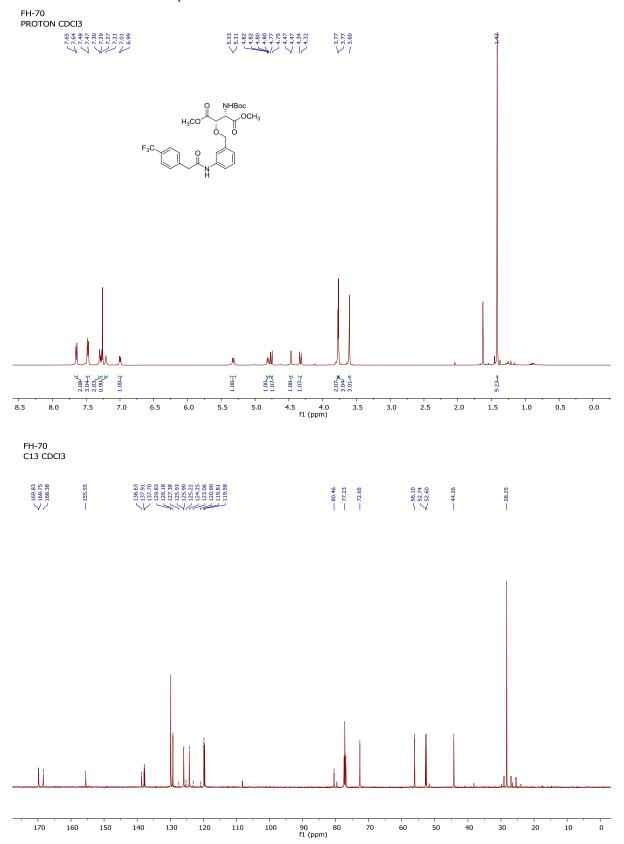
¹H NMR, ¹³C-NMR and ¹⁹F NMR of compound **2b**

^1H NMR, ^{13}C NMR and ^{19}F NMR of compound 2c

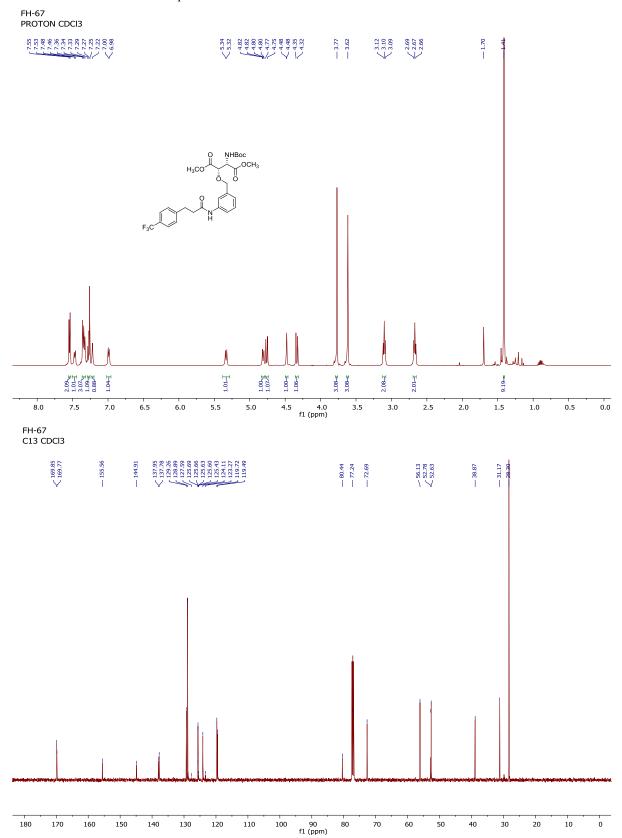


 $^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR of compound $\mathbf{12}$

FH-65 PROTON CDCl3

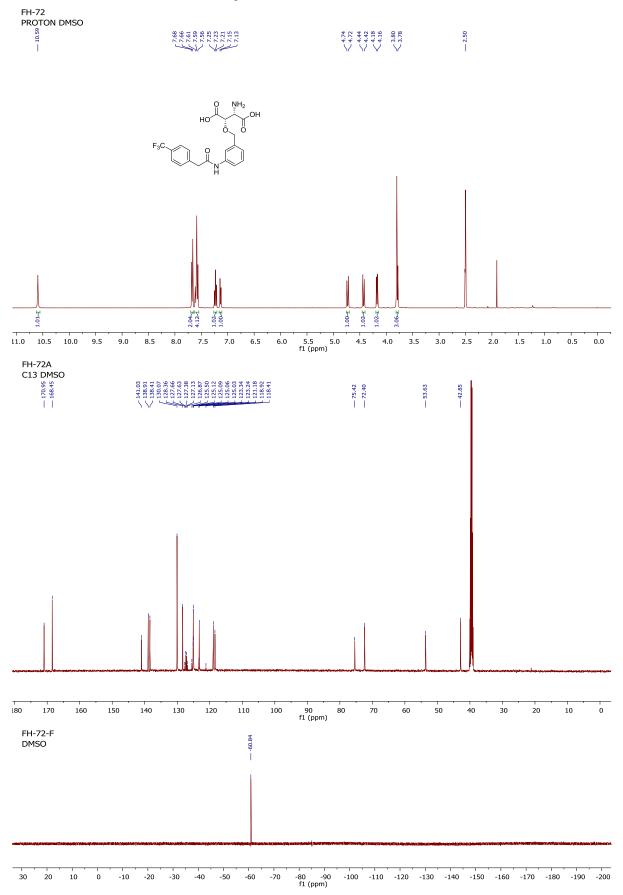


¹H NMR and ¹³C NMR of compound **13**

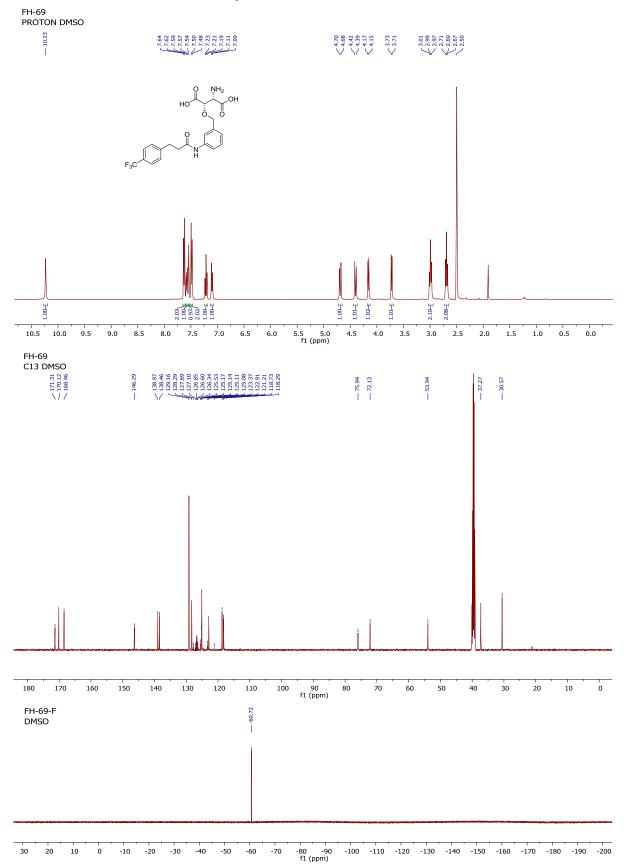


100 90 f1 (ppm)

¹H NMR and ¹³C NMR of compound **15a**

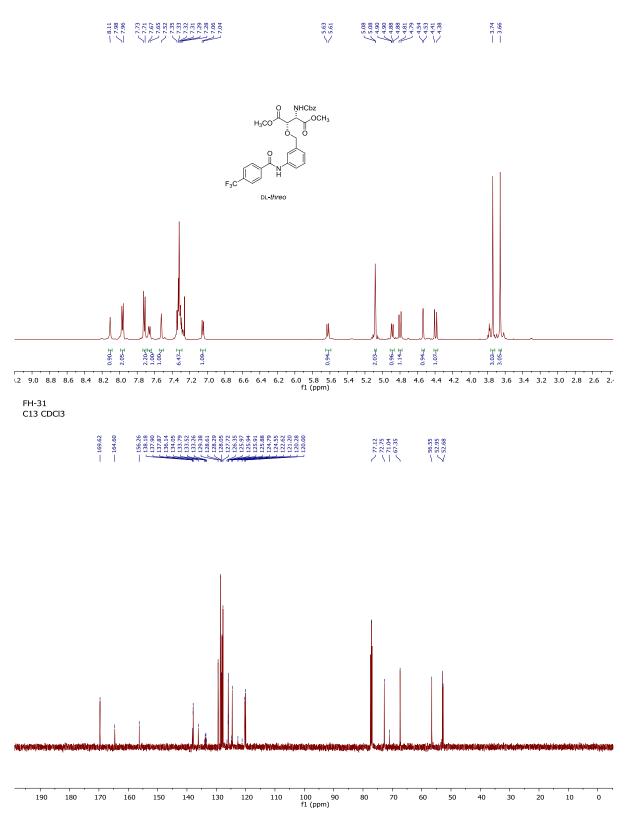


¹H NMR and ¹³C NMR of compound **15b**

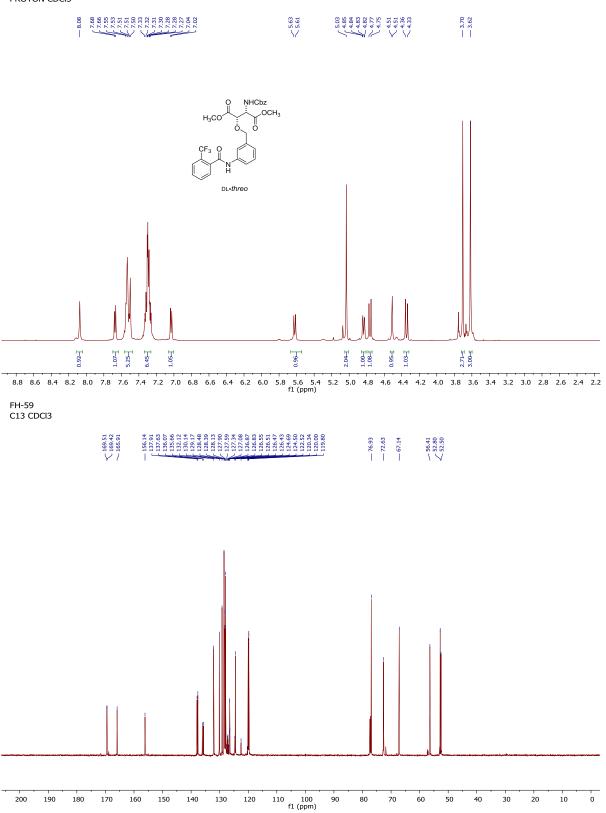


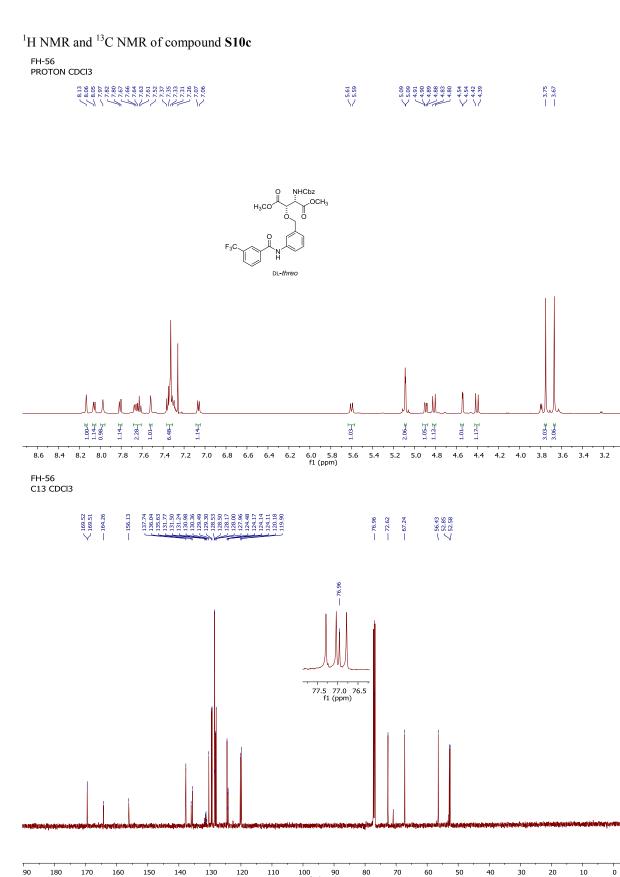
48

 $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and $^{19}\mathrm{F}$ NMR of compound 16a

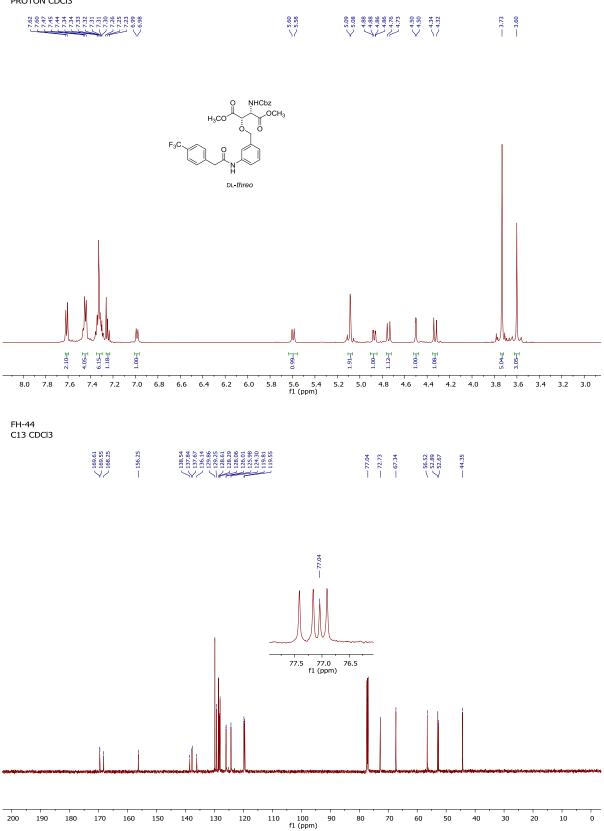


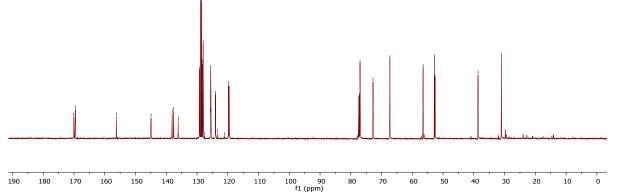
 $^1\mathrm{H}$ NMR, $^{13}\mathrm{C}$ NMR and $^{19}\mathrm{F}$ NMR of compound $\mathbf{16b}$

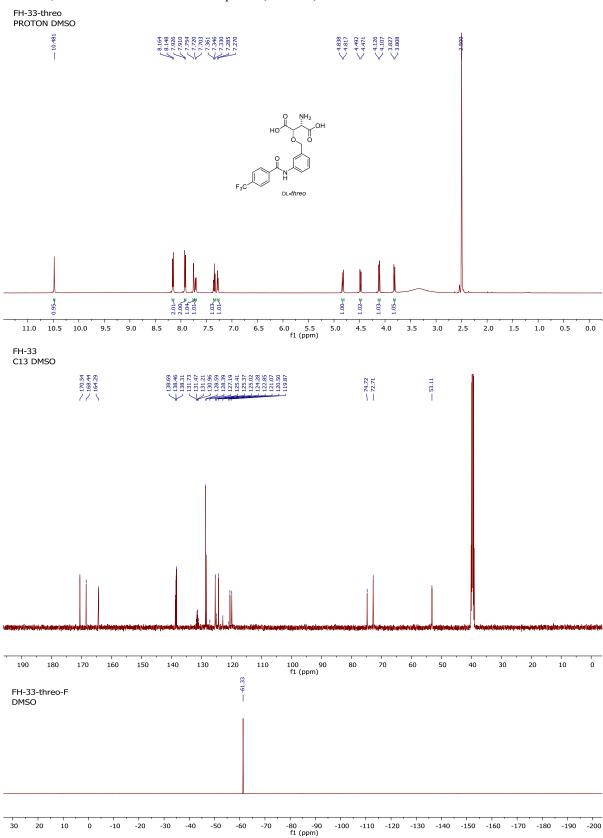

¹H NMR and ¹³C NMR of compound **S10a**


FH-31 PROTON CDCl3

¹H NMR and ¹³C NMR of compound **S10b**

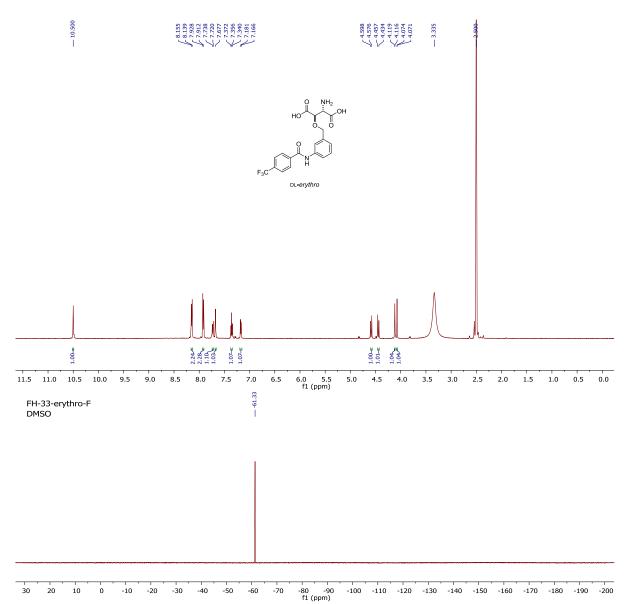

FH-59 PROTON CDCl3

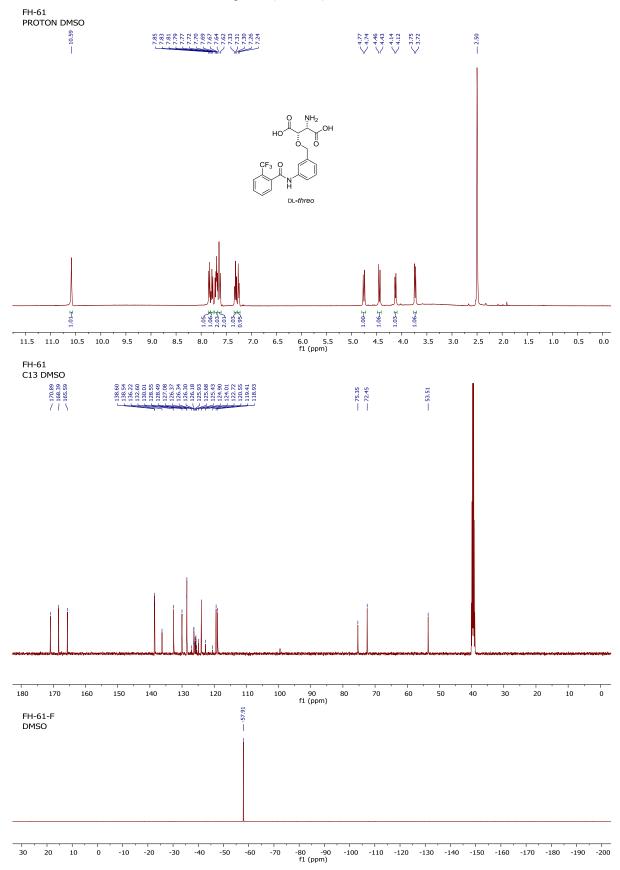



¹H NMR and ¹³C NMR of compound **S10d**

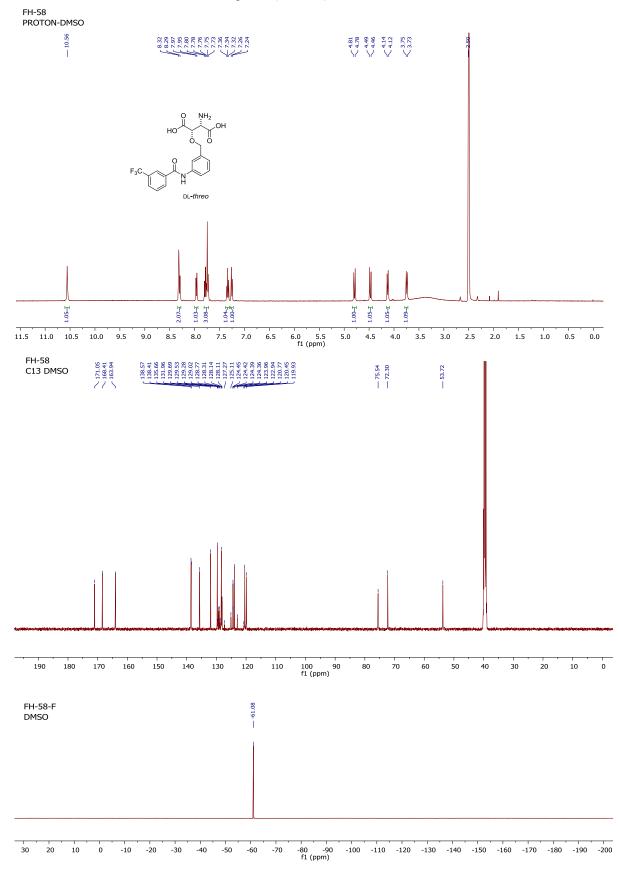
FH-44 PROTON CDCI3

¹ H NMR and ¹³ C NMR of compound S FH-62	10e			
PROTON CDCI3	8 H	2 8 8 8 9 9 5 5 7 17 17 5 5 5	£ 0	20 20 20 20 20 20 20 20 20 20 20 20 20 2
7 258 7 257 7 257 7 258 7 257 7 257 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	∑5.63 ∑5.61	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $		$\frac{1}{2.66} - \frac{1}{2.62} - 1$
H ₃ CC	O NHCbz OCH ₃			
F ₃ C	DL-threo			
	N			
2.35 ¥ 9.024 9.024 1.1.084 1.1.084 1.1.10	 Foo:i	2:00-1 1:05-1 1:05-1 1:05-2	3:00-H	2.09.4
8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2	6.0 5.8 5.6 5.4	5.2 5.0 4.8 4.6 4.4 4.2 f1 (ppm)	4.0 3.8 3.6 3.4	3.2 3.0 2.8 2.6 2.4 2.2
FH-62 C13 CDCl3				
- 156.25 - 156.25 - 144.94 - 144.94 - 144.94 - 156.25 - 138.07 - 138.07 - 138.07 - 138.67 - 138.77 - 1	L 128,25 L 128,11 L 128,11 L 127,01 L 127,56 L 125,56 L 125,53 L 125,54 L 125,55 L 125,555 L 125,555 L 125,555 L 125,555 L 125,555 L 125,555 L 125,555 L 125,555 L 125,5555 L 125,5555 L 125,5555 L 125,5555 L 125	80.121 87.211 87.211 87.211 87.27 87.27 87.27 87.27	 - 56.50 √ 52.61 52.61 - 38.63 	
1				

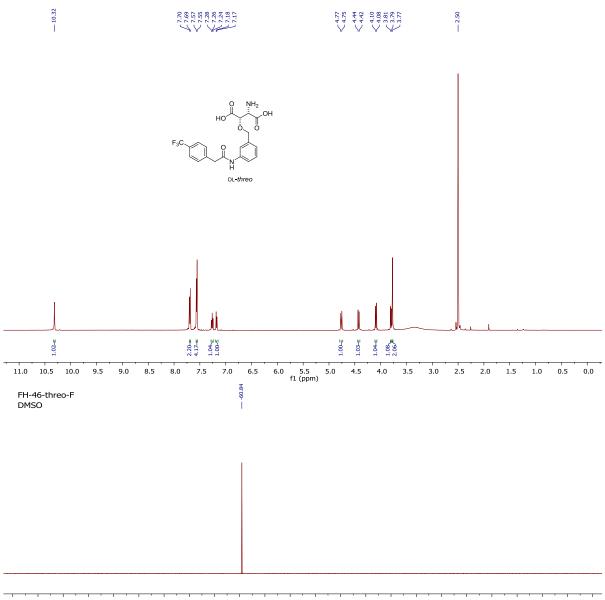




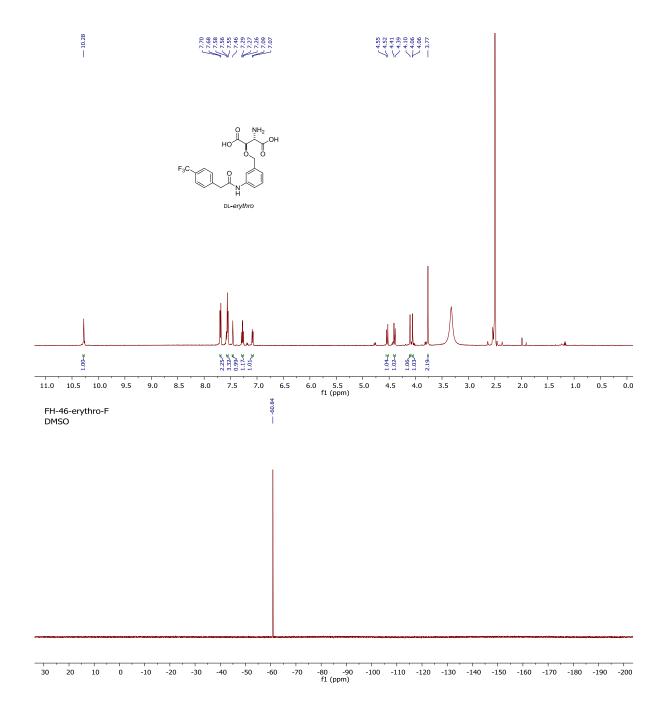
¹H NMR, ¹³C NMR and ¹⁹F NMR of compound (DL-threo)-S12a


¹H NMR and ¹⁹F NMR of compound (DL-erythro)-S12a

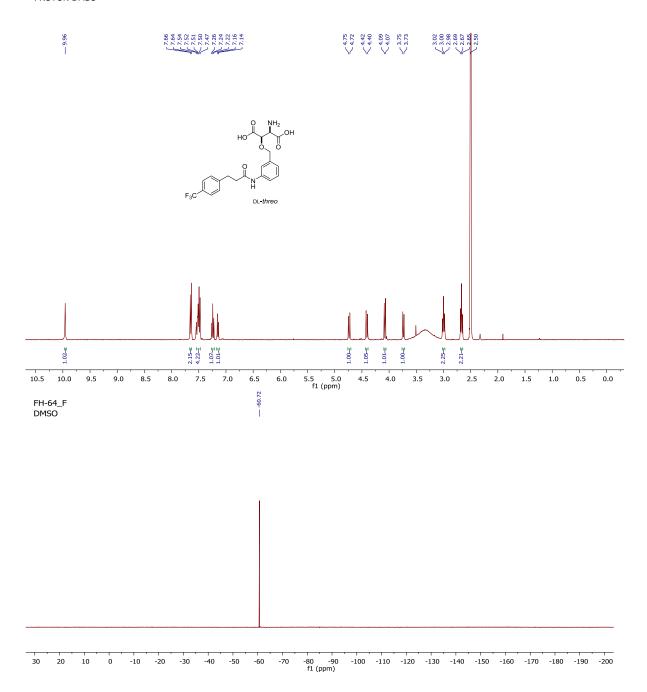
FH-33-erythro PROTON DMSO


¹H NMR, ¹³C NMR and ¹⁹F NMR of compound (DL-threo)-S12b

¹H NMR, ¹³C NMR and ¹⁹F NMR of compound (DL-threo)-S12c


¹H NMR and F NMR of compound (DL-*threo*)-**S12d**

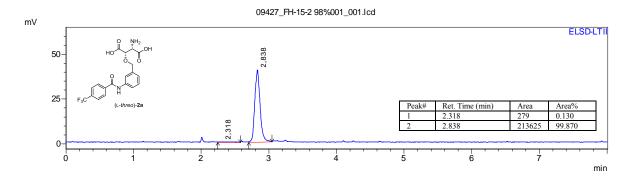
FH-46-threo PROTON DMSO


30 -150 -160 -170 -180 -190 -200 20 10 0 -20 -50 -70 -100 -110 -120 -130 -140 -10 -30 -40 -60 -80 -90 f1 (ppm)

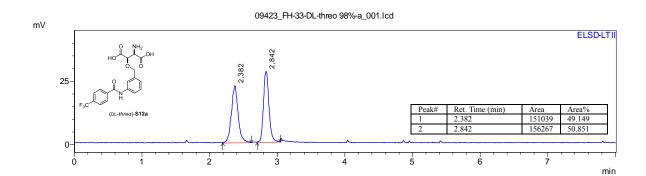
¹H NMR and ¹⁹F NMR of compound (DL-erythro)-S12d

¹H NMR and ¹⁹F NMR of compound (DL-*threo*)-S12e

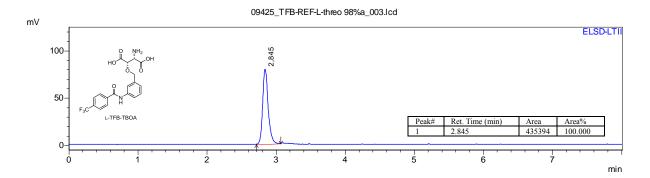
FH-64 PROTON DMSO

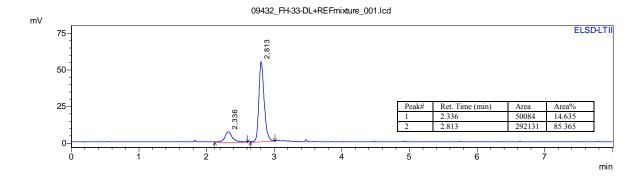

IV) Chiral HPLC analysis

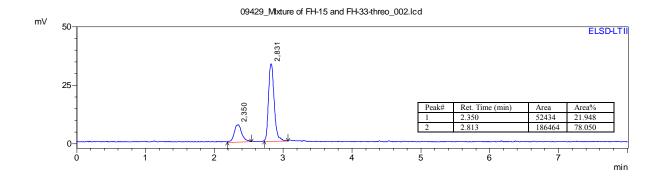
General chiral HPLC conditions: CROWNPAK CR-I (+) 150 x 3 mm, 5 um. Phase A: ACN+0.5% TFA, phase B: $H_2O+0.5\%$ TFA, A/B = 98:2. Flow rate 0.4 mL/min, column temperature 25 °C, detected by ELSD at 35 °C.


1. (L-threo)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (2a)

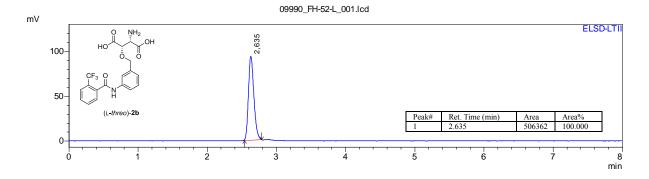
Chiral HPLC analysis indicated *ee* >99%, t_R (D-*threo*) = 2.4 min, t_R (L-*threo*) = 2.8 min.

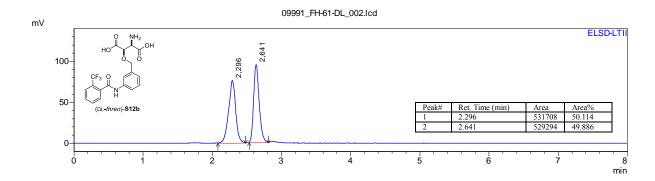

1.1 HPLC analysis of (L-threo)-2a


1.2 HPLC analysis of (DL-threo)-S12a

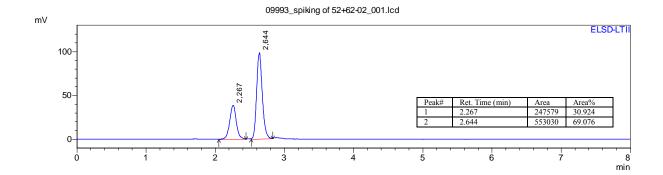

1.3 HPLC analysis of authentic reference of L-TFB-TBOA

1.4 Spiking of (DL-threo)-S12a with authentic reference (L-TFB-TBOA)

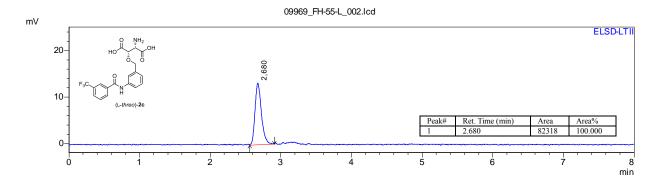

1.5 Spiking of (L-threo)-2a with (DL-threo)-S12a

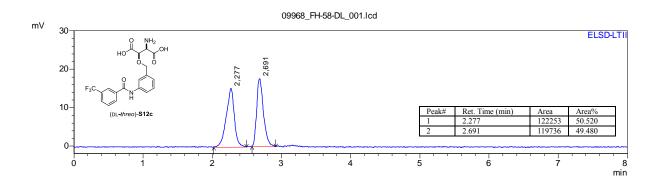

2. (L-threo)-3-[3-[2-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (2b)

HPLC analysis indicated *ee* >99%, t_R (D-*threo*) = 2.3 min, t_R (L-*threo*) = 2.6 min.

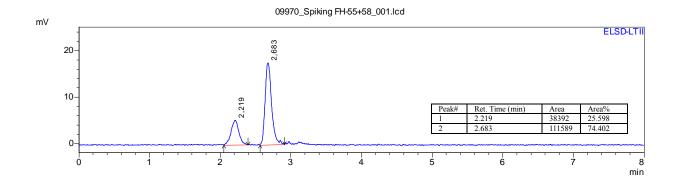

2.1 HPLC analysis of (L-threo)-2b

2.2 HPLC analysis of (DL-threo)-S12b

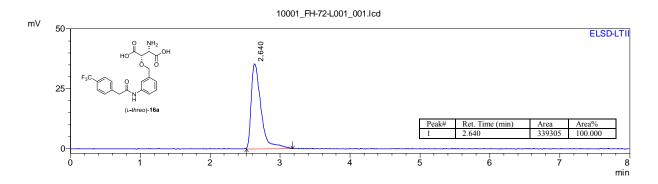

2.3 Spiking of (L-threo)-2b with (DL-threo)-S12b

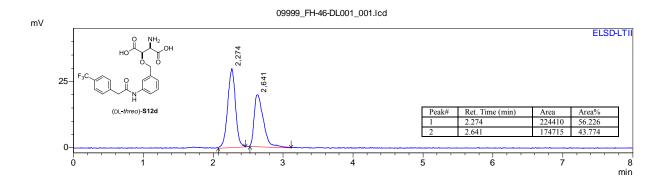

3. (L-threo)-3-[3-[3-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (2c)

HPLC analysis indicated e.e. >99%, t_R (D-*threo*) = 2.3 min, t_R (L-*threo*) = 2.7 min.

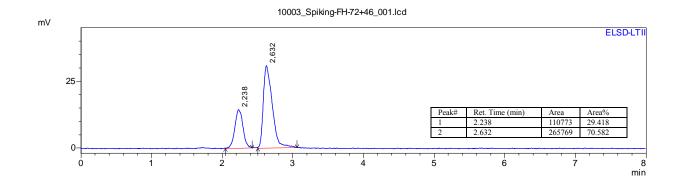

3.1 HPLC analysis of (L-threo)-2c

3.2 HPLC analysis of (DL-threo)-S12c

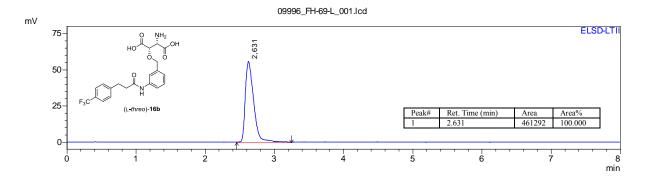

3.3 Spiking of (L-threo)-2c with (DL-threo)-S12c

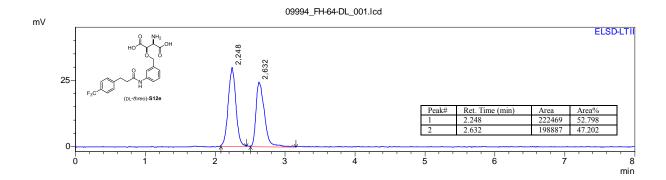

4. (L-threo)-3-[3-[2-[4-(trifluoromethyl)phenyl]acetamido]benzyloxy]aspartate (16a)

HPLC analysis indicated *ee* >99%, t_R (D-*threo*) = 2.3 min, t_R (L-*threo*) = 2.6 min.

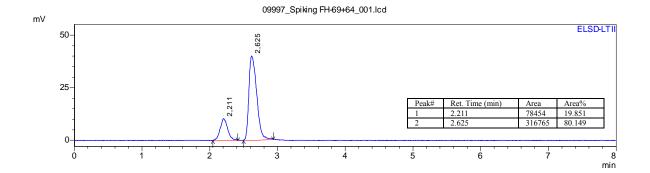

4.1 HPLC analysis of (L-threo)-16a

4.2 HPLC analysis of (DL-threo)-S12d


4.3 Spiking of (L-threo)-16a with (DL-threo) S12d


5. (L-threo)-3-[3-[3-[4-(trifluoromethyl)phenyl]propanamido]benzyloxy]aspartate (16b)

HPLC analysis indicated *ee* >99%, t_R (D-*threo*) = 2.2 min, t_R (L-*threo*) = 2.6 min.


5.1 HPLC analysis of (L-threo)-16b

5.2 HPLC analysis of (DL-threo)-S12e

5.3 Spiking of (L-threo)-16b with (DL-threo)-S12e

V) References

- J. de Villiers, M. de Villiers, E. M. Geertsema, H. Raj, G. J. Poelarends, *ChemCatChem* 2015, 7, 1931.
- L. Pignataro, C. Bovio, M. Civera, U. Piarulli, C. Gennari, *Chem. Eur. J.* 2012, 18, 10368.
- 3 M. Leuenberger, A. Ritler, A. Simonin, M. A. Hediger, M. Lochner, ACS Chem. Neurosci. 2016, 7, 534.
- 4 L. Harris, S. P. Mee, R. H. Furneaux, G. J. Gainsford, A. Luxenburger, J. Org. Chem. 2011, 76, 358.