Efficient construction of C–N and C–S bonds in 2iminothiazoles via cascade reaction of enaminones with potassium thiocyanate †

Xue-Bing Chen,^{*} ^a Xue-Quan Wang,^a Jia-Na Song,^a Qing-Li Yang,^a Wei Liu,^{*a} Chao Huang^{*b}

^aKey Laboratory of Natural Pharmaceutical & Chemical Biology of Yunnan Province, School of Science, Honghe University, Mengzi, Yunnan 661199, P. R. China.
^b School of Chemistry and Environment, Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming, Yunnan 650503
*E-mail: orangekaka@126.com, liuwei4728@163.com Tel & Fax: +86 873 3694923

Supporting Information

Table of C	ontents	
General Ir	Iformation	3
Spectroscopic Data of 2-iminothiazoles 4		4
Spectroscopic Data of 5v		15
Figure 1.	¹ H NMR (400 MHz, CDCl3) spectra of compound 4a	16
Figure 2.	¹³ C NMR (100 MHz, CDCl3) spectra of compound 4a	17
Figure 3.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4b	
Figure 4.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4b	19
Figure 5.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4c	
Figure 6.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4c	21
Figure 7.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4d	
Figure 8.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4d	23
Figure 9.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4e	
Figure 10.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4e	25
Figure 11.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4f	
Figure 12.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4f	27
Figure 13.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4g	
Figure 14.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4g	
Figure 15.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4h	
Figure 16.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4h	
Figure 17.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4i	
Figure 18.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4i	

Figure 19.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4j	.34
Figure 20.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4j	.35
Figure 21.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4k	.36
Figure 22.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4k	.37
Figure 23.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 41	.38
Figure 24.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 41	.39
Figure 25.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4m	.40
Figure 26.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4m	.41
Figure 27.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4n	.42
Figure 28.	¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) spectra of compound 4n	.43
Figure 29.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 40	.44
Figure 30.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 40	.45
Figure 31.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4p	.46
Figure 32.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4p	.47
Figure 33.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4q	.48
Figure 34.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4q	.49
Figure 35.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4r	.50
Figure 36.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4r	.51
Figure 37.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4s	.52
Figure 38.	¹³ C NMR (100 MHz, DMSO- d_6) spectra of compound 4s	.53
Figure 39.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4t	.54
Figure 40.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4t	.55
Figure 41.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4u	.56
Figure 42.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4u	.57
Figure 43.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4v	.58
Figure 44.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4v	.59
Figure 45.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4w	.60
Figure 46.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4w	.61
Figure 47.	¹ H NMR (400 MHz, DMSO- d_6) spectra of compound 4x	.62
Figure 48.	¹³ C NMR (100 MHz, DMSO- <i>d</i> ₆) spectra of compound 4x	.63
Figure 49.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 4y	.64
Figure 50.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 4 y	.65
Figure 51.	¹ H NMR (400 MHz, CDCl ₃) spectra of compound 5v	.66
Figure 52.	¹³ C NMR (100 MHz, CDCl ₃) spectra of compound 5 v	.67

General Information

All compounds were fully characterized by spectroscopic data. NMR spectra were recorded on a Bruker DRX500 (¹H: 500 MHz, ¹³C: 125 MHz), Bruker AVIII-400 (¹H: 400 MHz, ¹³C: 100 MHz) or Bruker AVIII-300 (¹H: 300 MHz, ¹³C: 75 MHz). Chemical shifts (δ) are expressed in units of ppm, and J values are given in Hz. DMSO-d₆ or CDCl₃ were used as solvents. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin-layer chromatography (TLC) using silica gel GF254. The melting points are uncorrected and were determined on a XT-4A melting point apparatus. HRMs were performed on an Agilent LC/MSD TOF instrument and a Monoisotopic Mass instrument. All chemicals and solvents were used as received without further purification unless otherwise stated.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

General Procedure for the Preparation of 2-iminothiazoles 4

A mixture of enaminones 1 (1.0 mmol), NBS 2 (2.0mmol) and CH₃CN (15 mL) was stirred at room temperature for 0.5 hours. Upon completion, monitored by TLC, KSCN 3 (1.0 mmol) was then added. After the desired product formation indicated by TLC, the reaction mixture was quenched with saturated NH₄Cl solution (2 mL) and extracted with ethyl acetate (20 mL). The organic phase were dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by flash chromategraphy (petroleum ether/ethyl acetate = 1:1) giving a yellow solid 4.

Spectroscopic Data of 2-iminothiazoles 4

3-(4-fluorophenyl)-2-imino-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4a)

Yellow solid; Mp 122–123 °C; IR (KBr): 3283, 1640, 1509, 1358, 1219, 1191, 828 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.30–7.34 (m, 2H, Ar*H*), 7.21–7.25 (m, 2H, Ar*H*), 2.50–2.55 (m, 2H, C*H*₂), 2.33–2.37 (m, 2H, C*H*₂), 2.07–2.13 (m, 2H, C*H*₂); ¹³C NMR (100 MHz, CDCl₃): δ = 189.0, 164.5, 162.8 (d, ¹*J* _{C–F} = 249.0 Hz), 153.8, 131.0, 130.4 (d, ³*J* _{C–F} = 9.0 Hz), 130.3 (d, ³*J* _{C–F} = 9.0 Hz), 117.3 (d, ²*J* _{C–F} = 23.0 Hz), 117.1 (d, ²*J* _{C–F} = 23.0 Hz), 111.5, 36.9, 24.9, 21.9; HRMS (ESI-TOF): *m*/*z* calcd for C₁₃H₁₂FN₂OS [(M+H)⁺], 263.0649; found, 263.0667.

3-(3-fluorophenyl)-2-imino-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4b)

Yellow solid; Mp 102–104 °C; IR (KBr): 3281, 1654, 1489, 1402, 1308, 1171, 925 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.51–7.55 (m, 1H, Ar*H*), 7.19–7.24 (m, 1H, Ar*H*), 7.08–7.15 (m, 2H, Ar*H*), 2.52–2.55 (m, 2H, C*H*₂), 2.37–2.40 (m, 2H, C*H*₂), 2.08–2.12 (m, 2H, C*H*₂); ¹³C NMR (100 MHz, CDCl₃): δ = 189.1, 163.1 (d, ¹*J* _{C-F} = 249.0 Hz), 164.1, 153.5, 136.3, 131.3 (d, ³*J* _{C-F} = 9.0 Hz), 124.3, 116.9 (d, ²*J* _{C-F} = 19.0 Hz), 116.1 (d, ²*J* _{C-F} = 23.0 Hz), 111.7, 36.9, 24.9, 21.9; HRMS (ESI-TOF): *m*/*z* calcd for C₁₃H₁₂FN₂OS [(M+H)⁺], 263.0649; found, 263.0650. 3-(4-chlorophenyl)-2-imino-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4c)

Yellow solid; Mp 130–132 °C; IR (KBr): 3291, 1640, 1494, 1357, 1191, 1090, 813 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.51–7.54 (m, 2H, Ar*H*), 7.27–7.30 (m, 2H, Ar*H*), 2.52–2.55 (m, 2H, C*H*₂), 2.34–2.38 (m, 2H, C*H*₂), 2.11–2.14 (m, 2H, C*H*₂); ¹³C NMR (100 MHz, CDCl₃): δ = 189.0, 164.2, 153.4, 135.7, 133.5, 130.4, 129.8, 111.7, 36.9, 24.9, 21.9; HRMS (ESI-TOF): *m*/*z* calcd for C₁₃H₁₂ClN₂OS [(M+H)⁺], 279.0353; found, 279.0352.

3-(3-chlorophenyl)-2-imino-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4d)

Yellow solid; Mp 108–109 °C; IR (KBr): 3329, 1639, 1574, 1406, 1358, 1046, 797 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.47–7.50 (m, 2H, Ar*H*), 7.35 (s, 1H, Ar*H*), 7.23–7.26 (m, 1H, Ar*H*), 2.52–2.56 (m, 2H, C*H*₂), 2.36–2.39 (m, 2H, C*H*₂), 2.09–2.13 (m, 2H, C*H*₂); ¹³C NMR (100 MHz, CDCl₃): δ = 189.0, 164.1, 153.3, 136.2, 135.6, 131.0, 130.0, 128.8, 126.8, 111.8, 36.9, 24.9, 22.0; HRMS (ESI-TOF): *m/z* calcd for C₁₃H₁₂ClN₂OS [(M+H)⁺], 279.0353; found, 279.0353.

3-(2-chlorophenyl)-2-imino-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4e)

Yellow solid; Mp 116–118 °C; IR (KBr): 3216, 1657, 1597, 1522, 1402, 1076, 760 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.61 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.45–7.49 (m, 2H, Ar*H*), 7.42 (d, *J* = 8.0 Hz, 1H, Ar*H*), 2.53–2.56 (m, 2H, C*H*₂), 2.29–2.32 (m, 2H, C*H*₂), 2.09– 2.13 (m, 2H, C*H*₂); ¹³C NMR (100 MHz, CDCl₃): δ = 189.1, 163.5, 153.7, 133.3, 132.8, 131.4, 131.0, 130.8, 128.6, 111.8, 36.9, 24.3, 21.9; HRMS (ESI-TOF): *m/z* calcd for C₁₃H₁₂ClN₂OS [(M+H)⁺], 279.0353; found, 279.0352.

3-(4-bromophenyl)-2-imino-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4f)

Yellow solid; Mp 129–131 °C; IR (KBr): 3283, 1644, 1489, 1409, 1189, 1070, 837 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.67 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.22 (t, *J* = 4.0 Hz, 2H, Ar*H*), 2.52–2.55 (m, 2H, C*H*₂), 2.35–2.38 (m, 2H, C*H*₂), 2.09–2.12 (m, 2H, C*H*₂); ¹³C NMR (100 MHz, CDCl₃): δ = 189.0, 164.2, 153.3, 134.1, 133.3, 130.1, 123.8, 111.7, 36.9, 24.9, 21.9; HRMS (ESI-TOF): *m*/*z* calcd for C₁₃H₁₂BrN₂OS [(M+H)⁺], 322.9848; found, 322.9848.

3-(3-bromophenyl)-2-imino-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4g)

Yellow solid; Mp 182–184 °C; IR (KBr): 3293, 1634, 1579, 1401, 1361, 1192, 801 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.62–7.65 (m, 1H, Ar*H*), 7.50 (s, 1H, Ar*H*), 7.41–7.45 (m, 1H, Ar*H*), 7.27–7.30 (m, 1H, Ar*H*), 2.52–2.56 (m, 2H, C*H*₂), 2.35–2.38 (m, 2H, C*H*₂), 2.08–2.12 (m, 2H, C*H*₂); ¹³C NMR (100 MHz, CDCl₃): δ = 189.0, 164.1, 153.3, 136.3, 132.9, 131.6, 131.3, 127.2, 123.4, 111.8, 36.9, 25.0, 22.0; HRMS (ESI-TOF): *m/z* calcd for C₁₃H₁₂BrN₂OS [(M+H)⁺], 322.9848; found, 322.9846.

2-imino-3-phenyl-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4h)

Yellow solid; Mp 129–130 °C; IR (KBr): 3322, 1641, 1609, 1417, 1359, 1058, 744 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.50–7.58 (m, 3H, Ar*H*), 7.32 (d, *J* = 8.0 Hz, 2H, Ar*H*), 2.52–2.55 (m, 2H, C*H*₂), 2.34–2.37 (m, 2H, C*H*₂), 2.08–2.11 (m, 2H, C*H*₂); ¹³C NMR (100 MHz, CDCl₃): δ = 189.1, 164.7, 154.0, 134.9, 130.2, 129.8, 128.3, 111.3, 36.9, 25.0, 22.0; HRMS (ESI-TOF): *m*/*z* calcd for C₁₃H₁₃N₂OS [(M+H)⁺], 245.0743; found, 245.0742.

2-imino-3-(p-tolyl)-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4i)

White solid; Mp 148–149 °C; IR (KBr): 3285, 1620, 1568, 1416, 1358, 1068, 814 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.34 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.19 (d, *J* = 8.0 Hz, 2H, Ar*H*), 2.50–2.53 (m, 2H, C*H*₂), 2.42 (s, 3H, C*H*₃), 2.34–2.37 (m, 2H, C*H*₂), 2.07–2.10 (m, 2H, C*H*₂); ¹³C NMR (100 MHz, CDCl₃): δ = 189.1, 164.8, 154.3, 140.0, 132.2, 130.8, 128.0, 111.1, 36.9, 24.9, 21.9, 21.3; HRMS (ESI-TOF): *m*/*z* calcd for C₁₄H₁₅N₂OS [(M+H)⁺], 259.0900; found, 259.0899.

2-imino-3-(*m*-tolyl)-2,3,5,6-tetrahydrobenzo[*d*]thiazol-7(4*H*)-one (4j)

Light yellow solid; Mp 154–156 °C; IR (KBr): 3196, 1596, 1408, 1361, 1312, 1195, 1009 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.43 (t, *J* = 8.0 Hz, 1H, Ar*H*), 7.30 (d, *J* = 8.0 Hz, 1H, Ar*H*), 7.09–7.13 (m, 2H, Ar*H*), 2.51–2.54 (m, 2H, C*H*₂), 2.42 (s, 3H, C*H*₃), 2.34–2.37 (m, 2H, C*H*₂), 2.07–2.11 (m, 2H, C*H*₂); ¹³C NMR (100 MHz, CDCl₃): δ = 189.1, 164.8, 154.2, 140.4, 134.8, 130.6, 130.0, 128.8, 125.3, 111.1, 36.9, 25.0, 22.0, 21.4; HRMS (ESI-TOF): *m/z* calcd for C₁₄H₁₅N₂OS [(M+H)⁺], 259.0900; found, 259.0900.

2-imino-3-(o-tolyl)-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4k)

Yellow oily liquid; IR (KBr): 3245, 1647, 1594, 1404, 1354, 1196, 1003 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.34–7.42 (m, 3H, Ar*H*), 7.21 (d, *J* = 8.0 Hz, 1H, Ar*H*), 2.52–2.56 (m, 2H, C*H*₂), 2.22 (m, 3H, C*H*₃), 2.17–2.21 (m, 1H, C*H*₂), 2.04–2.11 (m, 3H, C*H*₂); ¹³C NMR (100 MHz, CDCl₃): δ = 188.8, 164.1, 154.0, 136.7, 133.8, 131.8, 130.3, 128.7, 127.8, 111.5, 36.9, 24.5, 22.0, 17.4; HRMS (ESI-TOF): *m/z* calcd for C₁₄H₁₅N₂OS

[(M+H)⁺], 259.0900; found, 259.0900.

2-imino-3-(4-methoxyphenyl)-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4l)

Yellow solid; Mp 146–148 °C; IR (KBr): 3257, 1639, 1512, 1361, 1246, 1075, 1008 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.70 (br, 1H, C=N*H*), 7.31 (d, *J* = 8.8 Hz, 2H, Ar*H*), 7.06 (d, *J* = 8.8 Hz, 2H, Ar*H*), 3.80 (s, 3H, OC*H*₃), 2.39 (t, *J* = 6.0 Hz, 2H, C*H*₂), 2.31 (t, *J* = 6.0 Hz, 2H, C*H*₂), 1.93–1.99 (m, 2H, C*H*₂); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 188.9, 161.3, 159.8, 156.1, 130.3, 128.4, 115.1, 109.2, 55.9, 36.9, 24.9, 21.9; HRMS (ESI-TOF): *m*/*z* calcd for C₁₄H₁₅N₂O₂S [(M+H)⁺], 275.0849; found, 275.0842.

2-imino-5,5-dimethyl-3-(4-nitrophenyl)-2,3,5,6-tetrahydrobenzo[*d*]thiazol-7(4*H*)-one (4m)

Yellow solid; Mp 142–143 °C; IR (KBr): 3289, 1638, 1520, 1404, 1342, 1042, 738 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.55 (t, *J* = 4.0 Hz, 2H, Ar*H*), 2.43 (s, 2H, C*H*₂), 2.26 (s, 2H, C*H*₂), 1.12 (s, 6H, 2 × C*H*₃); ¹³C NMR (100 MHz, CDCl₃): δ = 188.5, 163.6, 150.7, 147.9, 140.8, 129.7, 111.4, 50.9, 38.8, 34.7, 28.4; HRMS (ESI-TOF): *m/z* calcd for C₁₅H₁₆N₃O₃S [(M+H)⁺], 318.0907; found, 318.0908.

3-(4-fluorophenyl)-2-imino-5,5-dimethyl-2,3,5,6-tetrahydrobenzo[*d*]thiazol-7(4*H*)-one (4n)

Yellow solid; Mp 148–149 °C; IR (KBr): 3218, 1648, 1510, 1351, 1226, 1157, 1048 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.29–7.33 (m, 2H, Ar*H*), 7.23–7.27 (m, 2H, Ar*H*), 2.41 (s, 2H, C*H*₂), 2.21 (s, 2H, C*H*₂), 1.10 (s, 6H, 2 × C*H*₃); ¹³C NMR (100 MHz, CDCl₃): δ = 188.6, 164.7, 162.8 (d, ¹*J* _{C-F} = 249.0 Hz), 130.9 (d, ³*J* _{C-F} = 3.0 Hz), 130.4, 130.3, 117.4 (d, ²*J* _{C-F} = 22.0 Hz), 117.2 (d, ²*J* _{C-F} = 22.0 Hz), 110.1, 50.9, 38.6, 34.4, 28.4; HRMS (ESI-TOF): *m*/*z* calcd for C₁₅H₁₆FN₂OS [(M+H)⁺], 291.0962; found, 291.0962.

3-(3-fluorophenyl)-2-imino-5,5-dimethyl-2,3,5,6-tetrahydrobenzo[*d*]thiazol-7(4*H*)one (40)

Yellow solid; Mp 180–182 °C; IR (KBr): 3296, 1612, 1492, 1361, 1225, 1045, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.56 (t, *J* = 8.0 Hz, 1H, Ar*H*), 7.22 (t, *J* = 8.0 Hz, 2H, Ar*H*), 7.12 (AB, *J* = 8.0 Hz, 1H, Ar*H*), 7.07 (AB, *J* = 8.0 Hz, 1H, Ar*H*), 2.41 (s, 2H, C*H*₂), 2.23 (s, 2H, C*H*₂), 1.11 (s, 6H, 2 × C*H*₃); ¹³C NMR (100 MHz, CDCl₃): δ = 188.6, 164.3, 163.0 (d, ¹*J* _{C-F} = 236.0 Hz), 151.8, 136.3, 131.3 (d, ³*J* _{C-F} = 9.0 Hz), 124.3, 117.9 (d, ²*J* _{C-F} = 19.0 Hz), 116.2 (d, ²*J* _{C-F} = 23.0 Hz), 110.3, 50.9, 38.6, 34.5, 28.4; HRMS (ESI-TOF): *m*/*z* calcd for C₁₅H₁₆FN₂OS [(M+H)⁺], 291.0962; found, 291.0962. **3-(4-chlorophenyl)-2-imino-5,5-dimethyl-2,3,5,6-tetrahydrobenzo**[*d*]thiazol-7(4*H*)-

one (4p)

Yellow solid; Mp 129–130 °C; IR (KBr): 3283, 1646, 1491, 1351, 1322, 1089, 1018 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.53 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.26 (d, *J* = 8.4 Hz, 2H, Ar*H*), 2.41 (s, 2H, C*H*₂), 2.21 (s, 2H, C*H*₂), 1.10 (s, 6H, 2 × C*H*₃); ¹³C NMR (100 MHz, CDCl₃): δ = 188.6, 164.5, 151.9, 135.7, 133.5, 130.4, 129.8, 110.3, 50.9, 38.7, 34.5, 28.4; HRMS (ESI-TOF): *m*/*z* calcd for C₁₅H₁₆ClN₂OS [(M+H)⁺], 307.0666; found, 307.0665.

3-(3-chlorophenyl)-2-imino-5,5-dimethyl-2,3,5,6-tetrahydrobenzo[*d*]thiazol-7(4*H*)-one (4q)

Yellow solid; Mp 98–99 °C; IR (KBr): 3252, 1649, 1480, 1411, 1361, 1044, 864 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.47–7.51 (m, 2H, Ar*H*), 7.34 (s, 1H, Ar*H*), 7.21–7.24 (m, 1H, Ar*H*), 2.39 (s, 2H, C*H*₂), 2.23 (s, 2H, C*H*₂), 1.10 (s, 6H, 2 × C*H*₃); ¹³C NMR (100 MHz, CDCl₃): δ = 188.5, 164.1, 151.8, 135.5, 135.4, 131.1, 129.9, 128.8, 126.8, 110.3, 50.9, 38.6, 34.5, 28.4; HRMS (ESI-TOF): *m*/*z* calcd for C₁₅H₁₆ClN₂OS [(M+H)⁺], 307.0666; found, 307.0665.

3-(2-chlorophenyl)-2-imino-5,5-dimethyl-2,3,5,6-tetrahydrobenzo[*d*]thiazol-7(4*H*)-one (4r)

Yellow brown solid; Mp 138–140 °C; IR (KBr): 3311, 1643, 1590, 1410, 1351, 1039, 749 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.60–7.63 (m, 1H, Ar*H*), 7.46–7.50 (m, 2H, Ar*H*), 7.38–7.41 (m, 1H, Ar*H*), 2.37–2.42 (m, 2H, C*H*₂), 2.06–2.11 (m, 2H, C*H*₂), 1.11 (s, 3H, C*H*₃), 1.08 (s, 3H, C*H*₃); ¹³C NMR (100 MHz, CDCl₃): δ = 188.6, 163.5, 152.3, 133.2, 132.8, 131.5, 131.0, 130.9, 128.6, 110.3, 51.0, 38.0, 34.4, 28.9, 27.9; HRMS (ESI-TOF): *m/z* calcd for C₁₅H₁₆ClN₂OS [(M+H)⁺], 307.0666; found, 307.0667.

3-(4-bromophenyl)-2-imino-5,5-dimethyl-2,3,5,6-tetrahydrobenzo[*d*]thiazol-7(4*H*)-one (4s)

Yellow solid; Mp 115–117 °C; IR (KBr): 3208, 1649, 1602, 1512, 1255, 1048, 848 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.77 (d, *J* = 8.4 Hz, 2H, Ar*H*), 7.41 (d, *J* = 8.4 Hz, 2H, Ar*H*), 2.34 (s, 2H, C*H*₂), 2.28 (s, 2H, C*H*₂), 1.11 (s, 6H, 2 × C*H*₃); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 188.8, 162.5, 153.4, 134.7, 133.2, 133.0, 131.3, 123.1, 109.6, 50.8, 39.4, 34.6, 28.2; HRMS (ESI-TOF): *m*/*z* calcd for C₁₅H₁₆BrN₂OS [(M+H)⁺], 351.0161; found, 351.0161.

3-(3-bromophenyl)-2-imino-5,5-dimethyl-2,3,5,6-tetrahydrobenzo[*d*]thiazol-7(4*H*)-one (4t)

Yellow solid; Mp 103–104 °C; IR (KBr): 3259, 1614, 1572, 1479, 1361, 1043, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.63–7.66 (m, 1H, Ar*H*), 7.42–7.48 (m, 2H, Ar*H*), 7.25–7.28 (m, 1H, Ar*H*), 2.41 (s, 2H, C*H*₂), 2.21 (s, 2H, C*H*₂), 1.11 (s, 6H, 2 × C*H*₃); ¹³C NMR (100 MHz, CDCl₃): δ = 188.6, 164.4, 151.7, 136.3, 132.9, 131.6, 131.3, 127.3, 123.4, 110.5, 50.9, 38.7, 34.5, 28.4; HRMS (ESI-TOF): *m*/*z* calcd for C₁₅H₁₆BrN₂OS [(M+H)⁺], 351.0161; found, 351.0159.

2-imino-5,5-dimethyl-3-phenyl-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4u)

Light yellow solid; Mp 142–144 °C; IR (KBr): 3281, 1646, 1573, 1359, 1320, 1044, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.53–7.57 (m, 2H, Ar*H*), 7.48–7.50 (m, 1H, Ar*H*), 7.31 (d, *J* = 8.0 Hz, 2H, Ar*H*), 2.38 (s, 2H, C*H*₂), 2.23 (s, 2H, C*H*₂), 1.11 (s, 6H, 2 × C*H*₃); ¹³C NMR (100 MHz, CDCl₃): δ = 188.4, 164.3, 152.5, 134.8, 130.1, 129.5, 128.4, 109.6, 50.8, 38.5, 34.3, 28.3; HRMS (ESI-TOF): *m*/*z* calcd for C₁₅H₁₇N₂OS [(M+H)⁺], 273.1056; found, 273.1056.

2-imino-5,5-dimethyl-3-(p-tolyl)-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4v)

Yellow solid; Mp 147–149 °C; IR (KBr): 3298, 1648, 1511, 1410, 1349, 1047, 740 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.28 (d, *J* = 8.0 Hz, 2H, Ar*H*), 7.09 (d, *J* = 8.0 Hz, 2H, Ar*H*), 2.35 (s, 3H, C*H*₃), 2.32 (s, 2H, C*H*₂), 2.14 (s, 2H, C*H*₂), 1.01 (s, 6H, 2 × C*H*₃); ¹³C NMR (100 MHz, CDCl₃): δ = 188.7, 165.1, 152.6, 140.0, 132.2, 130.9, 128.1, 109.7, 51.0, 38.7, 34.4, 28.4, 21.3; HRMS (ESI-TOF): *m*/*z* calcd for C₁₆H₁₉N₂OS [(M+H)⁺], 287.1213; found, 287.1213.

2-imino-5,5-dimethyl-3-(m-tolyl)-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4w)

Yellow solid; Mp 99–100 °C; IR (KBr): 3120, 1640, 1614, 1399, 1248, 1150, 1046 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.42 (t, *J* = 8.0 Hz, 1H, Ar*H*), 7.30 (t, *J* = 8.0 Hz, 1H, Ar*H*), 7.06–7.10 (m, 2H, Ar*H*), 2.43 (s, 3H, C*H*₃), 2.40 (s, 2H, C*H*₂), 2.20 (s, 2H, C*H*₂), 1.19 (s, 6H, 2 × C*H*₃); ¹³C NMR (100 MHz, CDCl₃): δ = 188.6, 165.1, 152.5, 140.5, 134.9, 130.6, 130.0, 128.8, 125.3, 109.9, 51.0, 38.7, 34.5, 28.4, 21.4; HRMS (ESI-TOF): *m*/*z* calcd for C₁₆H₁₉N₂OS [(M+H)⁺], 287.1213; found, 287.1212.

2-imino-3-(4-methoxyphenyl)-5,5-dimethyl-2,3,5,6-tetrahydrobenzo[*d*]thiazol-7(4*H*)one (4x)

Yellow solid; Mp 98–100 °C; IR (KBr): 3219, 1637, 1511, 1351, 1248, 1169, 1026 cm⁻¹; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.29–7.33 (m, 2H, Ar*H*), 7.08–7.12 (m, 2H, Ar*H*), 3.84 (s, 3H, OC*H*₃), 2.34 (s, 2H, C*H*₂), 2.26 (s, 2H, C*H*₂), 1.02 (s, 6H, 2 × C*H*₃); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 187.4, 160.7, 158.9, 153.2, 129.4, 127.4, 114.3, 107.0, 55.0, 49.9, 37.5, 33.4, 27.3; HRMS (ESI-TOF): *m*/*z* calcd for C₁₆H₁₉N₂O₂S [(M+H)⁺], 303.1162; found, 303.1177. 3-butyl-2-imino-5,5-dimethyl-2,3,5,6-tetrahydrobenzo[d]thiazol-7(4H)-one (4y)

Oily liquid; IR (KBr): 2959, 1644, 1591, 1351, 1032, 924, 577 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 3.76 (t, *J* = 8.0 Hz, 2H, CH₂), 2.51 (s, 2H, CH₂), 2.38 (s, 2H, CH₂), 1.64–1.68 (m, 2H, CH₂), 1.35–1.41 (m, 2H, CH₂), 1.15 (s, 6H, 2 × CH₃), 0.96 (t, *J* = 8.0 Hz, 3H, CH₃),; ¹³C NMR (100 MHz, CDCl₃): δ = 188.0, 163.7, 152.8, 108.9, 50.7, 43.8, 37.9, 34.4, 30.3, 28.6, 20.1, 13.8; HRMS (ESI-TOF): *m*/*z* calcd for C₁₃H₂₁N₂OS [(M+H)⁺], 253.1369; found, 253.1361.

Spectroscopic Data of α-bromo enaminone 5

2-bromo-5,5-dimethyl-3-(p-tolylamino)cyclohex-2-enone (5)

White solid; ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.28 (s, 1H, C*H*), 7.20–7.23 (m, 2H, Ar*H*), 7.02–7.04 (m, 2H, Ar*H*), 2.42 (s, 2H, C*H*₂), 2.38 (s, 5H, C*H*₂₊C*H*₃), 2.26 (s, 2H, C*H*₂), 1.03 (s, 6H, 2 × C*H*₃); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 188.0, 157.8, 137.1, 134.7, 130.1, 125.9, 96.3, 50.8, 41.1, 32.7, 28.0, 21.0; HRMS (ESI-TOF): *m/z* calcd for C₁₆H₁₈BrNNaO [(M+H)⁺], 330.0464; found, 330.0479.

¹H NMR and ¹³C NMR Spectra for 2-iminothiazoles 4

Figure 1. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4a

Figure 2. ¹³C NMR (400 MHz, CDCl₃) spectra of compound 4a

N-23.12.fid

Figure 3. ¹H NMR (400 MHz, CDCl₃) spectra of compound **4b**

Figure 4. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4b

Figure 5. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4c

Figure 8. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4d

Figure 9. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4e

Figure 10. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4e

Figure 11. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4f

N-26.12.fid

Figure 13. ¹H NMR (400 MHz, CDCl₃) spectra of compound **4g**

Figure 14. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4g

Figure 15. ¹H NMR (400 MHz, CDCl₃) spectra of compound **4h**

22014000178.18.fid N-13 CDC13

Figure 14. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4i

N-18.12.fid

Figure 18. ¹³C NMR (100 MHz, CDCl₃) spectra of compound **4i**

Figure 19. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4j

Figure 20. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4j

22014000178.12.fid N-7 CDC13

Figure 21. ¹H NMR (400 MHz, CDCl₃) spectra of compound **4**k

Figure 22. ¹³C NMR (100 MHz, CDCl₃) spectra of compound **4**k

Figure 23. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 4l

Figure 24. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound **4**

Figure 25. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4m

Figure 29. ¹H NMR (400 MHz, CDCl₃) spectra of compound **40**

Figure 30. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 40

Figure 31. ¹H NMR (400 MHz, CDCl₃) spectra of compound **4p**

Figure 33. ¹H NMR (400 MHz, CDCl₃) spectra of compound **4q**

Figure 35. ¹H NMR (400 MHz, CDCl₃) spectra of compound **4r**

Figure 36. ¹³C NMR (100 MHz, CDCl₃) spectra of compound **4r**

Figure 37. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 4s

Figure 38. ¹³C NMR (100 MHz, DMSO- d_6) spectra of compound 4s

Figure 39. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4t

Figure 40. ¹³C NMR (100 MHz, CDCl₃) spectra of compound **4t**

Figure 41. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4u

Figure 42. ¹³C NMR (100 MHz, CDCl₃) spectra of compound 4u

Figure 44. ¹³C NMR (100 MHz, CDCl₃) spectra of compound **4**v

Figure 46. ¹³C NMR (100 MHz, CDCl₃) spectra of compound **4**w

Figure 47. ¹H NMR (400 MHz, DMSO- d_6) spectra of compound 4x

Figure 48. 13 C NMR (100 MHz, DMSO- d_6) spectra of compound 4x

Figure 49. ¹H NMR (400 MHz, CDCl₃) spectra of compound 4y

Figure 51. ¹H NMR (400 MHz, CDCl₃) spectra of compound **5**v

