Supporting Information

Synthesis of pyrrolo[1,2-*a*]naphthyridines by Lewis acid mediated cycloisomerization

Anika Flader,^{*a,b*} Silvio Parpart,^{*a*} Peter Ehlers,^{*a,b*} and Peter Langer*^{*a,b*}

^a Universität Rostock, Institut für Chemie, Albert-Einstein-Str. 3a, 18059 Rostock E-mail: peter.langer@uni-rostock.de

^b Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock

Contents

General Information	2
Materials	2
Preparation of [1,8]naphthyridines	2
Starting materials	2
Optimization of Sonogashira reaction giving 3-alynyl-2-pyrrolopyridines	3
Sonogashira reaction giving 2a–m	4
Cycloisomerization to give [1,8]naphthyridines 3a–m	11
Preparation of [1,6]naphthyridines	18
Starting materials	18
Optimization of Sonogashira reaction giving 3-alynyl-4-pyrrolopyridines	19
Sonogashira reaction giving 4a-n	19
Cycloisomerization to give [1,6]naphthyridines 5a-n	27
¹ H/ ¹³ C/ ¹⁹ F NMR spectra for all substrates	33

General Information

The nuclear magnetic resonance spectra (1H/13C/19F NMR) were recorded on a Bruker AVANCE 300 III, 250 II or 500. The analyzed chemical shifts δ are referenced to residual solvents signals of the deuterated solvents $CDCl_3$ ($\delta = 7.26 \text{ ppm}/77.2 \text{ ppm}$) DMSO- d_6 $(\delta = 2.50 \text{ ppm}/39.5 \text{ ppm})$ or C₆D₆ ($\delta = 7.16 \text{ ppm}/128.1 \text{ ppm}$). Multiplicities due to spin-spin correlation are reported as follows: s = singlet, brs = broad singlett, d = doublet, t = triplet, m = multiplet and further described through their coupling constants J. Infrared spectra (IR) were measured as attenuated total reflection (ATR) experiments with a Nicolet 6700 FT-IR spectrometer and a Nicolet 550 FT-IR spectrometer. The signals have been characterized through their wave numbers \tilde{v} and their corresponding absorption as strong (s), medium (m) or weak (w). Basic and high resolution mass spectra (MS/HRMS) were measured on instruments which are paired with a preceding gas chromatograph (GC) or liquid chromatograph (LC). The samples have been ionized through electron impact ionization (EI) on an Agilent 6890 N/5973 GC-MS equipped with a HP-5 capillary column using helium carrier gas or by applying electron spray ionization (ESI) on an Agilent 1200/6210 Time-of-Flight (TOF) LC-MS. Melting points (mp) were determined by a Micro-Hot-Stage GalenTM III Cambridge Instruments and are not corrected.

Materials

The applied solvents toluene, xylene, MeCN, DCE, DCM were obtained as dry solvents through commercial sources and employed without further purification. Solvents for extraction and column chromatography were available after previous distillation. Other reagents, catalysts, ligands, Lewis acids and bases have been utilized in purchased purity. Column chromatography was performed using Merck Silica gel 60 (particle size 63–200 µm).

Preparation of [1,8]naphthyridines

Starting materials

3-Bromo-2-([1H]-pyrrol-1-yl)pyridine 1a. To a solution of 2-amino-3bromopyridine (5.8 mmol, 1.0 g) in 1.5 ml DCE at 80 °C 2,5-dimethoxytetrahydrofuran (1.05 eq., 6.1 mmol, 0.79 ml) was added. A mixture of H₂O/HOAc (2:1, 2 ml) was poured into the solution. The reaction was stirred at 80 °C for 12 h. Thereafter, the crude product was washed with distilled water and extracted with DCM. Following the evaporation of the organic solvent the product 1a was obtained after column chromatography (heptane/DCM, 5:1) as a white solid (978.1 mg, 76%); mp 36–39 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.45$ (dd, ³J = 4.6 Hz, ⁴J = 1.6 Hz, 1H, CH_{pyridine}), 8.03 (dd, ${}^{3}J = 7.9$ Hz, ${}^{4}J = 1.6$ Hz, 1H, CH_{pyridine}), 7.41–7.32 (m, 2H, CH_{pyrrole}), 7.11 (dd, ${}^{3}J$ = 7.9 Hz, ${}^{3}J$ = 4.6 Hz, 1H, CH_{pyridine}), 6.39–6.32 (m, 2H, CH_{pyrrole}) ppm. ${}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 150.1$ (C_{pyridine}), 147.6, 143.7, 122.7 (CH_{pyridine}), 121.5 (CH_{pyrrole}), 112.5 (C_{pyridine}), 110.2 (CH_{pyrrole}) ppm. **MS (EI, 70 eV):** m/z (%) = 224 ([C₉H₇⁸¹BrN₂]⁺, 98), 222 ([C₉H₇⁷⁹BrN₂]⁺, 100), 198 (16), 197 (42), 196 (17), 195 (41), 158 (12), 156 (12), 143 (20), 142 (18), 117 (12), 116 (60), 89 (20), 78 (12), 76 (25), 63 (12), 51 (18), 50 (17), 39 (18). **HRMS (ESI-TOF):** $m/z = \text{calcd. for } C_9 H_7^{79} \text{BrN}_2$ ([M+H]⁺) 222.98654, found 222.98668. Calcd. for C₉H₇⁸¹BrN₂ ([M+H]⁺) 224.98453, found 224.98458.

		Br NNN +	Ph	[Pd]		Ph		
		1a			2a			
entry	catalyst	ligand	base	eq.	solvent	temp.	time [h]	yield
	(0.03 eq.)	(0.06 eq.)				[°C]		[%] ^c
1	PdCl ₂ (PPh ₃) ₂	_	NEt ₃	3	DMF	100	24	20
2	$PdCl_2(PPh_3)_2$	$P(tBu)_3$	NEt ₃	3	DMF	100	24	_
3	$PdCl_2(PPh_3)_2$	_	_	_	Et ₂ NH	r.t.	48	63
4	$PdCl_2(PPh_3)_2$	-	_	_	NEt ₃	r.t.	48	_
5^b	$PdCl_2(PPh_3)_2$	-	NEt ₃	3	DMF	80	3	d
6	$Pd(OAc)_2$	PCy ₃	NEt ₃	1.5	THF	50	48	_
7	$Pd(OAc)_2$	XPhos	NEt ₃	1.5	THF	50	48	d
8	$PdCl_2(PPh_3)_2$	_	NEt ₃	3	dioxane	50	4	45
9	$P(PPh_3)_4$	_	NEt ₃	3	dioxane	50	4	-
10	$PdCl_2(PPh_3)_2$	-	NEt ₃	3	MeCN	50	16	88
11	Pd(OAc) ₂	CataCXium A	NEt ₃	3	MeCN	50	16	92

Optimization of Sonogashira reaction giving 3-alynyl-2-pyrrolopyridines^a

^{*a*}reaction condotions: 1a (0.5 mmol, 111.5 mg) and phenylacetylene (1.5 eq., 0.75 mmol, 82 μ l) react with CuI (0.02 eq., 0.01 mmol, 1.9 mg) in 2 ml of solvent in a glas tube under argon. ^{*b*}reaction with phenylacetylene (3 eq.). ^{*c*}isolated yields. ^{*d*}occurence of inseparable mixtures.

The following Sonogashira couplings were carried out employing the reaction conditions of **entry 10** sufficiently. These are economically advantageous with regards to **entry 11** which requires a sophisticated ligand.

Sonogashira reaction giving 2a-m

General procedure

1a was dissolved in 3 ml MeCN under an argon atmosphere. After the addition of $PdCl_2(PPh_3)_2$ (0.03 eq.), CuI (0.02 eq.) and Et₃N (3 eq.) in advance of the corresponding acetylene (1.2 eq.) the reaction is stirred at 50 °C for 24 h. The reaction mixture was subsequently cooled to room temperature and washed with distilled water and extracted with DCM. The combined organic layers were collected and the solvent evaporated. The crude product was thereafter purified by column chromatography (heptane/DCM, 5:1) to give the alkynylated products **2a–m**. Thereby, 1–2 ml Et₃N were added to 250 ml eluent mixture to deactivate the acidic silica.

Substrate characterization

3-(Phenylethynyl)-2-([1*H***]-pyrrol-1-yl)pyridine 2a. The reaction of 1a (0.9 mmol, 200 mg) with phenylacetylene (1.08 mmol, 118.3 µl) gave 2a as a pale brown solid (382 mg, 88%); mp 82–84 °C. ¹H NMR (300 MHz, CDCl₃):** $\delta = 8.43$ (dd, ³*J* = 4.8 Hz, ⁴*J* = 1.9 Hz, 1H, CH_{pyridine}), 7.96 (dd, ³*J* = 7.7 Hz, ⁴*J* = 1.9 Hz, 1H, CH_{pyridine}), 7.85–7.80 (m, 2H, CH_{pyrrole}), 7.57–7.50 (m, 2H, CH_{Ph}), 7.42–7.34 (m, 3H, CH_{Ph}), 7.16 (dd, ³*J* = 7.7 Hz, ³*J* = 4.8 Hz, 1H, CH_{pyridine}), 6.39–6.35 (m, 2H, CH_{pyrrole}) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 151.3$ (C_{pyridine}), 147.9, 143.4 (CH_{pyridine}), 131.6, 129.1, 128.6 (CH_{Ph}), 122.6 (C_{Ph}), 120.8 (CH_{pyrrole}), 120.2 (CH_{pyridine}), 110.5 (CH_{pyrrole}), 110.4 (C_{pyridine}), 96.1, 85.7 (C_{alkyne}) ppm. IR (ATR): $\tilde{v} = 3052$ (w), 1562 (w), 1469 (w), 1437 (m), 1336 (w), 1060 (w), 800 (w), 728 (m), 687 (m), 624 (w), 553 (w) cm⁻¹. MS

 $\sim S4 \sim$

(EI, 70 eV): m/z (%) = 244 ([M]⁺, 100), 243 (77), 242 (43), 241 (5), 218 (11), 216 (8), 215 (5),

214 (6), 190 (6), 189 (5), 177 (6), 151 (6), 150 (9), 121 (11), 109 (6), 77 (5), 75 (5), 51 (5), 39 (5). **HRMS (EI):** m/z = calcd. for C₁₇H₁₂N₂ (M⁺) 244.09950, found 244.09919.

3-((2-Fluorophenyl)ethynyl)-2-([1*H*]-pyrrol-1-yl)pyridine 2b. 2-ethynyl-1-fluorobenzene (0.6 mmol, 78 μ l) reacted with 1a (0.5 mmol, 111.5 mg) to 2b as a pale brown oil (106 mg, 81%); $R_{\rm f}$ 0.39 (heptane/ethyl acetate 5:1).

¹**H** NMR (250 MHz, CDCl₃): $\delta = 8.44$ (dd, ³*J* = 4.8 Hz, ⁴*J* = 1.9 Hz, 1H, CH_{pyridine}), 7.97 (dd, ³*J* = 7.7 Hz, ⁴*J* = 1.9 Hz, 1H, CH_{pyridine}), 7.88–7.83 (m, 2H, CH_{pyrrole}), 7.50 (ddd, ³*J* = 7.7 Hz, ³*J* = 7.1 Hz, ⁴*J* = 2.0 Hz, 1H, CH_{Ar}), 7.39–7.33 (m, 1H, CH_{Ar}), 7.15 (dd, ³*J* = 7.6 Hz, ³*J* = 4.8 Hz, 1H, CH_{pyridine}), 7.21–7.11 (m, 2H, CH_{Ar}), 6.40–6.35 (m, 2H, CH_{pyrrole}) ppm. ¹⁹**F** NMR (235 MHz, CDCl₃): $\delta = -109.1$ ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 162.92$ (d, ¹*J*_{C,F} = 252.7 Hz, C-F), 151.2 (C_{pyridine}), 148.4, 143.6 (CH_{pyridine}), 133.32 (d, ⁴*J*_{C,F} = 1.3 Hz, CH_{Ar}), 130.87 (d, ³*J*_{C,F} = 8.0 Hz, CH_{Ar}), 124.24 (d, ³*J*_{C,F} = 3.7 Hz, CH_{Ar}), 120.7 (CH_{pyrrole}), 120.1 (CH_{pyridine}), 115.80 (d, ²*J*_{C,F} = 20.6 Hz, CH_{Ar}), 111.31 (d, ²*J*_{C,F} = 15.6 Hz, C_{Ar}), 110.5 (CH_{pyrrole}), 110.2 (C_{pyridine}), 90.54 (d, ³*J*_{C,F} = 3.2 Hz, C_{alkyne}), 89.6 (C_{alkyne}) ppm. **IR** (ATR): $\tilde{v} = 3065$ (br, w), 2921 (w), 1708 (br, w), 1560 (m), 1472 (m), 1434 (m), 1224 (m), 1095 (m), 1058 (m), 797 (m), 754 (s), 728 (s), 544 (m), 470 (m) cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 262 ([M]⁺, 100), 261 (61), 260 (33), 243 (6), 242 (8), 236 (10), 234 (5), 168 (5), 130 (5), 118 (5). HRMS (ESI-TOF): *m/z* = calculated for C₁₇H₁₁FN₂ ([M+H]⁺) 263.09790, found 263.09786.

> 3-((4-Fluorophenyl)ethynyl)-2-([1*H*]-pyrrol-1-yl)pyridine 2c. 1a (0.5 mmol, 111.5 mg) and 4-ethynyl-1-fluorobenzene (0.6 mmol, 68.8 µl) achieved 2c as a yellow solid (113 mg, 86%); mp 78–82 °C. ¹H NMR (250 MHz, CDCl₃): δ = 8.43 (dd, ³*J* = 4.8 Hz, ⁴*J* = 1.9 Hz, 1H, CH_{pyridine}),

7.93 (dd, ${}^{3}J$ = 7.7 Hz, ${}^{4}J$ = 1.9 Hz, 1H, CH_{pyridine}), 7.83–7.72 (m, 2H, CH_{pyrrole}), 7.56–7.46 (m, 2H, CH_{Ar}), 7.15 (dd, ${}^{3}J$ = 7.7 Hz, ${}^{3}J$ = 4.8 Hz, 1H, CH_{pyrrole}), 7.12–7.02 (m, 2H, CH_{Ar}), 6.38 (dt, ${}^{3}J$ = 3.8 Hz, ${}^{4}J$ = 2.3 Hz, 2H, CH_{pyrrole}) ppm. ¹⁹F NMR (235 MHz, CDCl₃): δ = -109.4 ppm. ¹³C NMR (63 MHz, CDCl₃): δ = 162.98 (d, ${}^{1}J_{C,F}$ = 250.9 Hz, C-F), 151.3 (C_{pyridine}), 148.0, 143.1 (CH_{pyridine}), 133.50 (d, ${}^{3}J_{C,F}$ = 8.5 Hz, CH_{Ar}), 120.7 (CH_{pyrrole}), 120.2 (CH_{pyridine}), 118.67 (d, ${}^{4}J_{C,F}$ = 3.5 Hz, C_{Ar}), 115.97 (d, ${}^{2}J_{C,F}$ = 22.2 Hz, CH_{Ar}), 110.4 (CH_{pyrrole}), 110.1 (C_{pyridine}), 94.9 (C_{alkyne}), 85.40 (d, ${}^{5}J_{C,F}$ = 1.6 Hz, C_{alkyne}) ppm. IR (ATR): \tilde{v} = 3049 (w), 1600 (w), 1562 (w), 1505 (w), 1472 (w), 1439 (w), 1216 (w), 1056 (w), 833 (w), 806 (w), 728 (m), 640 (w), 620 (w), 532 (w), 522 (w) cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 262 ([M]+, 100),

261 (75), 260 (39), 236 (12), 234 (7), 232 (5), 208 (5), 195 (5), 169 (5), 168 (7), 130 (5), 118 (5), 39 (5). **HRMS (EI):** m/z = calcd. for C₁₇H₁₁FN₂ (M⁺) 262.09008, found 262.08955.

3-((4-Methylphenyl)ethynyl)-2-([1H]-pyrrol-1-yl)pyridine 2d. Me 4-Ethynyltoluene (0.6 mmol, 76 µl) and 1a (0.5 mmol, 111.5 mg) gave 2d as a yellow solid (101 mg,78%); mp 71-75 °C. ¹H NMR (250 MHz, **CDCl₃**): $\delta = 8.42$ (dd, ${}^{3}J = 4.8$ Hz, ${}^{4}J = 1.9$ Hz, 1H, CH_{pyridine}), 7.94 (dd, ${}^{3}J = 7.7 \text{ Hz}, {}^{4}J = 1.9 \text{ Hz}, 1\text{H}, \text{CH}_{\text{pyridine}}, 7.89-7.79 \text{ (m, 2H, CH}_{\text{pyrrole}}), 7.43 \text{ (d, }{}^{3}J = 8.1 \text{ Hz}, 2\text{H},$ CH_{Ar}), 7.18 (d, ${}^{3}J = 8.6$ Hz, 2H, CH_{Ar}), 7.14 (dd, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 4.7$ Hz, 1H, CH_{pvridine}), 6.43–6.33 (m, 2H, CH_{pyrrole}), 2.39 (s, 3H, Me) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 151.2$ (C_{pvridine}), 147.7, 143.2 (CH_{pvridine}), 139.4 (C-Me), 131.4, 129.4 (CH_{Ar}), 120.7 (CH_{pvrrole}), 120.2 (CH_{pyridine}), 119.5 (C_{Ar}), 110.5 (C_{pyridine}), 110.3 (CH_{pyrrole}), 96.3, 85.1 (C_{alkyne}), 21.7 (Me) ppm. **IR (ATR):** $\tilde{v} = 3030$ (w), 2916 (w), 1703 (br, w), 1565 (w), 1474 (w), 1439 (w), 1339 (w), 1311 (w), 1099 (w), 1060 (w), 1017 (w), 818 (w), 733 (m), 529 (w) cm⁻¹.MS (EI, **70 eV):** m/z (%) = 258 ([M]⁺, 100), 257 (47), 256 (12), 255 (17), 243 (15), 242 (36), 232 (7), 231 (6), 128 (6), 39 (5). HRMS (ESI-TOF): $m/z = \text{calcd. for } C_{18}H_{14}N_2 ([M+H]^+) 259.12297$, found 259.12281.

 t_{Bu} 3-((4-*tert*-Butylphenyl)ethynyl)-2-([1*H*]-pyrrol-1-yl)pyridine 2e. The reaction of 1a (0.5 mmol, 111.5 mg) with 4-*tert*-butylphenylacetylene (0.6 mmol, 108 μl) resulted in the product 2e as a pale brown oil (155 mg, 98%); R_f 0.45 (heptane/ethyl acetate 5:1). ¹H NMR (300 MHz,

CDCl₃): $\delta = 8.42$ (dd, ${}^{3}J = 4.8$ Hz, ${}^{4}J = 1.9$ Hz, 1H, CH_{pyridine}), 7.94 (dd, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.9$ Hz, 1H, CH_{pyridine}), 7.86–7.79 (m, 2H, CH_{pyrrole}), 7.48 (d, ${}^{3}J = 8.6$ Hz, 2H, CH_{Ar}), 7.40 (d, ${}^{3}J = 8.7$ Hz, 2H, CH_{Ar}), 7.15 (dd, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 4.8$ Hz, 1H, CH_{pyridine}), 6.43–6.35 (m, 2H, CH_{pyrrole}), 1.34 (s, 9H, CH_{3tBu}) ppm. ¹³**C NMR (63 MHz, CDCl₃):** $\delta = 152.5$ (C_{pyridine}), 147.8, 143.2 (CH_{pyridine}), 131.3, 125.7 (CH_{Ar}), 120.7 (CH_{pyrrole}), 120.2 (CH_{pyridine}), 119.6 (C_{Ar}), 110.5 (C_{pyridine}), 110.3 (CH_{pyrrole}), 110.2 (C-*t*Bu), 96.3, 85.1 (C_{alkyne}), 35.0 (C_{tBu}), 31.3 (CH_{3tBu}) ppm. **IR (ATR):** $\tilde{\nu} = 2953$ (w), 1562 (w), 1469 (w), 1437 (w), 1338 (w), 1059 (w), 926 (w), 833 (w), 724 (m), 625 (w), 561 (w) cm⁻¹. **MS (EI, 70 eV):** *m/z* (%) = 300 ([M]⁺, 67), 286 (23), 285 (100), 284 (8), 283 (8), 270 (23), 269 (18), 268 (10), 267 (5), 258 (6), 257 (27), 255 (18), 244 (13), 243 (20), 242 (21), 241 (5), 128 (26), 121 (6), 115 (6), 41 (7), 39 (5). **HRMS (EI):** *m/z* = calcd. for C₂₁H₂₀N₂ (M⁺) 300.16210, found 300.16165.

3-((4-Methoxyphenyl)ethynyl)-2-([1*H***]-pyrrol-1-yl)pyridine 2f. 1a (0.25 mmol, 56 mg) and 4-ethynylanisole (0.3 mmol, 40 µl) gave 2f as a solid (61 mg, 89%); mp 61–64 °C. ¹H NMR (300 MHz, CDCl₃**): $\delta = 8.40$ (dd, ³J = 4.8 Hz, ⁴J = 1.9 Hz, 1H, CH_{pyridine}), 7.92 (dd,

 ${}^{3}J = 7.7 \text{ Hz}, {}^{4}J = 1.9 \text{ Hz}, 1\text{ H}, \text{CH}_{\text{pyridine}}), 7.85-7.79 (m, 2\text{H}, \text{CH}_{\text{pyrrole}}), 7.48-7.45 (m, 2\text{H}, \text{CH}_{\text{Ar}}), 7.14 (dd, {}^{3}J = 7.7 \text{ Hz}, {}^{3}J = 4.8 \text{ Hz}, 1\text{H}, \text{CH}_{\text{pyridine}}), 6.94-6.86 (m, 2\text{H}, \text{CH}_{\text{Ar}}), 6.42-6.31 (m, 2\text{H}, \text{CH}_{\text{pyrrole}}), 3.83 (s, 3\text{H}, \text{OMe}) \text{ ppm}. {}^{13}\text{C}$ **NMR (75 MHz, CDCl_3):** $\delta = 160.3 \text{ (C-OMe)}, 151.1 (\text{C}_{\text{pyridine}}), 147.6, 143.0 (\text{CH}_{\text{pyridine}}), 133.1 (\text{CH}_{\text{Ar}}), 120.7 (\text{CH}_{\text{pyrrole}}), 120.2 (\text{CH}_{\text{pyridine}}), 114.7 (\text{C}_{\text{Ar}}), 114.3 (\text{CH}_{\text{Ar}}), 110.7 (\text{C}_{\text{pyridine}}), 110.3 (\text{CH}_{\text{pyrrole}}), 96.2, 84.5 (\text{C}_{\text{alkyne}}), 55.5 (\text{OMe}) \text{ ppm}.$ **IR (ATR):** $\tilde{v} = 3011 \text{ (br, w)}, 2215 (w), 1604 (w), 1508 (m), 1435 (w), 1245 (m), 1173 (w), 1028 (w), 833 (w), 725 (m), 699 (w), 536 (m) \text{ cm}^{-1}.$ **MS (EI, 70 eV):** m/z (%) = 274 ([M]^+, 100), 260 (6), 259 (33), 258 (7), 242 (5), 232 (7), 231 (41), 230 (25), 229 (29), 205 (13), 203 (11), 177 (5), 176 (5), 164 (7), 137 (6), 115 (7), 39 (5). **HRMS (ESI-TOF):** m/z = calcd. for C₁₈H₁₄N₂O ([M+H]^+) 275.11789, found 275.11784.

3-((3-Methylphenyl)ethynyl)-2-([1*H***]-pyrrol-1-yl)pyridine 2g.**

3-ethynyltoluene (0.6 mmol, 77 µl) and **1a** (0.5 mmol, 111.5 mg) gave **2g** as a yellow oil (123 mg, 95%); R_f 0.44 (heptane/ethyl acetate 5:1). **¹H NMR (250 MHz, CDCl₃):** $\delta = 8.43$ (dd, ${}^{3}J = 4.8$ Hz, ${}^{4}J = 1.9$ Hz, 1H,

CH_{pyridine}), 7.94 (dd, ${}^{3}J$ = 7.7 Hz, ${}^{4}J$ = 1.9 Hz, 1H, CH_{pyridine}), 7.90–7.86 (m, 2H, CH_{pyrrole}), 7.40–7.35 (m, 2H, CH_{Ar}), 7.29 (t, ${}^{3}J$ = 7.7 Hz, 1H, CH_{Ar}), 7.24–7.18 (m, 1H, CH_{Ar}), 7.14 (dd, ${}^{3}J$ = 7.7 Hz, ${}^{3}J$ = 4.8 Hz, 1H, CH_{pyridine}), 6.45–6.41 (m, 2H, CH_{pyrrole}), 2.39 (s, 3H, Me) ppm. **{}^{13}C NMR (63 MHz, CDCl_3):** δ = 151.2 (C_{pyridine}), 147.8, 143.1 (CH_{pyridine}), 138.2 (C-Me), 132.0, 129.9, 128.6, 128.4 (CH_{Ar}), 122.3 (C_{Ar}), 120.6 (CH_{pyrrole}), 120.1 (CH_{pyridine}), 110.3 (CH_{pyrrole}), 110.2 (C_{pyridine}), 96.2, 85.3 (C_{alkyne}), 21.3 (Me) ppm. **IR (ATR):** \tilde{v} = 2915 (w), 1705 (br, w), 1558 (w), 1474 (w), 1433 (w), 1308 (w), 1165 (w), 1057 (w), 782 (w), 728 (w), 687 (w), 442 (w), 406 (w) cm⁻¹. **MS (EI, 70 eV):** *m/z* (%) = 258 ([M]⁺, 100), 257 (42), 256 (11), 255 (17), 243 (16), 242 (36), 231 (8), 128 (5). **HRMS (ESI-TOF):** *m/z* = calcd. for C₁₈H₁₄N₂ ([M+H]⁺) 259.12297, found 259.12289.

3-((3-Methoxyphenyl)ethynyl)-2-([1*H*]-pyrrol-1-yl)pyridine 2h. Substrate 1a (0.5 mmol, 111.5 mg) reacted with 3-ethynylanisole (0.6 mmol, 78 µl) to give 2h as a brown oil (152 mg, 98%); $R_{\rm f}$ 0.38 (heptane/ethyl acetate 5:1). ¹H NMR (300 MHz, CDCl₃): δ = 8.43 (dd,

~ S7 ~

³*J* = 4.8 Hz, ⁴*J* = 1.8 Hz, 1H, CH_{pyridine}), 7.95 (dd, ³*J* = 7.7 Hz, ⁴*J* = 1.8 Hz, 1H, CH_{pyridine}), 7.86–7.78 (m, 2H, CH_{pyrole}), 7.30 (d, ³*J* = 7.9 Hz, 1H, CH_{Ar}), 7.15 (dd, ³*J* = 7.8 Hz, ⁴*J* = 4.8 Hz, 1H, CH_{pyridine}), 7.15–7.11 (m, 1H, CH_{Ar}), 7.05 (dd, ⁴*J* = 2.5 Hz, ⁴*J* = 1.4 Hz, 1H, CH_{Ar}), 6.94 (ddd, ³*J* = 8.4 Hz, ⁴*J* = 2.7 Hz, ³*J* = 1.1 Hz, 1H, CH_{Ar}), 6.41–6.29 (m, 2H, CH_{pyrole}), 3.83 (s, 3H, OMe) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 159.5 (C_{Ar}), 151.3 (C_{pyridine}), 148.0, 143.3 (CH_{pyridine}), 129.7, 124.1 (CH_{Ar}), 123.6 (C_{Ar}), 120.8 (CH_{pyrrole}), 120.2 (CH_{pyridine}), 116.4, 115.7 (CH_{Ar}), 110.5 (CH_{pyrrole}), 110.3 (C_{pyridine}), 96.0, 85.5 (C_{alkyne}), 55.5 (OMe) ppm. IR (ATR): \tilde{v} = 2936 (br, w), 2833 (w), 1710 (br, w), 1573 (m), 1475 (m), 1434 (m), 1235 (m), 1038 (m), 868 (m), 708 (m), 730 (m), 684 (m), 551 (m), 461 (w) cm⁻¹. MS (EI, 70 eV): *m/z* (%) =274 ([M]⁺, 100), 273 (23), 244 (12), 243 (17), 242 (19), 241 (7), 231 (24), 230 (18), 229 (23), 205 (8), 204 (7), 203 (10), 164 (8), 115 (6). HRMS (ESI-TOF): *m/z* = calcd. for C₁₈H₁₄N₂O ([M+H]⁺) 275.11789, found 275.11807.

e 3-((4-Methoxy-2-methylphenyl)ethynyl)-2-([1*H*]-pyrrol-1-yl)-

pyridine 2i. The reaction of **1a** (0.5 mmol, 111.5 mg) and 1-ethynyl-4methoxy-2-methylbenzene (0.6 mmol, 87.7 mg) gave **2i** as a yellow oil

(141 mg, 98%); $R_f 0.50$ (heptane/ethyl acetate 5:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 8.40$ (dd, ${}^{3}J = 4.8$ Hz, ${}^{4}J = 1.9$ Hz, 1H, CH_{pyridine}), 7.93 (dd, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.9$ Hz, 1H, CH_{pyridine}), 7.82–7.77 (m, 2H, CH_{pyrole}), 7.42 (d, ${}^{3}J = 8.4$ Hz, 1H, CH_{Ar}), 7.15 (dd, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 4.8$ Hz, 1H, CH_{pyridine}), 6.77 (d, ${}^{4}J = 2.6$ Hz, 1H, CH_{Ar}), 6.73 (dd, ${}^{3}J = 8.4$ Hz, ${}^{4}J = 2.6$ Hz, 1H, CH_{Ar}), 6.38–6.31 (m, 2H, CH_{pyrrole})), 3.82 (s, 3H, OMe), 2.45 (s, 3H, Me) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 160.3$ (C-OMe), 151.0 (C_{pyridine}), 147.6, 143.2 (CH_{pyridine}), 142.4 (C-Me), 133.6 (CH_{Ar}), 120.7 (CH_{pyrrole}), 120.2 (CH_{pyridine}), 115.4 (CH_{Ar}), 114.7 (C_{Ar}), 111.6 (CH_{Ar}), 111.1 (C_{pyridine}), 110.3 (CH_{pyrrole}), 95.5, 88.0 (C_{alkyne}), 55.4 (OMe), 21.2 (Me) ppm. IR (ATR): $\tilde{v} = 2916$ (br, w), 2205 (w), 1706 (br, w), 1602 (m), 1560 (m), 1472 (m), 1433 (m), 1294 (m), 1236 (s), 1036 (m), 797 (m), 727 (m), 561 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 288 ([M]⁺, 58), 287 (100), 273 (19), 272 (17), 271 (8), 261 (8), 256 (7), 255 (10), 245 (14), 244 (21), 243 (42), 242 (18), 230 (7), 229 (8), 218 (10), 205 (9), 151 (6), 128 (6), 122 (7), 39 (7). HRMS (ESI-TOF): m/z = calcd. for C₁₉H₁₆N₂O ([M+H]⁺) 289.13354, found 289.13364.

2-([1*H***]-pyrrol-1-yl)-3-(thiophen-3-ylethynyl)pyridine 2j.** The starting material **1a** (0.5 mmol, 111.5 mg) and 1-ethynyl-4-methoxy-2-methylbenzene (0.6 mmol, 59 μl) delivered **2j** as a yellow oil (117 mg,

94%); $R_f 0.48$ (heptane/ethyl acetate 5:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 8.42$ (dd, ³J = 4.8 Hz, ⁴J = 1.9 Hz, 1H, CH_{pyridine}), 7.92 (dd, ³J = 7.7 Hz, ⁴J = 1.9 Hz, 1H, CH_{pyridine}), 7.87–7.81 (m, 2H, CH_{pyrrole}), 7.57 (dd, ⁴J = 3.0 Hz, ⁴J = 1.2 Hz, 1H,CH_{thioph}), 7.32 (dd, ³J = 5.0 Hz, ⁴J = 3.0 Hz, 1H, CH_{thioph}), 7.21 (dd, ³J = 5.0 Hz, ⁴J = 1.2 Hz, 1H, CH_{thioph}), 7.12 (dd, ³J = 7.7 Hz, ³J = 4.8 Hz, 1H, CH_{pyridine}), 6.44–6.38 (m, 2H, CH_{pyrrole}) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 151.1$ (C_{pyridine}), 147.8, 143.0 (CH_{pyridine}), 129.5, 129.4, 125.8 (CH_{thioph}), 121.5 (C_{thioph}), 120.6 (CH_{pyrrole}), 120.1 (CH_{pyridine}), 110.3 (CH_{pyrrole}), 110.0 (C_{pyridine}), 91.4, 85.2 (C_{alkyne}) ppm. IR (ATR): $\tilde{\nu} = 3107$ (w), 3050 (w), 1561 (w), 1473 (w), 1438 (w), 1335 (w), 1058 (w), 1017 (w), 869 (w), 781 (w), 726 (m), 625 (w) cm⁻¹. MS (EI, 70 eV): m/z (%) = 250 ([M]⁺,100), 249 (62), 248 (24), 224 (11), 223 (5), 222 (6), 205 (18), 140 (5), 113 (5), 45 (5), 39 (5). HRMS (ESI-TOF): m/z = calcd. for C₁₅H₁₀N₂S ([M+H]⁺) 251.06375, found 251.06395.

2-([1H]-pyrrol-1-yl)-3-((triisopropylsilyl)ethynyl)pyridine 2k. The Si′Pr₃ reaction of **1a** (1 mmol, 223 mg) with ethynyltriisopropylsilane (1.2 mmol, 269 µl) achieved product 2k as a pale yellow oil (295 mg, 94%); $R_{\rm f}$ 0.60 (heptane/ethyl acetate 5:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.40$ (dd, ³J = 4.8 Hz, ${}^{4}J = 1.9$ Hz, 1H, CH_{pyridine}), 7.90 (dd, ${}^{3}J = 7.7$ Hz, ${}^{4}J = 1.9$ Hz, 1H, CH_{pyridine}), 7.88–7.85 (m, 2H, CH_{pyrrole}), 7.09 (dd, ${}^{3}J$ = 7.7 Hz, ${}^{3}J$ = 4.7 Hz, 1H, CH_{pyridine}), 6.33–6.27 (m, 2H, CH_{pyrrole}), 1.16–1.09 (m, 21H, *i*Pr₃) ppm. ²⁹Si INEPT NMR (60 MHz, CDCl₃): $\delta = -1.4$ ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 151.2$ (C_{pvridine}), 148.0, 144.5 (CH_{pvridine}), 120.6 (CH_{pvrrole}), 119.9 (CH_{pvridine}), 110.3 (CH_{pvrrole}), 110.0 (C_{pvridine}), 102.8, 99.7 (C_{alkvne}), 18.8 (CH_{3iPr}), 11.5 (CH_{*i*Pr}) ppm. **IR (ATR):** $\tilde{v} = 2942$ (w), 2864 (m), 2153 (w), 1720 (br, w), 1531 (m), 1476 (m), 1436 (s), 1070 (m), 881 (m), 727 (m), 674 (m), 629 (m), 557 (w), 412 (w) cm⁻¹.MS (EI, **70 eV):** m/z (%) = 324 ([M]⁺, 12), 282 (32), 281 (100), 253 (23), 240 (12), 239 (30), 225 (14), 223 (10), 211 (18), 209 (11), 195 (35), 181 (15), 169 (12), 168 (12), 43 (10). HRMS (ESI-**TOF**): $m/z = \text{calcd. for } C_{20}H_{28}N_2\text{Si}([M+H]^+) 325.20945$, found 325.20938.

CH3

3-(*n***-Hex-1-yn-1-yl)-2-([1***H***]-pyrrol-1-yl)pyridine 21.** 1-Hexyne (0.6 mmol, 69 μ l) and **1a** (0.5 mmol, 111.5 mg) gave the desired product **21** as a yellow oil (98 mg,87%); $R_{\rm f}$ 0.43 (heptane/ethyl acetate

5:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.36$ (dd, ${}^{3}J = 4.8$ Hz, ${}^{3}J = 1.9$ Hz, 1H, CH_{pyridine}), 7.81 (dd, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 1.9$ Hz, 1H, CH_{pyridine}), 7.79–7.74 (m, 2H, CH_{pyrrole}), 7.08 (dd, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 4.7$ Hz, 1H, CH_{pyridine}), 6.36–6.32 (m, 2H, CH_{pyrrole}), 2.45 (t, ${}^{3}J = 7.0$ Hz, 2H, CH₂), 1.70–1.53 (m, 2H, CH₂), 1.54–1.40 (m, 2H, CH₂), 0.96 (t, ${}^{3}J$ = 7.2 Hz, 3H, CH₃) ppm. 13 C NMR (75 MHz, CDCl₃): δ = 151.3 (C_{pyridine}), 147.2, 143.6 (CH_{pyridine}), 120.6 (CH_{pyrrole}), 120.0 (CH_{pyridine}), 110.9 (C_{pyridine}), 110.0 (CH_{pyrrole}), 98.0, 76.9 (C_{alkyne}), 30.4, 22.2, 19.5 (CH₂), 13.7 (CH₃) ppm. IR (ATR): \tilde{v} = 2930 (w), 2870 (w), 2230 (w), 1530 (m), 1474 (m), 1434 (s), 1336 (m), 1073 (m), 1068 (m), 925 (m), 797 (m), 725 (s), 517 (m), 545 (w) cm⁻¹. MS (EI, 70 eV): m/z (%) = 224 ([M]⁺, 5), 223 (8), 209 (5), 196 (5), 195 (22), 194 (6), 193 (7), 183 (13), 182 (100), 181 (67), 179 (14), 169 (5), 168 (14), 155 (12), 154 (9), 153 (6), 128 (5), 127 (7), 63 (5), 51 (5), 43 (7), 41 (14), 39 (12), 29 (5). HRMS (ESI-TOF): m/z = calcd. for C₁₅H₁₆N₂ ([M+H]⁺) 225.13862, found 225.13859. Calcd. for C₁₅H₁₆N₂ ([M+Na]⁺) 247.12057, found 247.12030.

3-(Cyclohexylethynyl)-2-([1*H*]-pyrrol-1-yl)pyridine 2m. The reaction of 1a (1 mmol, 223 mg) with ethynylcyclohexane (1.2 mmol, 157 µl) provided 2m as a yellow oil (214 mg, 86%); R_f 0.56 (heptane/ethyl acetate 5:1). ¹H NMR (250 MHz, CDCl₃): $\delta = 8.35$ (dd, ³J = 4.8 Hz, ⁴J = 1.9 Hz, 1H,

CH_{pyridine}), 7.81 (dd, ${}^{3}J$ = 7.7 Hz, ${}^{4}J$ = 1.9 Hz, 1H, CH_{pyridine}), 7.81–7.77 (m, 2H, CH_{pyrrole}), 7.07 (dd, ${}^{3}J$ = 7.7 Hz, ${}^{3}J$ = 4.8 Hz, 1H, CH_{pyridine}), 6.36–6.29 (m, 2H, CH_{pyrrole}), 2.64 (tt, ${}^{3}J_{a,a}$ = 9.2 Hz, ${}^{3}J_{a,e}$ = 3.8 Hz, 1H, CH_a), 1.96–1.84 (m, 2H, CH₂), 1.81–1.67 (m,2H, CH₂), 1.63–1.48 (m, 3H, CH₂), 1.45–1.30 (m, 3H, CH₂) ppm. ¹³C NMR (63 MHz, CDCl₃): δ = 151.2 (C_{pyridine}), 147.2, 143.6 (CH_{pyridine}), 120.6 (CH_{pyrrole}), 120.0 (CH_{pyridine}), 110.9 (C_{pyridine}), 109.9 (CH_{pyrrole}), 101.7, 76.9 (C_{alkyne}), 32.2 (CH₂), 30.1 (CH), 25.9, 25.0 (CH₂) ppm. IR (ATR): \tilde{v} = 2926 (m), 2852 (w), 2223 (w), 1717 (br, w), 1451 (m), 1434 (s), 1336 (m), 1074 (m), 926 (m), 796 (m), 726 (s), 617 (w) cm⁻¹.MS (EI, 70 eV): *m/z* (%) = 250 ([M]⁺, 28), 249 (20), 221 (18), 209 (13), 207 (23), 206 (13), 205 (17), 196 (17), 195 (100), 193 (20), 192 (12), 182 (24), 181 (16), 169 (17), 168 (22), 155 (14). HRMS (ESI-TOF): *m/z* = calcd. for C₁₇H₁₈N₂ ([M+H]⁺) 251.15428, found 251.15414.

Cycloisomerization to give [1,8]naphthyridines 3a-m

General procedure

In a glas tube the Sonogashira product **2a-m** was dissolved in xylene (3 ml, isomeric mixture) under an argon atmosphere. The catalyst PtCl₂ (0.05 eq.) was added to the mixture. The solution was stirred at 120 °C for 24 h. After cooling to room temperature the crude product was diluted with water and extracted with DCM. For further purification the organic solvent was evaporated and column chromatography (heptane/DCM, $5:1 \rightarrow 3:1$) was performed. Thereby, 1–2 ml Et₃N were added to 250 ml eluent mixture to deactivate the acidic silica.

Product characterization

6-Phenylpyrrolo[1,2-*a*][1,8]naphthyridine 3a. 2a (0.2 mmol, 50 mg) cyclized in the presence of $PtCl_2$ (0.01 mmol, 2.7 mg) to give **3a** as a pale yellow solid (25 mg, 50%); mp 102–105 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.54$ (dd, ${}^{3}J = 4.7$ Hz, ${}^{4}J = 1.7$ Hz, 1H, CH_{naphtyr}), 8.46 (dd, ${}^{3}J = 2.9$ Hz, ${}^{4}J = 1.5$ Hz, 1H, CH_{pyrrole}), 7.97 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{4}J$ = 1.7 Hz, 1H, CH_{naphtyr}), 7.72 (dd, ${}^{3}J$ = 8.0 Hz, ${}^{4}J$ = 1.6 Hz, 2H, CH_{Ph}), 7.55–7.44 (m, 3H, CH_{Ph}), 7.30 (dd, ³*J* = 7.7 Hz, ³*J* = 4.7 Hz, 1H, CH_{naphtyr}), 6.91 (s, 1H, CH_{naphtyr}), 6.84 (dd, ${}^{3}J = 3.8$ Hz, ${}^{3}J = 2.9$ Hz, 1H, CH_{pyrrole}), 6.68 (dd, ${}^{3}J = 3.8$ Hz, ${}^{4}J = 1.5 \text{ Hz}, 1 \text{H}, \text{CH}_{\text{pvrrole}}$ ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 146.6 \text{ (CH}_{\text{naphtyr}}), 144.0$ (Cnaphtyr.), 138.5 (CPh), 136.3 (CHnaphtyr.), 134.2 (Cnaphtyr.), 131.5 (Cpyrrole), 128.8, 128.5, 128.5 (CH_{Ph}), 120.1 (CH_{naphtyr}), 119.2 (C_{naphtyr}), 116.2 (CH_{naphtyr}), 114.5 (CH_{naphtyr}), 113.3, 105.3 (CH_{pyrrole}) ppm. **IR (ATR):** $\tilde{v} = 3119$ (w), 3094 (w), 2921 (w), 2851 (w), 1726 (w), 1595 (w), 1531 (w), 1493 (w), 1442 (w), 1370 (w), 1297 (w), 1143 (w), 1074 (w), 958 (w), 848 (w), 761 (m), 740 (m), 701 (m), 663 (w), 583 (w), 446 (w) cm⁻¹. MS (EI, 70 eV): m/z (%) = 244 ([M]⁺, 100), 243 (81), 242 (43), 218 (13), 216 (8), 214 (7), 190 (7), 151 (7), 150 (10), 122 (5), 121 (7), 77 (6), 51 (7), 39 (8). **HRMS (EI, 70 eV):** m/z = calcd. for C₁₇H₁₂N₂ 244.09950, found 244.09919.

6-(2-Fluorophenyl)pyrrolo[1,2-*a***][1,8]naphthyridine 3b. 2b** (0.36 mmol, 95 mg) gave **3b** under the influence of PtCl₂ (0.02 mmol, 5.3 mg) as a pale green solid (58 mg, 61%); mp 96–99 °C. ¹H NMR (**300 MHz, CDCl₃**):

 $\delta = 8.56 \text{ (dd, } {}^{3}J = 4.7 \text{ Hz}, {}^{4}J = 1.8 \text{ Hz}, 1\text{H}, \text{CH}_{\text{naphtyr}}$), 8.43 (dd, ${}^{3}J = 2.9 \text{ Hz}, {}^{4}J = 1.5 \text{ Hz}, 1\text{H},$ CH_{pyrrole}), 7.96 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{4}J$ = 1.8 Hz, 1H, CH_{naphtyr}), 7.62 (td, ${}^{3}J$ = 7.5 Hz, ${}^{3}J$ = 7.5 Hz, ${}^{4}J = 1.9$ Hz, 1H, CH_{Ar}), 7.43 (dddd, ${}^{3}J = 9.2$ Hz, ${}^{3}J = 8.1$ Hz, ${}^{4}J_{H,F} = 5.1$ Hz, ${}^{4}J = 1.8$ Hz, 1H, CH_{Ar}), 7.31 (dd, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 4.7$ Hz, 1H, CH_{naphtyr}), 7.29–7.23 (m, 1H, CH_{Ar}), 7.23–7.20 (m, 1H, CH_{Ar}) 6.95 (d, ${}^{5}J_{HF} = 1.2$ Hz, 1H, CH_{naphtyr}), 6.82 (dd, ${}^{3}J = 3.8$ Hz, ${}^{3}J = 2.9$ Hz, 1H, CH_{pyrrole}), 6.47 (dt, ${}^{3}J = 3.8$ Hz, ${}^{3}J = 1.4$ Hz, ${}^{5}J_{H,F} = 1.4$ Hz 1H, CH_{pyrrole}) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -114.3$ ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 160.14$ (d, ${}^{1}J_{C,F} = 248.5 \text{ Hz}, \text{ C-F}, 147.1 (CH_{naphtyr.}), 144.1 (C_{naphtyr.}), 136.4 (CH_{naphtyr.}), 131.4 (C_{Ar}),$ 131.22 (d, ${}^{4}J_{C,F}$ = 3.3 Hz, CH_{Ar}), 130.12 (d, ${}^{3}J_{C,F}$ = 8.2 Hz, CH_{Ar}), 128.0 (C_{pyrrole}), 125.76 (d, $^{2}J_{C,F} = 14.9 \text{ Hz}, C_{Ar}$, 124.27 (d, $^{3}J_{C,F} = 3.7 \text{ Hz}, CH_{Ar}$), 120.1 (CH_{naphtyr}), 118.8 (C_{naphtyr}), 117.96 (d, ${}^{4}J_{C,F} = 2.1$ Hz, CH_{naphtyr}), 116.30 (d, ${}^{2}J_{C,F} = 22.3$ Hz, CH_{Ar}), 114.3, 113.3 (CH_{pyrrole}), 105.07 (d, ${}^{5}J_{C,F} = 1.8 \text{ Hz}$, CH_{pyrrole}) ppm. **IR (ATR):** $\tilde{v} = 3033$ (w), 2921 (w), 2851 (w), 1724 (br, w), 1571 (m), 1433 (m), 1370 (m), 1259 (m), 1216 (m), 1087 (m), 1037 (m), 863 (m), 781 (m), 757 (m), 720 (s), 651 (m), 525 (m), 434 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 262 ([M]⁺, 100), 261 (26), 260 (14), 242 (5), 118 (6). HRMS (ESI-TOF): $m/z = \text{calcd. for } C_{17}H_{11}FN_2$ ([M+H]⁺) 263.09790, found 263.09795.

6-(4-Fluorophenyl)pyrrolo[1,2-a][1,8]naphthyridine 3c. 2c (0.2 mmol, 45 mg) reacted with $PtCl_2$ (0.01 mmol, 2.3 mg) to give **3c** as a pale green solid (19 mg, 42%); mp 128–131 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 8.55$ (dd, ${}^{3}J = 4.7$ Hz, ${}^{4}J = 1.7$ Hz, 1H, CH_{naphtyr}), 8.43 (dd, ${}^{3}J = 2.9$ Hz, ${}^{4}J = 1.5$ Hz, 1H, CH_{pyrrole}), 7.95 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{4}J$ = 1.8 Hz, 1H, CH_{naphtyr}), 7.73–7.64 (m, 2H, CH_{Ar}), 7.30 $(dd, {}^{3}J = 7.7 Hz, {}^{3}J = 4.7 Hz, 1H, CH_{naphtyr}), 7.24-7.12 (m, 2H, CH_{Ar}), 6.87 (s, 1H, CH_{naphtyr}),$ 6.83 (dd, ${}^{3}J = 3.8$ Hz, ${}^{3}J = 2.9$ Hz, 1H, CH_{pvrrole}), 6.62 (dd, ${}^{3}J = 3.8$ Hz, ${}^{4}J = 1.5$ Hz, 1H, CH_{pyrrole}) ppm. ¹⁹F NMR (235 MHz, CDCl₃): $\delta = -113.4$ ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 162.95$ (d, ${}^{1}J_{C,F} = 247.6$ Hz, C-F), 147.0 (CH_{naphtyr}), 144.1 (C_{naphtyr}), 136.1 (CH_{naphtyr}), 134.60 (d, ${}^{4}J_{C,F} = 3.4 \text{ Hz}$, C_{Ar}), 133.1 (C_{naphtyr}), 131.4 (C_{pyrrole}), 130.13 (d, ${}^{3}J_{C,F} = 8.1 \text{ Hz}$, CH_{Ar}), 120.2 (CH_{naphtyr}), 119.1 (C_{naphtyr}), 116.3 (CH_{pyrrole}), 115.73 (d, ${}^{2}J_{C,F} = 21.4$ Hz, CH_{Ar}), 114.5 (CH_{naphtyr}), 113.3, 105.0 (CH_{pyrrole}) ppm. **IR (ATR):** $\tilde{v} = 3041$ (w), 2921 (w), 1724 (w), 1601 (w), 1508 (m), 1454 (m), 1438 (m), 1368 (w), 1298 (w), 1223 (m), 1160 (m), 1092 (m), 1036 (w), 857 (m), 831 (m), 794 (m), 725 (m), 623 (m), 556 (m), 510 (m), 497 (m), 448 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 262 ([M]⁺, 100), 261 (36), 260 (19), 118 (6). HRMS (ESI-TOF): m/z = calcd. for C₁₇H₁₁FN₂ ([M+H]⁺) 263.09790, found 263.09759.

6-(4-Tolyl)pyrrolo[1,2-a][1,8]naphthyridine 3d. The reaction of 2d Me (0.3 mmol, 78 mg) with PtCl₂ (0.015 mmol, 4 mg) gave **3d** as a yellow solid (34 mg, 68%); mp 86–91 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.53$ (dd, ${}^{3}J = 4.7$ Hz, ${}^{4}J = 1.7$ Hz, 1H, CH_{naphtyr}), 8.47 (dd, ${}^{3}J = 2.9$ Hz, ${}^{4}J = 1.5$ Hz, 1H, CH_{pvrrole}), 7.96 (dd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.7$ Hz, 1H, CH_{naphtyr}), 7.64–7.57 (m, 2H, CH_{Ar}), 7.35–7.25 (m, 3H, CH_{naphtyr/Ar}), 6.89 (s, 1H, CH_{naphtyr}), 6.84 (dd, ${}^{3}J$ = 3.8 Hz, ${}^{3}J$ = 2.9 Hz, 1H, CH_{pyrrole}), 6.69 (dd, ${}^{3}J$ = 3.8 Hz, ${}^{4}J$ = 1.5 Hz, 1H, CH_{pyrrole}), 2.45 (s, 3H, Me) ppm. {}^{13}C NMR (75 MHz, CDCl₃): $\delta = 146.3$ (CH_{naphtyr}), 143.8 (C_{naphtyr}), 138.4 (C-Me), 136.3 (CH_{naphtyr}), 135.6 (CAr), 134.2 (Cnaphtyr.), 131.6 (Cpyrrole), 129.5, 128.3 (CHAr), 120.0 (CHnaphtyr.), 119.4 (C_{naphtyr.}), 115.8, 114.5 (CH_{naphtyr.}), 113.4, 105.3 (CH_{pyrrole}), 21.5 (Me) ppm. **IR(ATR)**: $\tilde{v} = 3120$ (m), 2917 (m), 2851 (m), 1723 (m), 1665 (w), 1604 (m), 1571 (m), 1510 (m), 1436 (s), 1369 (m), 1299 (m), 1282 (m), 1180 (m), 1145 (m), 1095 (m), 1060 (m), 1033 (m), 927 (m), 850 (m), 816 (s), 761 (s), 735 (vs), 722 (vs), 624 (m), 557 (m), 496 (m) cm⁻¹. MS (EI, **70 eV):** m/z (%) = 258 ([M]⁺, 100), 257 (21), 256 (6), 255 (10), 243 (6), 242 (14), 128 (8). **HRMS (ESI-TOF):** $m/z = \text{calcd. for } C_{18}H_{14}N_2 ([M+H]^+) 259.12297$, found 259.12293.

6-(4-*tert*-Butylphenyl)pyrrolo[1,2-*a*][1,8]naphthyridine 3e. Starting material 2e (0.3 mmol, 90.1 mg) reacted with PtCl₂ (0.015 mmol, 4 mg) giving 3e as a brown oil (59 mg, 66%); R_f 0.58 (heptane/ethyl acetate 5:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.53$ (dd, ³J = 4.7 Hz,

⁴*J* = 1.7 Hz, 1H, CH_{naphtyr}.), 8.45 (dd, ³*J* = 2.9 Hz, ⁴*J* = 1.5 Hz, 1H, CH_{pyrrole}), 7.94 (dd, ³*J* = 7.8 Hz, ⁴*J* = 1.7 Hz, 1H, CH_{naphtyr}.), 7.70–7.65 (m, 2H, CH_{Ar}), 7.55–7.50 (m, 2H, CH_{Ar}), 7.29 (dd, ³*J* = 7.8 Hz, ³*J* = 4.7 Hz, 1H, CH_{naphtyr}.), 6.90 (s, 1H, CH_{naphtyr}.), 6.84 (dd, ³*J* = 3.8 Hz, ³*J* = 2.9 Hz, 1H, CH_{pyrrole}), 6.73 (dd, ³*J* = 3.8 Hz, ⁴*J* = 1.5 Hz, 1H, CH_{pyrrole}), 1.41 (s, 9H, CH_{3/Bu}) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 151.6 (C-*t*Bu), 146.6 (CH_{naphtyr}.), 144.0 (C_{naphtyr}.), 136.0 (CH_{naphtyr}.), 135.6 (C_{Ar}), 134.1 (C_{naphtyr}.), 131.6 (C_{pyrrole}), 128.1, 125.7 (CH_{Ar}), 120.0 (CH_{naphtyr}.), 119.3 (C_{naphtyr}.), 116.0 (CH_{pyrrole}), 114.3 (CH_{naphtyr}.), 113.2, 105.3 (CH_{pyrrole}), 34.9 (C_{*t*Bu}), 31.5 (CH_{3/Bu}) ppm. **IR (ATR):** \tilde{v} = 2957 (w), 1721 (w), 1589 (w), 1512 (w), 1434 (m), 1362 (m), 1268 (m), 1146 (w), 1092 (m), 1018 (w), 831 (m), 787 (m), 768 (m), 722 (m), 610 (m), 542 (m), 448 (w) cm⁻¹. **MS (EI, 70 eV):** *m/z* (%) = 300 ([M]⁺, 100), 286 (13), 285 (64), 270 (12), 269 (8), 268 (7), 257 (13), 255 (9), 244 (7), 243 (9), 242 (12), 128 (15). **HRMS (ESI-TOF):** *m/z* = calcd. for C₂₁H₂₀N₂ ([M+H]⁺) 301.16993, found 301.16950.

OMe 6-(4-Methoxyphenyl)pyrrolo[1,2-*a*][1,8]naphthyridine 3f. 2f

(0.15 mmol, 42 mg) cyclized under influence of $PtCl_2$ (0.01 mmol, 2 mg) giving **3f** as a pale yellow solid (17 mg, 40%); mp 123–128 °C.

¹H NMR (300 MHz, CDCl₃): $\delta = 8.53$ (dd, ${}^{3}J = 4.7$ Hz, ${}^{4}J = 1.7$ Hz, 1H, CH_{naphtyr}.), 8.44 (dd, ${}^{3}J = 2.9$ Hz, ${}^{4}J = 1.5$ Hz, 1H, CH_{pyrrole}), 7.96 (dd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.7$ Hz, 1H, CH_{naphtyr}.), 7.69–7.62 (m, 2H, CH_{Ar}), 7.30 (dd, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 4.7$ Hz, 1H, CH_{naphtyr}.), 7.06–7.00 (m, 2H, CH_{Ar}), 6.87 (s, 1H, CH_{naphtyr}.), 6.83 (dd, ${}^{3}J = 3.8$ Hz, ${}^{3}J = 2.9$ Hz, 1H, CH_{pyrrole}), 6.68 (dd, ${}^{3}J = 3.8$ Hz, ${}^{4}J = 1.5$ Hz, 1H, CH_{pyrrole}), 3.89 (s, 3H, OMe) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 160.0$ (C-OMe), 146.3 (CH_{naphtyr}.), 143.7 (C_{naphtyr}.), 136.1 (CH_{naphtyr}.), 133.9 (C_{Ar}), 131.7 (C_{naphtyr}.), 131.0 (C_{pyrole}), 129.6 (CH_{Ar}), 120.1 (CH_{naphtyr}.), 119.4 (C_{naphtyr}.), 115.6 (CH_{pyrrole}), 114.4 (CH_{naphtyr}.), 114.2 (CH_{Ar}), 113.3, 105.2 (CH_{pyrrole}), 55.5 (OMe) ppm. IR (ATR): $\tilde{v} = 2919$ (w), 2849 (w), 1720 (w), 1601 (w), 1509 (w), 1436 (w), 1367 (w), 1280 (w), 1239 (w), 1475 (w), 1111 (w), 1032 (w), 834 (w), 782 (w), 768 (w), 732 (w), 621 (w), 563 (w), 523 (w), 445 (w) cm⁻¹. MS (EI, 70 eV): m/z (%) = 274 ([M]⁺, 100), 259 (18), 242 (5), 231 (21), 230 (13), 229 (19), 205 (15), 204 (7), 203 (6), 115 (6). HRMS (ESI-TOF): m/z = calcd. for C₁₈H₁₄N₂O ([M+H]⁺) 275.11789, found 275.11788. Calcd. for C₁₈H₁₄N₂O ([M+Na]⁺) 297.09983, found 297.10014.

6-(3-Tolyl)pyrrolo[1,2-*a*][1,8]naphthyridine 3g. **2g** (0.32 mmol, 82 mg) and $PtCl_2$ (0.016 mmol, 4 mg) gave the product 3g as a yellow oil (21 mg, 25%); mp 86–89 °C. ¹H NMR (300 MHz, CDCl₃): δ = 8.54 $(dd, {}^{3}J = 4.8 Hz, {}^{4}J = 1.7 Hz, 1H, CH_{naphtyr}), 8.47 (dd, {}^{3}J = 3.0 Hz, {}^{4}J = 1.5 Hz, 1H, CH_{pyrrole}),$ 7.98 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{4}J$ = 1.7 Hz, 1H, CH_{nabhtyr}), 7.57–7.47 (m, 2H, CH_{Ar}), 7.42–7.36 (m, 1H, CH_{Ar}), 7.32 (dd, ${}^{3}J = 7.8$ Hz, ${}^{3}J = 4.8$ Hz, 1H, CH_{naphtyr}), 7.29–7.27 (m, 1H, CH_{Ar}), 6.90 (s, 1H, CH_{naphtyr}), 6.84 (dd, ${}^{3}J = 3.8$ Hz, ${}^{3}J = 2.9$ Hz, 1H, CH_{pyrrole}), 6.69 (dd, ${}^{3}J = 3.8$ Hz, ${}^{4}J = 1.5$ Hz, 1H, CH_{pyrrole}), 2.45 (s, 3H, Me) ppm. {}^{13}C NMR (75 MHz, CDCl₃): $\delta = 146.4$ (CH_{naphtyr.}), 143.8 (C_{naphtyr.}), 138.5 (C-Me), 136.4 (CH_{naphtyr.}), 134.5 (C_{Ar}), 131.6 (C_{naphtyr.}), 129.3, 129.1, 128.7, 125.6 (CH_{Ar}), 120.1 (CH_{naphtyr}), 119.4 (C_{naphtyr}), 116.0 (CH_{pyrrole}), 114.6 (CH_{naphtyr}), 113.4, 105.4 (CH_{pyrrole}), 21.7 (Me) ppm. **IR (ATR):** $\tilde{v} = 3142$ (w), 2917 (w), 1722 (w), 1603 (w), 1571 (w), 1531 (w), 1436 (m), 1366 (w), 1304 (w), 1283 (w), 1091 (w), 1038 (w), 1019 (w), 860 (m), 782 (m), 728 (m), 708 (m), 665 (w), 589 (w), 447 (w), 436 (w) cm⁻¹. **MS (EI, 70 eV):** m/z (%) = 258 ([M]⁺, 100), 257 (20), 256 (5), 255 (11), 243 (6), 242 (16), 128 (8). **HRMS (ESI-TOF):** $m/z = \text{calcd. for } C_{18}H_{14}N_2$ ([M+H]⁺) 259.12297, found 259.12314.

6-(3-Methoxyphenyl)pyrrolo[1,2-*a*][1,8]naphthyridine 3h. Substrate 2h (0.6 mmol, 166 mg) and PtCl₂ (0.03 mmol, 8 mg) reacted to 3h as a pale brown oil (99 mg, 60%); R_f 0.36 (heptane/ethyl acetate 5:1).

¹H NMR (300 MHz, CDCl₃): $\delta = 8.54$ (dd, ³*J* = 4.7 Hz, ⁴*J* = 1.7 Hz, 1H, CH_{naphtyr}.), 8.45 (dd, ³*J* = 2.9 Hz, ⁴*J* = 1.5 Hz, 1H, CH_{pyrrole}), 7.96 (dd, ³*J* = 7.8 Hz, ⁴*J* = 1.7 Hz, 1H, CH_{naphtyr}.), 7.41 (dd, ³*J* = 8.1 Hz, ³*J* = 7.5 Hz, 1H, CH_{Ar}), 7.34–7.26 (m, 3H, CH_{naphtyr}.), 7.00 (ddd, ³*J* = 8.2 Hz, ⁴*J* = 2.6 Hz, ⁴*J* = 1.1 Hz, 1H, CH_{Ar}), 6.92 (s, 1H, CH_{naphtyr}.), 6.84 (dd, ³*J* = 3.8 Hz, ⁴*J* = 2.9 Hz, 1H, CH_{pyrrole}), 6.71 (dd, ³*J* = 3.8 Hz, ³*J* = 1.5 Hz, 1H, CH_{pyrrole}), 3.88 (s, 3H, OMe) ppm. ¹³C-NMR (75 MHz, CDCl₃): $\delta = 159.9$ (C-OMe), 146.8 (CH_{naphtyr}.), 144.0 (C_{naphtyr}.), 139.9 (C_{Ar}), 136.2 (CH_{naphtyr}.), 134.0 (C_{naphtyr}.), 131.4 (C_{pyrrole}), 129.8, 120.9 (CH_{Ar}), 120.1 (CH_{naphtyr}.), 119.1 (C_{naphtyr}.), 116.2 (CH_{pyrrole}), 114.4 (CH_{naphtyr}.), 114.1, 114.0 (CH_{Ar}), 113.3, 105.2 (CH_{pyrrole}), 55.5 (OMe) ppm. **IR (ATR)**: $\tilde{v} = 2933$ (w), 2832 (w), 1574 (m), 1434 (m), 1239 (m), 1169 (m), 1038 (m), 851 (m), 785 (m), 725 (m), 694 (m), 555 (m), 447 (m) cm⁻¹. **MS (EI, 70 eV)**: *m/z* (%) = 274 ([M]⁺, 100), 259 (9), 258 (9), 242 (6), 231 (9), 230 (7), 229 (13), 205 (5), 203 (5). **HRMS (ESI-TOF)**: *m/z* = calcd. for C₁₈H₁₄N₂O ([M+H]⁺) 275.11789, found 275.11795.

OMe 6-(4-Methoxy-2-methylphenyl)pyrrolo[1,2-*a*][1,8]naphthyridine 3i. 2i (0.5 mmol, 149 mg) and $PtCl_2$ (0.03 mmol, 7 mg) achieved 3i as a Me pale brown oil (92 mg, 62%); $R_{\rm f}$ 0.40 (heptane/ethyl acetate 5:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.57$ (dd, ³J = 4.7 Hz, ⁴J = 1.7 Hz, 1H, CH_{naphtyr}), 8.45 (dd, ${}^{3}J = 2.9$ Hz, ${}^{4}J = 1.5$ Hz, 1H, CH_{pyrrole}), 7.93 (dd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.7$ Hz, 1H, CH_{naphtyr}), 7.33 (d, ${}^{3}J = 8.4$ Hz, 1H, CH_{Ar}), 7.30 (dd, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 4.8$ Hz, 1H, CH_{naphtyr}), 6.93 (d, ${}^{4}J = 2.6$ Hz, 1H, CH_{Ar}), 6.87 (dd, ${}^{3}J = 8.4$ Hz, ${}^{4}J = 2.7$ Hz, 1H, CH_{Ar}), 6.82 (dd, ${}^{3}J = 3.7$ Hz, ${}^{3}J = 2.9$ Hz, 1H, CH_{pvrrole}), 6.78 (s, 1H, CH_{naphtyr}), 6.29 (dd, ${}^{3}J = 3.9$ Hz, ${}^{4}J = 1.6$ Hz, 1H, CH_{pvrrole}), 3.90 (s, 3H, OMe), 2.29 (s, 3H, Me) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 159.4$ (C-OMe), 146.6 (CH_{naphtyr.}), 144.0 (C_{naphtyr.}), 137.9 (C-Me), 135.8 (CH_{naphtyr.}), 133.6 (C_{Ar}), 132.5 (C_{naphtyr}), 130.7 (CH_{Ar}), 130.2 (C_{pyrrole}), 119.9 (CH_{naphtyr}), 119.0 (C_{naphtyr}), 117.0 (CH_{Ar}), 115.8 (CH_{pyrrole}), 113.9 (CH_{naphtyr.}), 113.1 (CH_{pyrrole}), 111.1 (CH_{Ar}), 105.1 (CH_{pyrrole}), 55.3 (OMe), 20.2 (Me) ppm. IR (ATR): $\tilde{v} = 2919$ (w), 2833 (w), 1722 (w), 1604 (w), 1560 (w), 1499 (w), 1455 (m), 1434 (m), 1368 (w), 1291 (m), 1237 (m), 1161 (w), 1042 (m), 940 (w), 856 (w), 788 (m), 725 (m), 626 (w), 557 (w), 446 (w) cm⁻¹. MS (EI, 70 eV): m/z (%) = 288 ([M]⁺, 86), 287 (100), 273 (10), 272 (10), 271 (5), 256 (5), 255 (8), 245 (8), 244 (13), 243 (30), 242 (15), 229 (7), 218 (5), 205 (5), 128 (6), 122 (7), 109 (5). **HRMS (ESI-TOF):** $m/z = \text{calcd. for } C_{19}H_{16}N_2O([M+H]^+) 289.13354$, found 289.13338.

6-(Thiophen-3-yl)pyrrolo[1,2-*a*][1,8]naphthyridine 3j. 2j (0.3 mmol, 86 mg) reacted with PtCl₂ (0.015 mmol, 4 mg) giving 3j as a yellow solid (35 mg, 41%); R_f 0.55 (heptane/ethyl acetate 5:1). ¹H NMR (300 MHz, **CDCl₃):** $\delta = 8.54$ (dd, ³J = 4.8 Hz, ⁴J = 1.7 Hz, 1H, CH_{naphtyr}.), 8.47 (dd, ³J = 2.9 Hz, ⁴J = 1.5 Hz, 1H, CH_{pyrrole}), 7.97 (dd, ³J = 7.8 Hz, ⁴J = 1.8 Hz, 1H, CH_{naphtyr}.), 7.70 (dd, ⁴J = 2.9 Hz, ⁴J = 1.4 Hz, 1H, CH_{thioph}.), 7.50 (dd, ³J = 5.0 Hz, ⁴J = 1.4 Hz, 1H, CH_{thioph}.), 7.46 (dd, ³J = 5.0 Hz, ⁴J = 2.9 Hz, 1H, CH_{thioph}.), 7.31 (dd, ³J = 7.8 Hz, ³J = 4.8 Hz, 1H, CH_{naphtyr}.), 7.00 (s, 1H. CH_{naphtyr}.), 6.85 (dd, ³J = 3.8 Hz, ³J = 2.9 Hz, 1H, CH_{pyrrole}), 6.81 (dd, ³J = 3.8 Hz, ⁴J = 1.5 Hz, 1H, CH_{pyrrole}) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 146.3$ (CH_{naphtyr}.), 143.7 (C_{naphtyr}.), 138.9 (C_{thioph}.), 136.4 (CH_{naphtyr}.), 131.2 (C_{naphtyr}.), 128.9 (C_{pyrrole}), 127.8, 126.1, 123.5 (CH_{thioph}.), 120.1 (CH_{naphtyr}.), 119.2 (C_{naphtyr}.), 115.6 (CH_{pyrrole}), 114.7 (CH_{naphtyr}.), 113.5, 105.3 (CH_{pyrrole}) ppm. IR (ATR): $\tilde{v} = 3091$ (w), 2921 (w), 1717 (br, w), 1570 (m), 1469 (m), 1435 (s), 1136 (m), 1080 (m), 859 (m), 836 (m), 777 (m), 715 (s), 633 (m), 448 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 250 ([M]⁺, 100), 249 (22), 248 (9), 205 (10). HRMS (EI): m/z = caled. for C₁₅H₁₀N₂S ([M]⁺) 250.05592, found 250.05591.

6-(*n*-Butyl)pyrrolo[1,2-*a*][1,8]naphthyridine **3I**. 21 Substrate CH₃ (0.2 mmol, 50 mg) and PtCl₂ (0.01 mmol, 2.6 mg) resulted in product **31** as an oil (19 mg, 37%); $R_f 0.63$ (heptane/ethyl acetate 5:1). ¹H NMR (300 MHz, CDCl₃): $\delta = 8.48$ (dd, ${}^{3}J = 4.7$ Hz, ${}^{4}J = 1.7$ Hz, 1H, CH_{naphtyr}), 8.33 (dd, ${}^{3}J = 2.9$ Hz, ${}^{4}J = 1.5$ Hz, 1H, CH_{pyrrole}), 7.87 (dd, ${}^{3}J$ = 7.8 Hz, ${}^{4}J$ = 1.8 Hz, 1H, CH_{naphtyr}), 7.25 (dd, ${}^{3}J$ = 7.7 Hz, ${}^{3}J$ = 4.7 Hz, 1H, CH_{naphtyr}), 6.80 (dd, ${}^{3}J$ = 3.7 Hz, ${}^{3}J$ = 2.9 Hz, 1H, CH_{pyrrole}), 6.73 (s, 1H, CH_{naphtyr}), 6.62 (dd, ${}^{3}J = 3.7 \text{ Hz}$, ${}^{4}J = 1.5 \text{ Hz}$, 1H, CH_{pyrrole}), 2.79 (t, ${}^{3}J = 7.7 \text{ Hz}$, 2H, CH₂), 1.78 (p, ${}^{3}J = 7.5$ Hz, 2H, CH₂), 1.45 (hept, ${}^{3}J = 7.4$ Hz, 2H, CH₂), 0.98 (t, ${}^{3}J = 7.3$ Hz, 3H, CH₃) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 146.1$ (CH_{naphtyr.}), 144.0 (C_{naphtyr.}), 135.4 (CH_{naphtyr.}), 134.0 (C_{naphtyr.}), 132.6 (C_{pyrrole}), 119.8 (CH_{naphtyr.}), 119.3 (C_{naphtyr.}), 114.7 (CH_{pyrrole}), 113.8 (CH_{naphtyr}), 112.7, 102.7 (CH_{pyrrole}), 32.2, 31.1, 22.9 (CH₂), 14.1 (CH₃) ppm. IR (ATR): $\tilde{v} = 2855$ (w), 2927 (w), 2858 (w), 1723 (w), 1612 (w), 1592 (w), 1559 (w), 1537 (w), 1459 (w), 1436 (w), 1377 (w), 1289 (w), 1171 (w), 1090 (w), 1033 (w), 849 (w), 783 (w), 726 (w) cm⁻¹. MS (EI, 70 eV): m/z (%) = 224 ([M]⁺, 40), 195 (12), 194 (5), 193 (7), 183 (13), 182

(100), 181 (42), 179 (5), 168 (7), 154 (5), 127 (6). **HRMS (ESI-TOF):** m/z = calcd. for C₁₅H₁₆N₂ ([M+H]⁺) 225.13862, found 225.13887.

6-(Cyclohexyl)pyrrolo[1,2-a][1,8]naphthyridine 3m. Starting material 2m Су (0.8 mmol, 204 mg) and $PtCl_2$ (0.04 mmol, 10.6 mg) gave **3m** as an oil (127 mg, 62%); $R_{\rm f}$ 0.58 (heptane/ethyl acetate 5:1). ¹H NMR (250 MHz, **CDCl₃**): $\delta = 8.47$ (dd, ${}^{3}J = 4.7$ Hz, ${}^{4}J = 1.7$ Hz, 1H, CH_{naphtyr}), 8.37 (dd, ${}^{3}J = 3.0$ Hz, $^{4}J = 1.5$ Hz, 1H, CH_{pyrrole}), 7.86 (dd, $^{3}J = 7.8$ Hz, $^{3}J = 1.8$ Hz, 1H, CH_{naphtyr}), 7.23 (dd, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 4.7$ Hz, 1H, CH_{naphtyr}), 6.82 (dd, ${}^{3}J = 3.7$ Hz, ${}^{3}J = 2.9$ Hz, 1H, CH_{pyrrole}), 6.74 (s, 1H, CH_{naphtyr}), 6.67 (dd, ${}^{3}J = 3.8$ Hz, ${}^{3}J = 1.5$ Hz, 1H, CH_{pyrrole}), 2.86 (tt, ${}^{3}J_{a,a} = 8.2$ Hz, ${}^{3}J_{a,e} = 3.2 \text{ Hz}, 1\text{H}, \text{CH}_{a}, 2.22-2.05 \text{ (m, 2H, CH}_{2}), 1.98-1.79 \text{ (m, 3H, CH}_{2}), 1.62-1.44 \text{ (m, 3H, CH}_{2})$ CH₂), 1.47–1.24 (m, 2H, CH₂) ppm. ¹³C NMR (63 MHz, CDCl₃): $\delta = 146.1$ (CH_{naphtyr}), 143.8 (Cnaphtyr.), 139.2 (Cnaphtyr.), 135.5 (CHnaphtyr.), 132.3 (Cpyrrole), 119.8 (CHnaphtyr.), 119.3 (C_{naphtyr.}), 113.7 (CH_{pyrrole}), 112.6 (CH_{naphtyr.}), 112.2, 102.4 (CH_{pyrrole}), 40.4 (CH), 33.1, 27.0, 26.5 (CH₂) ppm. **IR (ATR):** $\tilde{v} = 2924$ (m), 2850 (m), 1720 (br, w), 1560 (w), 1434 (s), 1336 (m), 1289 (m), 1073 (m), 1059 (m), 845 (m), 783 (m), 721 (s), 615 (m), 554 (m), 448 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 250 ([M]⁺, 100), 249 (23), 235 (6), 221 (18), 219 (6), 209 (12), 207 (23), 206 (13), 205 (22), 196 (13), 195 (70), 194 (19), 193 (27), 192 (11), 182 (26), 181 (17), 169 (6), 168 (22), 140 (6), 56 (6), 41 (13), 39 (8). HRMS (EI): m/z = calcd.for $C_{17}H_{18}N_2$ ([M]⁺) 250.14645, found 250.14577.

Preparation of [1,6]naphthyridines

Starting materials

N→ Br **4-Amino-3-bromo-pyridine 1b** NH₂ *N*-Bromosuccinimide (1.1 eq., 29.2 mmol, 5.2 g) was added slowly to a stirred solution of 4-aminopyridine (26.6 mmol, 2.5 g) in 140 ml acetonitrile. The mixture was stirred for 48 h at room temperature. Afterwards the solvent was removed under reduced pressure and the product was purified by column chromatography (heptane/ethyl acetate, 2:1 → 1:2) to yield 4-amino-3-bromopyridine **1b** as a white solid (86% yield, 3.95 g). ¹**H NMR (300 MHz, DMSO-***d*₆**)**: δ = 11.11 (bs, 2H, NH₂), 8.23 (s, 1H, CH_{pyridine}), 7.96 (d, ³*J* = 5.5 Hz, 1H, CH_{pyridine}), 6.68 (d, ³*J* = 5.5 Hz, 1H, CH_{pyridine}) ppm. ¹³**C NMR (75 MHz, DMSO-***d*₆**)**: δ = 151.4 (C-NH₂), 150.8, 148.2, 109.9 (CH_{pyridine}), 105.5 (C-Br) ppm. **IR (ATR)**: \tilde{v} = 3440 (w), 3342 (w), 3217 (w), 2946 (w), 2545 (br, w), 1700 (s), 1632 (s), 1501 (m), 1199 (s), 1074 (w), 1014 (m), 815 (s), 633 (s), 562 (s) cm⁻¹. **MS (EI, 70 eV)**: *m/z* (%) = 174 ([C₉H₇⁸¹BrN₂]⁺, 100), 172 ([C₉H₇⁷⁹BrN₂]⁺, 99), 145 (2), 119 (8), 117 (6), 93 (53). **HRMS (EI, 70 eV)**: *m/z* = calcd. for C₅H₅N₂⁷⁹Br ([M]⁺) 171.96306, found 171.96313. Calcd. for C₅H₅N₂⁸¹Br ([M]⁺) 173.96102, found 173.96131.

3-Bromo-4-([1*H*]-pyrrol-1-yl)pyridine 1c

2,5-dimethoxytetrahydrofuran (2.5 eq., 28.9 mmol, 3.75 ml) was added to a stirred solution of **1b** (17.3 mmol, 3.0 g) in 12 ml HOAc. The mixture was then refluxed (120 °C) for 1 h. Afterwards, the reaction mixture was diluted with DCM and washed with distilled water and NaHCO₃ solution subsequently. The aqueous phase was extracted with DCM. The organic fractions were combined and the solvent removed under vacuum. Finally, the crude product was purified from reagent residues through column chromatography (heptane/ethyl acetate, 4:1) to obtain **1c** as a white solid (79% yield, 2.03 g). **¹H NMR (300 MHz, DMSO-***d*₆): $\delta = 8.87$ (s, 1H, CH_{pyridine}), 8.60 (d, $^{3}J = 5.2$ Hz, 1H, CH_{pyridine}), 7.48 (d, $^{3}J = 5.2$ Hz, 1H, CH_{pyridine}), 7.19 (t, $^{3}J = 2.2$ Hz, 2H, CH_{pyrrole}), 6.33 (t, $^{3}J = 2.2$ Hz, 2H, CH_{pyrrole}) ppm. ¹³C NMR (75 MHz, DMSO-*d*₆): $\delta = 153.4$, 149.8 (CH_{pyridine}), 145.7 (C_{pyridine}), 121.8 (CH_{pyridine}), 121.6 (CH_{pyrrole}), 114.5 (C-Br), 110.5 (CH_{pyrrole}) ppm. IR (ATR): $\tilde{\nu} = 3118$ (br, w), 1737 (w), 1574 (s), 1497 (s), 1339 (s), 1180 (w), 1069 (s), 1017 (s),

834 (s), 726 (s), 667 (s), 619 (s), 570 (s) cm⁻¹. **MS (EI, 70 eV):** m/z (%) = 222 ([C₉H₇N₂⁸¹Br]⁺, 100), 223 (12), 224 ([C₉H₇N₂⁷⁹Br]⁺, 98), 225 (10), 196 (7), 183 (3), 156 (4), 143 (27), 142 (18), 116 (67). **HRMS (EI, 70 eV):** m/z = calcd. for C₉H₇N₂⁷⁹Br ([M]⁺) 221.97871, found 221.97828. Calcd. for C₉H₇N₂⁸¹Br ([M]⁺) 223.97667, found 223.97663.

	N	Br N + P	'h] →	Pr N	1	
		1c			4a		
entry	catalyst (0.05 eq.)	ligand (0.1 eq.)	base	eq.	solvent	temp. [°C]	yield [%] ^b
1	Pd(PPh ₃) ₂ Cl ₂	_	Et ₃ N	3	DMF	140	59
2	Pd(PPh ₃) ₂ Cl ₂	_	Et ₃ N	3	dioxane	50	56
3	Pd(PPh ₃) ₂ Cl ₂ ,	$P(tBu)_3 \cdot HBF_4$	Et ₃ N	3	dioxane	50	65
4	Pd(PPh ₃) ₂ Cl ₂ ,	$P(tBu)_3 \cdot HBF_4$	HN <i>i</i> Pr ₂	3	dioxane	50	65
5	Pd(MeCN) ₂ Cl ₂ ,	$P(tBu)_3 \cdot HBF_4$	Et ₃ N	3	dioxane	50	69
6	Pd(MeCN) ₂ Cl ₂ ,	XPhos	Et ₃ N	3	dioxane	50	73
7	$Pd(MeCN)_2Cl_2$,	XPhos	Et ₃ N	3	dioxane	r.t.	81

Optimization of Sonogashira reaction giving 3-alynyl-4-pyrrolopyridines^a

^{*a*}reaction condotions: **1a** (0.45 mmol, 100 mg) and phenylacetylene (1.5 eq., 0.68 mmol, 73 μl) react with CuI (0.05 eq., 0.01 mmol, 4.3 mg) in 2 ml of solvent in a glas tube under argon for 24 h. ^{*b*} isolated yields.

The following Sonogashira couplings were carried out employing the reaction conditions of **entry 7** sufficiently.

Sonogashira reaction giving 4a-n

General procedure

1c was dissolved in 2 ml dioxane under an argon atmosphere. After the addition of $Pd(MeCN)_2Cl_2$ (0.05 eq.), CuI (0.05 eq.), XPhos (0.1 eq.) and Et₃N (3 eq.) in advance of the corresponding acetylene (1.5 eq.) the reaction is stirred at room temperature for 24 h. The reaction mixture was subsequently cooled to room temperature and washed with distilled water and ethyl acetate. The organic layers were collected and the solvent evaporated. The

crude product was thereafter purified by column chromatography (heptane/ethyl acetate, 10:1 \rightarrow 2:1) to give the alkynylated products **4a–n**¹.

Substrate characterization

3-(Phenylethynyl)-4-([1*H***]-pyrrol-1-yl)pyridine 4a. Reaction of 1c (0.45 mmol, 100 mg) and phenylacetylene (0.07 mmol, 73 µl gave 4a as a white solid (88 mg, 81%); mp 68–69 °C. ¹H NMR (250 MHz, CDCl₃): \delta = 8.77 (bs, 1H, CH_{pyridine}), 8.51 (bs, 1H, CH_{pyridine}), 7.43–7.39 (m, 2H, Ph), 7.31 (t, ³***J* **= 2.2 Hz, 2H, CH_{pyrrole}), 7.27–7.25 (m, 3H, Ph), 7.18–7.13 (m, 1H, CH_{pyridine}), 6.32 (t, ³***J* **= 2.2 Hz, 2H, CH_{pyrrole}) ppm. ¹³C NMR² (62.9 MHz, CDCl₃): \delta = 155.0, 149.5 (CH_{pyridine}), 147.2 (C_{pyridine}), 131.6, 129.1, 128.6 (CH_{Ph}), 122.4 (C_{Ph}), 120.8 (CH_{pyrrole}), 111.3 (CH_{pyrrole}), 96.8, 84.2 (C_{alkyne}) ppm. IR (ATR): \tilde{v} = 3130 (w), 3055 (w), 2220 (w), 1562 (m), 1589 (m), 1393 (m), 1344 (m), 1185 (w), 1062 (m), 1018 (m), 920 (w), 836 (s), 749 (s), 722 (s), 685 (s), 621 (m), 562 (s) cm⁻¹. MS (EI, 70 eV):** *m/z* **(%) = 244 ([M⁺], 100), 243 (69), 242 (36), 218 (8), 216 (7), 215 (5), 214 (5), 189 (6), 150 (8), 122 (5). HRMS (EI, 70 eV): calcd. for C₁₇H₁₂N₂ ([M]⁺) 244.09950, found 244.09904.**

Me

3-((3-Methylphenyl)ethynyl)-4-([1H]-pyrrol-1-yl)pyridine4b.Reaction of 1c (1.35 mmol, 300 mg) and tolylacetylene (2.02 mmol,234.3 mg)gave**4b** as a white solid (304 mg, 88%);mp 99–100 °C. ¹H NMR (250 MHz, C₆D₆): δ = 8.91 (s, 1H, CH_{pyridine}),

8.21 (d, ${}^{3}J = 5.5$ Hz, 1H, CH_{pyridine}), 7.27 (d, ${}^{3}J = 7.6$ Hz, 1H, CH_{Ar}), 7.22 (t, ${}^{3}J = 2.2$ Hz, 2H, CH_{pyrrole}), 7.23 (s, 1H, CH_{Ar}), 6.94 (t, ${}^{3}J = 7.6$ Hz, 1H, CH_{Ar}), 6.82 (d, ${}^{3}J = 7.6$ Hz, 1H, CH_{Ar}), 6.52 (d, ${}^{3}J = 5.5$ Hz, 1H, CH_{pyridine}), 6.36 (t, ${}^{3}J = 2.2$ Hz, 2H, CH_{pyrrole}), 1.96 (s, 3H, Me) ppm. ¹³C NMR (62.9 MHz, C₆D₆): $\delta = 155.5$, 150.1 (CH_{pyridine}), 147.1 (C_{pyridine}), 138.4 (C_{Ar}), 132.4, 130.1, 129.1, 128.6 (CH_{Ar}), 122.8 (C_{Ar}), 121.0 (CH_{pyrrole}), 117.1 (CH_{pyridine}), 113.0 (C_{pyridine}), 111.5 (CH_{pyrrole}), 97.2, 84.6 (C_{alkyne}), 21.0 (Me) ppm. IR (ATR): $\tilde{\nu} = 3034$ (w), 2919 (w), 2207 (w), 1720 (w), 1577 (w), 1558 (m), 1498 (s), 1392 (w), 1339 (s), 1180 (w), 1062 (m), 1018 (m), 827 (w), 782 (m), 722 (s), 687 (m), 569 (m) cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 258 ([M⁺], 100), 257 (38), 256 (12), 255 (16), 243 (22), 242 (32), 241 (4), 231 (6), 229 (4), 214 (4),

¹ The pyridine fragment provides very broad signals in ¹H and ¹³C NMR spectra. Therefore, it was not possible to detect all pyridine signals of some substrates. Known effects that can lead to broad or undetectable NMR signals are exchange broadening due to changes in the spin and rotational states of the observed atom or aggregation with the solvent. However, all signals reappear in the cyclized products **5a–n**.

 $^{^{2}}$ meta-C_{pyridine} and meta-CH_{pyridine} are undetectable.

202 (3), 164 (3), 163 (6). **HRMS (EI, 70 eV):** calcd. for C₁₈H₁₄N₂ ([M]⁺) 258.11515, found 258.11562.

OMe 3-((4-Methoxy-2-methylphenyl)ethynyl)-4-([1H]-pyrrol-1-

yl)pyridine 4c. Reaction of 1c (1.35 mmol, 300 mg) and 4-methoxy-2-methylphenylacetylene (294.9 mg, 2.017 mmol) gave 4c as a yellow solid (356 mg, 91%); mp 77–78 °C. ¹H NMR (250 MHz, C_6D_6):

δ = 8.90 (bs, 1H, CH_{pyridine}), 8.20 (bs, 1H, CH_{pyridine}), 7.35–7.15 (m, 3H, CH_{Ar}), 6.54–6.31 (m, 5H, CH_{Ar}), 3.20 (s, 3H, OMe), 2.23 (s, 3H, Me) ppm. ¹³C NMR (62.9 MHz, C₆D₆): δ = 160.7 (C_{Ar}), 155.5, 149.7 (CH_{pyridine}), 146.6 (C_{pyridine}), 142.6 (C_{Ar}), 133.9 (CH_{Ar}), 121.0 (CH_{pyrrole}), 117.3 (CH_{pyridine}), 115.7 (CH_{Ar}), 115.0 (C_{Ar}), 113.8 (C_{pyridine}), 111.8 (CH_{Ar}), 111.3 (CH_{pyrrole}), 96.4, 87.2 (C_{alkyne}), 54.8 (OMe), 21.0 (Me) ppm. IR (ATR): $\tilde{v} = 2957$ (w), 2202 (w), 1725 (w), 1602 (w), 1560 (m), 1491 (m), 1341 (w), 1276 (w), 1237 (s), 1022 (w), 846 (w), 815 (s), 726 (s), 688 (m), 576 (m) cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 288 ([M⁺], 100), 287 (77), 273 (9), 272 (15), 271 (8), 257 (6), 256 (9), 255 (10), 246 (7), 245 (40), 244 (23), 243 (39), 242 (15), 230 (10), 229 (10), 218 (7), 217 (6), 216 (5), 205 (5), 151 (6). HRMS (EI, 70 eV): calcd. for C₁₉H₁₆ON₂ ([M]⁺) 288.12571, found 288.12528.

3-(Naphtalen-1-ylethynyl)-4-([1*H*]-pyrrol-1-yl)pyridine 4d. Reaction of 1c (1.57 mmol, 350 mg) and 1-naphthylacetylene (2.35 mmol, 364 μ l) gave 4d as a white solid (458 mg, 99%); mp 121–122 °C. ¹H NMR (250 MHz, CDCl₃): δ = 9.00 (bs, 2H, CH_{pyridine}), 8.27–8.23 (m, 1H,

CH_{naphthyl.}), 7.90–7.85 (m, 2H, CH_{naphthyl.}), 7.78–7.74 (m, 1H, CH_{naphthyl.}), 7.58–7.50 (m, 2H, CH_{naphthyl.}), 7.47–7.44 (m, 1H, CH_{naphthyl.}), 7.45 (t, ${}^{3}J$ = 2.2 Hz, 2H, CH_{pyrrole}), 7.18–7.05 (m, 1H, CH_{pyridine}), 6.46 (t, ${}^{3}J$ = 2.2 Hz, 2H, CH_{pyrrole}) ppm. 13 C NMR³ (62.9 MHz, CDCl₃): δ = 133.2, 133.2 (C_{naphthyl.}), 131.1, 129.8, 128.5, 127.2, 126.8, 126.2, 125.3 (CH_{naphthyl.}), 121.0 (CH_{pyrrole}), 120.0 (C_{naphthyl.}), 111.6 (CH_{pyrrole}), 95.6, 88.7 (C_{alkyne}) ppm. IR (ATR): \tilde{v} = 3043 (w), 2206 (w), 1556 (w), 1494 (m), 1388 (w), 1340 (m), 1179 (w), 1063 (m), 1019 (w), 832 (m), 803 (s), 777 (s), 728 (s), 672 (m), 620 (m), 560 (s) cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 293 ([M⁺], 100), 292 (50), 291 (11), 266 (6), 265 (8), 264 (7), 238 (3), 200 (6), 174 (2), 146 (6), 132 (5). HRMS (EI, 70 eV): calcd. for C₂₁H₁₃N₂ ([M]⁺) 293.10732, found 293.10668.

³ All carbon signals of the pyridine moiety were undetectable.

3-((4-Trifluoromethylphenyl)ethynyl)-4-([1H]-pyrrol-1-yl)pyridine

4e. Reaction of 1c (2.02 mmol, 450 mg,) and 4-(trifluoromethyl)phenylacetylene (2.80 mmol, 494 µl) gave 4e as a yellow solid (343 mg, 55%); mp 75–76 °C. ¹H NMR (300 MHz, C₆D₆): $\delta = 8.92$

(bs, 1H, CH_{pvridine}), 8.32 (bs, 1H, CH_{pvridine}), 7.22–7.13 (m, 6H, CH_{Ar}), 6.58 (bs, 1H, CH_{pvridine}), 6.40 (t, ${}^{3}J = 2.2 \text{ Hz}$, 2H, CH_{pvrrole}) ppm. ${}^{13}C$ NMR (75 MHz, C₆D₆): $\delta = 155.5$, 150.7 (CH_{pyridine}), 147.3 (C_{pyridine}), 131.9 (CH_{Ar}), 130.5 (q, ${}^{2}J_{C,F} = 32.6$ Hz, C_{Ar}), 126.3 (q, ${}^{4}J_{C,F} = 1.4 \text{ Hz}, C_{Ar}$, 125.5 (q, ${}^{3}J_{C,F} = 3.8 \text{ Hz}, CH_{Ar}$), 124.4 (q, ${}^{1}J_{C,F} = 272.3 \text{ Hz}, CF_{3}$), 120.9 (CH_{pyrrole}), 117.3 (CH_{pyridine}), 111.6 (CH_{pyrrole}), 105.2(C_{pyridine}), 95.1, 87.0 (C_{alkyne}) ppm. ¹⁹F NMR (282 MHz, C₆D₆) $\delta = -62.59$ ppm. **IR (ATR):** $\tilde{v} = 2929$ (w), 1724 (w), 1613 (w), 1583 (w), 1557 (w), 1496 (m), 1407 (w), 1324 (s), 1163 (m), 1101 (s), 1062 (s), 1016 (m), 834 (s), 729 (s), 675 (m), 577 (m) cm⁻¹. **MS (EI, 70 eV):** m/z (%) = 312 ([M⁺], 100), 311 (37), 310 (8), 293 (5), 291 (5), 286 (7), 243 (9), 242 (20), 214 (4), 199 (4). HRMS (EI, 70 eV): calcd. for C₁₈H₁₁F₃N₂ ([M]⁺) 312.28855, found 312.28849.

> 4f. 3-((4-Methylphenyl)ethynyl)-4-([1H]-pyrrol-1-yl)pyridine

Reaction of 1c (1.57 mmol, 350 mg) and 4-methylphenylacetylene

(2.35 mmol, 274 mg) gave 4f as a white solid (355 mg, 88%); mp 97–98 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 8.91$ (bs, 2H, CH_{pyridine}), 7.42 (t, ${}^{3}J = 2.2$ Hz, 2H, CH_{pyrrole}), 7.40 (d, ${}^{3}J = 7.9$ Hz, 2H, CH_{Ar}), 7.18 (d, $^{3}J = 7.9$ Hz, 2H, CH_{Ar}), 7.19–7.10 (m, 1H, CH_{pvridine}), 6.42 (t, $^{3}J = 2.2$ Hz, 2H, CH_{pvrrole}), 2,38 (s, 3H, Me) ppm. ¹³C NMR⁴ (62.9 MHz, CDCl₃): $\delta = 139.6$ (C-Me), 131.6, 129.4 (CH_{Ar}), 120.8 (CH_{pvrrole}), 119.2 (C_{Ar}), 111.4 (CH_{pvrrole}), 97.6, 83.7 (C_{alkvne}), 21.7 (Me) ppm. IR (ATR): $\tilde{v} = 3128$ (w), 2658 (w), 2217 (m), 1560 (m), 1494 (s), 1389 (s), 1313 (w), 1179 (m), 1115 (w), 1068 (s), 1016 (s), 821 (m), 808 (s), 732 (s), 685 (m), 623 (w), 577 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 258 ([M⁺], 100), 257 (40), 256 (12), 255 (14), 243 (17), 242 (30), 231 (5), 163 (6), 139 (3), 128 (4). HRMS (EI, 70 eV): calcd. for $C_{18}H_{14}N_2$ ([M]⁺) 258.11515, found 258.11472.

3-((4-Methoxyphenyl)ethynyl)-4-([1H]-pyrrol-1-yl)pyridine 4g. Reaction of 1c (1.57 mmol, 350 mg) and 4-methoxyphenylacetylene (2.35 mmol, 311 mg) gave 4g as a yellow solid (408 mg, 95%); mp 89–90 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 8.72$ (bs, 2H,

⁴ All carbon signals of the pyridine moiety were undetectable.

CH_{pyridine}), 7.45 (d, ${}^{3}J$ = 8.9 Hz, 2H, CH_{Ar}), 7.45 (t, ${}^{3}J$ = 2.0 Hz, 2H, CH_{pyrrole}), 7.31 (bs, 1H, CH_{pyridine}), 6.89 (d, ${}^{3}J$ = 8.9 Hz, 2H, CH_{Ar}), 6.41 (t, ${}^{3}J$ = 2.0 Hz, 2H, CH_{pyrrole}), 3.83 (s, 3H, OMe) ppm. 13 C NMR⁵ (62.9 MHz, CDCl₃): δ = 160.5 (C-OMe), 133.3 (CH_{Ar}), 120.9 (CH_{pyrrole}), 114.5 (C_{Ar}), 114.4 (CH_{Ar}), 111.5 (CH_{pyrrole}), 97.5, 82.9 (C_{alkyne}), 55.5 (OMe) ppm. IR (ATR): \tilde{v} = 3035 (w), 2933 (w), 2218 (m), 1559 (m), 1504 (s), 1338 (m), 1290 (m), 1247 (s), 1174 (m), 1067 (m), 1020 (s), 826 (s), 732 (s), 686 (s), 326 (m), 542 (m) cm⁻¹. MS (EI, 70 eV): *m*/*z* (%) = 274 ([M⁺], 100), 273 (8), 259 (36), 232 (8), 231 (46), 230 (38), 229 (34), 205 (10), 204 (9), 203 (12), 151 (7), 137 (12). HRMS (EI, 70 eV): calcd. for C₁₈H₁₄N₂O ([M]⁺) 274.11006, found 274.10990.

^tBu

3-((4-*tert*-Butylphenyl)ethynyl)-4-([1*H*]-pyrrol-1-yl)pyridine 4h. Reaction of 1c (1.57 mmol, 350 mg) and 4-*tert*-butylphenylacetylene (2.35 mmol, 425 µl) gave 4h as a brown oil (463 mg, 98%). ¹H NMR (250 MHz, CDCl₃): $\delta = 8.99$ (bs, 2H, CH_{pyridine}), 7.46 (d, ³J = 8.6 Hz,

2H, CH_{Ar}), 7.42 (t, ${}^{3}J$ = 2.2 Hz, 2H, CH_{pyrrole}), 7.39 (d, ${}^{3}J$ = 8.6 Hz, 2H, CH_{Ar}), 7.20–7.09 (m, 1H, CH_{pyridine}), 6.41 (t, ${}^{3}J$ = 2.2 Hz, 2H, CH_{pyrrole}), 1.33 (s, 9H, CH_{3/Bu}) ppm. ${}^{13}C^{6}$ NMR (62.9 MHz, CDCl₃): δ = 152.6 (C-*t*Bu), 131.4, 125.6 (CH_{Ar}), 120.8 (CH_{pyrrole}), 119.3 (C_{Ar}), 111.3 (CH_{pyrrole}), 97.3, 83.7 (C_{alkyne}), 35.0 (C_{*t*Bu}), 31.2 (CH_{3*t*Bu}) ppm. IR (ATR): $\tilde{\nu}$ = 2960 (m), 2866 (w), 2217 (w), 1724 (w), 1559 (m), 1494 (s), 1394 (m), 1340 (s), 1266 (w), 1180 (w), 1063 (m), 1018 (m), 926 (w), 831 (s), 724 (s), 677 (m), 617 (w), 562 (m) cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 300 ([M⁺], 64), 286 (22), 285 (100), 270 (11), 269 (17), 257 (22), 256 (7), 255 (16), 244 (10), 243 (17), 242 (13), 128 (12). HRMS (EI, 70 eV): calcd. for C₂₁H₂₀N₂ ([M]⁺) 300.16210, found 300.16172.

3-((4-*n***-Propylphenly)ethynyl)-4-([1***H***]-pyrrol-1-yl)pyridine 4i. Reaction of 1c (1.35 mmol, 300 mg,) and 4-***n***-propylphenylacetylene (2.02 mmol, 291 mg) gave 4i as a white solid (332 mg, 86%), mp 74–75 °C. ¹H NMR (300 MHz, C₆D₆): \delta = 8.93 (bs, 1H, CH_{pyridine}),**

8.22 (bs, 1H, CH_{pyridine}), 7.38 (d, ${}^{3}J = 8.3$ Hz, 2H, CH_{Ar}) 7.23 (t, ${}^{3}J = 2.2$ Hz, 2H, CH_{pyrrole}), 6.85 (d, ${}^{3}J = 8.3$ Hz, 2H, CH_{Ar}), 6.52 (d, ${}^{3}J = 5.0$ Hz, 1H, CH_{pyridine}), 6.37 (t, ${}^{3}J = 2.2$ Hz, 2H, CH_{pyrrole}), 2.29 (t, ${}^{3}J = 7.6$ Hz, 2H, CH₂), 1.40 (tq, ${}^{3}J = 7.6$ Hz, ${}^{3}J = 7.3$ Hz, 2H, CH₂), 0.77 (t, ${}^{3}J = 7.3$ Hz, 3H, CH₃) ppm. ¹³C NMR (75 MHz, C₆D₆): $\delta = 155.5$, 150.0 (CH_{pyridine}), 147.0

⁵ All carbon signals of the pyridine moiety were undetectable.

⁶ All carbon signals of the pyridine moiety were undetectable.

(C_{pyridine}), 144.0 (C_{Ar}), 131.9, 129.0 (CH_{Ar}), 121.0 (CH_{pyrrole}), 120.3 (C_{Ar}), 117.2 (CH_{pyridine}), 111.4 (CH_{pyrrole}), 105.0 (C_{pyridine}), 97.3, 84.4 (C_{alkyne}), 38.1 (CH₂), 24.5 (CH₂), 13.8 (CH₃) ppm. **IR (ATR):** $\tilde{v} = 2954$ (w), 2926 (w), 2220 (w), 1715 (w), 1560 (m), 1497 (m), 1343 (m), 1182 (w), 1119 (w), 1062 (m), 1018 (m), 835 (s), 812 (s), 727 (s), 672 (m), 622 (w), 563 (m) cm⁻¹. **MS (EI, 70 eV):** m/z (%) = 286 ([M⁺], 68), 258 (20), 257 (100), 256 (19), 255 (37), 243 (12), 242 (16), 230 (4), 229 (6), 163 (9). **HRMS (EI, 70 eV):** calcd. for C₂₀H₁₈N₂ ([M]⁺) 286.14645, found 286.14637.

N N N 3-((4-*n*-Hexylphenyl)ethynyl)-4-([1*H*]-pyrrol-1-yl)pyridine 4j. Reaction of 1c (1.35 mmol, 300 mg) and 4-*n*-hexylphenylacetylene (2.02 mmol, 424 μ l) gave 4j as a yellow oil (367 mg, 83%). ¹H NMR (300 M Hz, C₆D₆): δ = 8.66 (s, 1H, CH_{pyridine}), 8.08 (d, ³J = 5.3 Hz, 1H,

CH_{pyridine}), 7.40 (d, ${}^{3}J$ = 8.3 Hz, 2H, CH_{Ar}), 7.23 (t, ${}^{3}J$ = 2.2 Hz, 2H, CH_{pyrrole}), 6.90 (d, ${}^{3}J$ = 8.3 Hz, 2H, CH_{Ar}), 6.70 (t, ${}^{3}J$ = 2.2 Hz, 2H, CH_{pyrrole}), 6.51 (d, ${}^{3}J$ = 5.3 Hz, 1H, CH_{pyridine}), 2.36 (t, ${}^{3}J$ = 7.3 Hz, 2H, CH₂), 1.47–1.40 (m, 2H, CH₂), 1.27–1.15 (m, 6H, CH₂), 0.87 (t, ${}^{3}J$ = 6.8 Hz, 3H, CH₃) ppm. ¹³C NMR (75 MHz, C₆D₆): δ = 154.3, 149.7 (CH_{pyridine}), 147.1 (C_{pyridine}), 144.3 (C_{Ar}), 131.9, 128.9 (CH_{Ar}), 121.0 (CH_{pyrrole}), 120.3 (C_{Ar}), 117.2 (CH_{pyridine}), 111.4 (CH_{pyrrole}), 105.0 (C_{pyridine}), 97.3, 84.4 (C_{alkyne}), 36.2, 32.0, 31.4, 29.2, 23.0 (CH₂), 14.3 (CH₃) ppm. IR (ATR): \tilde{v} = 2925 (w), 2854 (w), 2217 (w), 1722 (w), 1575 (m), 1495 (s), 1395 (w), 1339 (m), 1180 (w), 1063 (m), 1016 (m), 827 (m), 721 (s), 667 (w), 618 (w), 569 (m) cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 328 ([M⁺], 59), 285 (6), 272 (6), 271 (15), 258 (29), 257 (100), 256 (23), 255 (43), 244 (5), 243 (20), 242 (18), 229 (6), 228 (9), 227 (6), 202 (5). HRMS (EI, 70 eV): calcd. for C₂₃H₂₄N₂ ([M]⁺) 328.19340, found 328.19342.

3-(Thiophen-3-ylethynyl)-4-([1*H*]-pyrrol-1-yl)pyridine 4k. Reaction of 1c (1.35 mmol, 300 mg,) and thiophen-3-ylacetylene (2.02 mmol, 199 μ l) gave 4k as a white solid (254 mg, 76%), mp 80–81 °C. ¹H NMR (250 MHz, C₆D₆): δ = 8.84 (s, 1H, CH_{pyridine}), 8.21 (d, ³J = 5.5 Hz, 1H, CH_{pyridine}), 7.20

(t, ${}^{3}J = 2.2$ Hz, 2H, CH_{pyrrole}), 7.14 (dd, ${}^{3}J = 1.2$ Hz, ${}^{3}J = 3.0$ Hz, 1H, CH_{thioph}), 6.93 (dd, ${}^{3}J = 1.2$ Hz, ${}^{3}J = 5.0$ Hz, 1H, CH_{thioph}), 6.71 (dd, ${}^{3}J = 5.0$ Hz, ${}^{3}J = 3.0$ Hz, 1H, CH_{thioph}), 6.56 (d, ${}^{3}J = 5.5$ Hz, 1H, CH_{pyridine}), 6.34 (t, ${}^{3}J = 2.2$ Hz, 2H, CH_{pyrrole}) ppm. 13 C NMR (62.9 MHz, C₆D₆): $\delta = 155.3$, 150.1 (CH_{pyridine}), 147.0 (C_{pyridine}), 129.9, 129.7, 125.9 (CH_{thioph}), 121.9 (C_{thioph}), 120.9 (CH_{pyrrole}), 117.1 (CH_{pyridine}), 112.8 (C_{pyridine}), 111.5 (CH_{pyrrole}), 92.4, 84.4 (C_{alkyne}) ppm. IR (ATR): $\tilde{v} = 3100$ (w), 2928 (w), 2216 (w), 1721 (w), 1558 (m), 1493 (m),

1386 (w), 1335 (m), 1116 (w), 1061 (m), 1013 (w), 827 (m), 791 (m), 731 (s), 676 (s), 621 (s), 571 (s), 483 (m) cm⁻¹. **MS (EI, 70 eV):** m/z (%) = 250 ([M⁺], 100), 249 (55), 248 (22), 224 (5), 223 (6), 222 (5), 216 (3), 205 (16), 179 (3). **HRMS (EI, 70 eV):** calcd. for C₁₅H₁₀N₂S ([M]⁺) 250.05592., found 250.05594.

Si[/]Pr₃ **4-([1***H***]-pyrrol-1-yl)-3-((triisopropylsilyl)ethynyl)pyridine 41.** Reaction of **1c** (1.35 mmol, 300 mg) and ethynyltriisopropylsilane (2.02 mmol, 449 µl) gave **41** as a yellow oil (339 mg, 78%). ¹**H NMR (300 MHz, C₆D₆):** $\delta = 8.99$ (s, 1H, CH_{pyridine}), 8.27 (d, ³*J* = 5.5 Hz, 1H, CH_{pyridine}), 7.30 (t, ³*J* = 2.2 Hz, 2H, CH_{pyrrole}), 6.55 (d, ³*J* = 5.5 Hz, 1H, CH_{pyridine}), 6.45 (t, ³*J* = 2.2 Hz, 2H, CH_{pyrrole}), 1.21 (s, 3H, CH_iPr), 1.20 (s, 18H, CH_{3i}Pr) ppm. ¹³**C NMR (75 MHz, C₆D₆):** $\delta = 156.6$, 150.3 (CH_{pyridine}), 147.3 (C_{pyridine}), 120.9 (CH_{pyrrole}), 116.9 (CH_{pyridine}), 112.9 (C_{pyridine}), 111.3 (CH_{pyridine}), 102.2, 99.7 (C_{alkyne}), 18.8 (CH_{3i}Pr), 11.7 (CH_iPr) ppm. **IR (ATR):** $\tilde{v} = 2941$ (m), 2863 (m), 2154 (w), 1724 (w), 1579 (w), 1559 (w), 1497 (s), 1462 (w), 1341 (m), 1063 (m), 1018 (m), 881 (m), 831 (s), 722 (s), 667 (s), 562 (m) cm⁻¹. **MS (EI, 70 eV):** *m/z* (%) = 324 ([M⁺], 5), 283 (6), 282 (26), 281 (100), 253 (19), 239 (16), 225 (12), 211 (17), 195 (19), 181 (6), 169 (8), 168 (7), 149 (12), 113 (9). **HRMS (EI, 70 eV):** calcd. for C₂₀H₂₈N₂Si ([M]⁺) 324.20163, found 324.20133.

3-([Cyclopropyl]ethynyl)-4-(1*H***-pyrrol-1-yl)pyridine 4m. Reaction of 1c (1.35 mmol, 300 mg) and ethynylcyclopropane (2.02 mmol, 171 µl) gave 4m as a white solid (155 mg, 56%); mp 120–121 °C. ¹H NMR (300 MHz, C₆D₆): \delta = 8.82 (bs, 1H, CH_{pyridine}), 8.19–8.17 (m, 1H, CH_{pyridine}), 7.66–7.62 (m, 1H, CH_{pyridine}), 7.16–7.14 (m, 2H, CH_{pyrrole}), 7.35–7.33 (m, 2H, CH_{pyrrole}), 1.30–1.18 (m, 1H, CH), 0.57–0.53 (m, 2H, CH₂), 0.37–0.34 (m, 2H, CH₂) ppm. ¹³C NMR (75 MHz, CDCl₃): \delta = 155.8, 149.5 (CH_{pyridine}), 147.2 (C_{pyridine}), 120.8 (CH_{pyrrole}), 117.1 (CH_{pyridine}), 113.6 (C_{pyridine}), 111.1 (CH_{pyrrole}), 101.4, 71.1 (C_{alkyne}), 8.6 (CH₂), 0.8 (CH) ppm. IR (ATR): \tilde{\nu} = 2926 (w), 2857 (w), 2228 (w), 1721 (m), 1581 (w), 1558 (w), 1498 (s), 1340 (m), 1271 (s), 1121 (m), 1064 (m), 1019 (w), 952 (w), 829 (w), 724 (s), 675 (w), 579 (s) cm⁻¹. MS (EI, 70 eV):** *m/z* **(%) = 208 ([M⁺], 68), 207 (100), 206 (16), 205 (17), 193 (8), 192 (6), 181 (11), 180 (38), 179 (20), 168 (3), 155 (21), 152 (4), 89 (4). HRMS (ESI-TOF): calcd. for C₁₄H₁₁N₂ ([M+H]⁺) 207.09167, found 207.09121.**

3-(Dec-1-yn-1-yl)-4-(1*H*-pyrrol-1-yl)pyridine 4n. Reaction of 1c (1.57 mmol, 350 mg) and 1-decyne (2.35 mmol, 424 μ l,) gave 4n as a brown solid (244 mg, 56%), mp 76–77 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 8.77$ (bs, 2H, CH_{pvridine}), 7.36–7.23 (m, 1H, CH_{pvridine}), 6.97 (t, ${}^{3}J$ = 2.2 Hz, 2H, CH_{pvrrole}), 6.31 (t, ³J = 2.2 Hz, 2H, CH_{pyrrole}), 2.45 (t, ³J = 7.0 Hz, 2H, CH₂), 1.65–1.57 (m, 2H, CH₂), 1.47–1.22 (m, 10H, CH₂), 0.89 (t, ${}^{3}J$ = 6.6 Hz, 3H, CH₃) ppm. ${}^{13}C$ NMR⁷ (62.9 MHz, CDCl₃): $\delta = 154.0, 146.4$ (CH_{pyridine}), 121.5, 111.0 (CH_{pyrrole}), 31.9, 29.3, 29.2, 29.1, 28.3, 22.7, 19.8 (CH₂), 14.2 (CH₃) ppm. **IR (ATR):** $\tilde{v} = 2923$ (m), 2853 (w), 2230 (w), 1720 (w), 1575 (s), 1496 (s), 1396 (w), 1339 (m), 1180 (w), 1122 (w), 1063 (s), 1016 (s), 925 (w), 828 (m), 720 (s), 667 (m), 617 (m), 570 (m) cm⁻¹. **MS (EI, 70 eV)**: m/z (%) = 280 ([M⁺], 7), 279 (8), 209 (8), 195 (27), 193 (9), 183 (16), 182 (100), 181 (48), 169 (14), 168 (11), 167 (4), 155 (11), 154 (5). HRMS (EI, 70 eV): calcd. for C₁₉H₂₄N₂ ([M]⁺) 280.19340, found 280.19281.

⁷ Carbon signals for the *meta-* and *para-*position of the pyridine moiety were undetectable as well as the alkyne signals.

Cycloisomerization to give [1,6]naphthyridines 5a-n

General procedure

In a pressure tube the Sonogashira product **4a-n** was dissolved in xylene (3 ml, isomeric mixture) under an argon atmosphere. The catalyst Bi(OTf)₃ (1 eq.) was added to the mixture. The solution was stirred at 120 °C for 24 h. After cooling to room temperature the crude product was diluted with water and extracted with ethyl acetate. For further purification the organic solvent was evaporated and column chromatography (heptane/acetone, $2:1 \rightarrow 1:1$) was performed.

Product Characteriszation

6-(Phenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5a. Reaction of 4a (0.41 mmol, 100 mg) with Bi(OTf)₃ (0.41 mmol, 268 mg) gave 5a as a white solid (55 mg, 55%); mp 217–218 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.99 - 8.97$ (bs, 1H, CH_{naphthyr.}), 8.62 (d, ${}^{3}J = 6.1$ Hz, 1H, CH_{naphthyr.}), 7.95-7.94 (m, 1H, $CH_{naphthyr.}$), 7.79 (d, ${}^{3}J = 6.1$ Hz, 1H, $CH_{naphthyr.}$), 7.71–7.68 (m, 2H, CH_{Ph}), 7.53–7.47 (m, 3H, CH_{Ph}), 7.05-7.03 (m, 1H, CH_{pyrrole}), 6.93-6.91 (m, 1H, CH_{pyrrole}), 6.75-6.72 (m, 1H, CH_{pyrrole}) ppm. ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 149.2$, 145.4 (CH_{naphthyr}), 138.2, 138.1, 135.5, 131.6 (C_{Ar}), 129.0 (CH_{Ph}), 129.0 (CH_{Ph}), 128.5 (CH_{Ph}), 120.6 (C_{naphthyr}), 115.2, 114.8, 114.0, 109.1 (CH_{Ar}), 105.9 (CH_{pyrrole}) ppm. **IR (ATR):** $\tilde{v} = 1673$ (w), 1602 (m), 1492 (w), 1258 (s), 1231 (s), 1169 (s), 1035 (s), 816 (w), 766 (m), 697 (m), 631 (s), 573 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 244 ([M⁺], 100), 243 (33), 242 (17), 216 (5), 215 (4), 189 (4), 163 (2). **HRMS (EI, 70 eV):** calcd. for $C_{17}H_{12}N_2$ ([M]⁺) 244.09950, found 244.09913.

6-(3-Methylphenyl)pyrrolo[1,2-*a***][1,6]naphthyridine 5b.** Reaction of **4b** (0.58 mmol, 150 mg) with Bi(OTf)₃ (0.58 mmol, 381 mg) gave **5b** as a white solid (76 mg, 51%); mp 125–126 °C. ¹H NMR (300 MHz,

C₆**D**₆**)**: δ = 8.80 (s, 1H, CH_{naphthyr.}), 8.45 (d, ³*J* = 5.7 Hz, 1H, CH_{naphthyr.}), 7.41 (d, ³*J* = 7.6 Hz, 1H, CH_{Ar}), 7.38–7.36 (m, 2H, CH_{pyrrole/Ar}), 7.20 (dd, ³*J* = 7.6 Hz, ³*J* = 7.6 Hz, 1H, CH_{Ar}), 7.05 (d, ³*J* = 7.6 Hz, 1H, CH_{Ar}), 6.91 (d, ³*J* = 5.7 Hz, 1H, CH_{naphthyr.}), 6.71–6.67 (m, 2H, CH_{pyrrole}), 6.58 (s, 1H, CH_{naphthyr.}), 2.19 (s, 3H, Me) ppm. ¹³C NMR (75 MHz, C₆D₆): δ = 151.1, 147.5

(CH_{naphthyr.}), 139.0, 138.4, 137.1, 134.5, 131.6 (C_{Ar}), 129.4, 129.3, 128.8, 125.9 (CH_{Ar}), 120.3 (C_{Ar}), 115.3, 114.3, 113.5, 108.3, 105.1 (CH_{Ar}), 21.4 (CH₃) ppm. **IR (ATR):** \tilde{v} = 3029 (w), 2919 (w), 1732 (w), 1597 (m), 1484 (m), 1414 (w), 1363 (w), 1302 (w), 1202 (w), 1131 (w), 1037 (w), 851 (w), 810 (m), 787 (s), 709 (s), 645 (w), 569 (m) cm⁻¹. **MS (EI, 70 eV):** *m/z* (%) = 258 ([M⁺], 100), 257 (16), 256 (5), 255 (9), 243 (6), 242 (13), 229 (2), 214 (2), 202 (2). **HRMS (EI, 70 eV):** calcd. for C₁₈H₁₄N₂ ([M]⁺) 258.11515, found 258.11553.

OMe 6-(4-Methoxy-2-methylphenyl)pyrrolo[1,2-a][1,6]naphthyridine

5. Reaction of **4c** (0.52 mmol, 150 mg) with Bi(OTf)₃ (0.52 mmol, 338 mg) gave **5c** as a yellow solid (109 mg, 73%); mp 92–93 °C. **1. H NMR (300 MHz, C₆D₆): \delta = 8.80 (s, 1H, CH_{naphthyr}), 8.47 (d, {}^{3}J = 5.7 Hz, 1H, CH_{naphthyr}), 7.42 (dd, {}^{3}J = 3.0 Hz, {}^{4}J = 1.3 Hz, 1H, CH_{pyrrole}), 7.22 (d, {}^{3}J = 8.4 Hz, 1H, CH_{Ar}), 7.01 (d, {}^{3}J = 5.7 Hz, 1H, CH_{naphthyr}), 6.87 (d, {}^{4}J = 2.6 Hz, 1H, CH_{Ar}), 6.75 (dd, {}^{3}J = 8.4 Hz, 4J = 2.6 Hz, 1H, CH_{Ar}), 6.67 (dd, {}^{3}J = 3.8 Hz, {}^{3}J = 3.0 Hz, 1H, CH_{pyrrole}), 6.49 (s, 1H, CH_{naphthyr}), 6.32 (dd, {}^{3}J = 3.8 Hz, {}^{4}J = 1.3 Hz, 1H, CH_{pyrrole}), 3.44 (s, 3H, OMe), 2.10 (s, 3H, Me) ppm. {}^{13}C NMR (75 MHz, C₆D₆):** $\delta = 160.1$ (C), 150.9, 147.4 (CH), 138.1, 137.3, 134.1, 132.5, 131.1 (C), 130.6 (CH), 120.1 (C), 116.3, 116.3, 114.4, 113.4, 111.5, 108.4, 105.2 (CH), 54.9 (OMe), 20.1 (Me) ppm. **IR (ATR):** $\tilde{v} = 2951$ (w), 2921 (w), 1601 (m), 1491 (m), 1421 (w), 1364 (w), 1250 (s), 1232 (s), 1167 (s), 1113 (w), 1033 (s), 811 (m), 718 (w), 701 (m), 632 (s), 571 (w) cm⁻¹. **MS (EI, 70 eV):** m/z (%) = 288 ([M⁺¹], 99), 287 (100), 273 (6), 272 (8), 256 (5), 255 (7), 245 (8), 244 (12), 243 (25), 242 (13), 229 (7), 205 (3). HRMS (EI, 70 eV): calcd. for C₁₉H₁₆ON₂ ([M]⁺) 288.12511, found 288.12571.

6-(Naphth-1-yl)pyrrolo[1,2-*a*][1,6]naphthyridine 5d. Reaction of 4d (0.68 mmol, 200 mg) with Bi(OTf)₃ (0.68 mmol, 446 mg) gave 5d as a white solid (100 mg, 51%); mp 103–104 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 8.96$ (s, 1H, CH_{naphthyr}.), 8.64–8.66 (m, 1H, CH_{naphthyr}.), 7.97–7.90 (m, 3H, CH_{Ar/pyrrole}), 7.84 (d, ³*J* = 8.5 Hz, 1H, CH_{Ar}), 7.74 (d, ³*J* = 5.7 Hz, 1H, CH_{Ar}), 7.62–7.47 (m, 3H, CH_{Ar}), 7.41–7.34 (m, 1H, CH_{naphthyl}.), 7.08 (s, 1H, CH_{naphthyr}.), 6.79 (dd, ³*J* = 3.8 Hz, ³*J* = 3.0 Hz, 1H, CH_{pyrrole}), 6.20 (dd, ³*J* = 3.8 Hz, ⁴*J* = 1.2 Hz, 1H, CH_{pyrrole}) ppm. ¹³C NMR (62.9 MHz, CDCl₃): $\delta = 150.7$, 147.2 (CH), 137.6, 135.8, 133.9, 133.2, 132.5, 131.8 (C), 128.8, 128.5, 127.1, 126.3, 126.2, 125.9, 125.5 (CH), 120.0 (C), 116.9, 114.6, 113.3, 108.6, 105.5 (CH) ppm. IR (ATR): $\tilde{v} = 3042$ (w), 1598 (w), 1489 (w), 1416 (w), 1364 (w), 1299 (w), 1197 (w), 1030 (m), 906 (m), 854 (w), 800 (m), 774 (s), 712 (s), 664 (m), 569 (m) cm⁻¹. MS

(EI, 70 eV): m/z (%) = 294 ([M⁺], 100), 293 (93), 292 (54), 291 (12), 290 (6), 265 (6), 264 (6), 238 (4). HRMS (ESI-TOF): calcd. for C₂₁H₁₅N₂ ([M+H]⁺) 295.12352, found 295.12336.

6-(4-[Trifluoromethyl]phenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5e. Reaction of 4e (0.64 mmol, 200 mg) with Bi(OTf)₃ (0.64 mmol, 420 mg) gave 5e as a white solid (49 mg, 35%); mp 110–111 °C. ¹H NMR (300 MHz, C₆D₆): $\delta = 8.79$ (s, 1H, CH_{naphthyr}), 8.46 (d,

³J = 5.8 Hz, 1H, CH_{naphthyr.}), 7.44 (d, ³J = 8.1 Hz, 2H, CH_{Ar}), 7.35–7.33 (m, 1H, CH_{pyrrole}), 7.32 (d, ³J = 8.1 Hz, 2H, CH_{Ar}), 6.88 (d, ³J = 5.8 Hz, 1H, CH_{naphthyr.}), 6.67 (dd, ³J = 3.8 Hz, ³J = 3.0 Hz, 1H, CH_{pyrrole}), 6.46 (dd, ³J = 3.8 Hz, ⁴J = 1.3 Hz, 1H, CH_{pyrrole}), 6.39 (s, 1H, CH_{naphthyr.}) ppm. ¹³C NMR (75 MHz, C₆D₆): $\delta = 151.3$, 148.0 (CH_{naphthyr.}), 142.3, 137.3, 132.7, 130.7 (C_{Ar}), 130.5 (q, ² $J_{C,F} = 32.4$ Hz, C_{Ar}), 128.9 (CH), 125.8 (q, ³ $J_{C,F} = 3.8$ Hz, CH_{Ar}), 125.0 (q, ¹ $J_{C,F} = 272.1$ Hz, CF₃), 119.8 (C_{naphthyr.}), 116.0, 114.4, 113.8, 108.3, 104.9 (CH) ppm. ¹⁹F NMR (282 MHz, C₆D₆): $\delta = -62.06$ ppm. IR (ATR): $\tilde{\nu} = 3106$ (w), 3026 (w), 1616 (w), 1600 (m), 1500 (w), 1625 (w), 1370 (w), 1322 (s), 1165 (m), 1096 (s), 1066 (s), 1015 (m), 830 (s), 712 (s), 689 (s), 614 (m), 567 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 312 ([M⁺], 100), 311 (20), 293 (4), 243 (7), 242 (10), 214 (3). HRMS (EI, 70 eV): calcd. for C₁₈H₁₁N₂F₃ ([M]⁺) 312.08688, found 312.08676.

Me 6-(4-Methylphenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5f. Reaction of 4f (0.58 mmol, 150 mg) with Bi(OTf)₃ (0.58 mmol, 381 mg) gave 5f as a white solid (74 mg, 50%); mp 130–131 °C. ¹H NMR (300 MHz, CDCl₃): $\delta = 8.93$ (s, 1H, CH_{naphthyr}.), 8.57 (d, ³*J* = 6.0 Hz, 1H, CH_{naphthyr}.) 7.90 (s, 1H, CH_{naphtyr}.), 7.83 (d, ³*J* = 6.0 Hz, 1H, CH_{naphthyr}.), 7.52 (d, ³*J* = 8.0 Hz, 2H, CH_{Ar}), 7.26 (d, ³*J* = 8.0 Hz, 2H, CH_{Ar}), 6.97–6.95 (m, 1H, CH_{pyrrole}), 6.90–6.88 (m, 1H, CH_{pyrrole}), 6.71–6.70 (m, 1H, CH_{pyrrole}), 2.38 (s, 3H, Me) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 147.3$, 143.3 (CH_{naphthyr}.), 139.2, 138.9, 136.3, 134.9, 131.8 (C_{Ar}), 129.8, 128.3 (CH_{Ar}), 121.0 (C_{naphthyr}.), 115.9, 114.4, 114.1, 109.6, 106.6 (CH_{Ar}), 21.6 (Me) ppm. IR (ATR): $\tilde{v} = 1600$ (m), 1496 (m), 1424 (w), 1367 (w), 1254 (s), 1161 (s), 1133 (m), 1028 (s), 808 (s), 712 (m), 635 (s), 559 (w) cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 258 ([M⁺], 100), 257 (12), 243 (4), 242 (9), 202 (2), 129 (2), 128 (9). HRMS (ESI-TOF): calcd. for C₁₈H₁₅N₂ ([M+H]⁺) 259.12352, found 259.12432.

OMe 6-(4-Methoxyphenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5g.

Reaction of 4g (0.64 mmol, 175 mg) with Bi(OTf)₃ (0.64 mmol,

419 mg) gave **5g** as a white solid (136 mg, 78%); mp 137–138 °C. ¹H NMR (300 MHz, **CDCl₃):** $\delta = 8.97$ (s, 1H, CH_{naphthyr.}), 8.62 (d, ${}^{3}J = 6.1$ Hz, 1H, CH_{naphthyr.}), 7.95 (dd, ${}^{3}J = 3.1$ Hz, ${}^{4}J = 1.2$ Hz, 1H, CH_{pyrrole}), 7.83 (d, ${}^{3}J = 6.1$ Hz, 1H, CH_{naphthyr.}), 7.64 (d, ${}^{3}J = 8.9$ Hz, 2H, CH_{Ar}), 7.04 (d, ${}^{3}J = 8.9$ Hz, 2H, CH_{Ar}), 7.00 (s, 1H, CH_{naphthyr.}), 6.93 (dd, ${}^{3}J = 3.1$ Hz, ${}^{3}J = 3.8$ Hz, 1H, CH_{pyrrole}), 6.74 (dd, ${}^{3}J = 3.8$ Hz, 4J = 1.2 Hz, 1H, CH_{pyrrole}), 3.90 (s, 3H, OMe) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 160.1$ (C_{Ar}), 150.4, 146.6 (CH_{naphthyr.}), 137.4, 134.4, 131.7 (C_{Ar}), 130.8 (CH_{Ar}), 129.6 (CH_{Ar}), 120.4 (C_{naphthyr.}), 114.6, 114.5 (CH_{Ar}), 114.3 (CH_{Ar}), 113.6 (CH_{naphthyr.}), 108.6 (C_{naphthyr.}), 105.2 (CH_{pyrrole}), 55.5 (OMe) ppm. IR (ATR): $\tilde{\nu} = 1599$ (w), 1493 (w), 1366 (w), 1249 (s), 1232 (s), 1170 (s), 1109 (w), 1036 (s), 1019 (s), 829 (m), 806 (m), 714 (w), 681 (s), 636 (s), 568 (s) cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 274 ([M⁺], 100), 259 (19), 231 (21), 230 (17), 29 (20), 205 (9), 203 (7), 176 (5). HRMS (ESI-TOF): calcd. for C₁₈H₁₅ON₂ ([M+H]⁺) 275.11844, found 275.12061.

6-(4-*tert*-Butylphenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5h. Reaction of 4h (0.67 mmol, 200 mg,) with Bi(OTf)₃ (0.67 mmol, 437 mg) gave 5h as a white solid (82 mg, 41%); mp 70–71 °C. ¹H NMR (250 MHz, CDCl₃): $\delta = 8.94$ (s, 1H, CH_{naphthyr}), 8.59 (d, ³J = 6.0 Hz, 1H,

CHCIG): $b^{-} b^{-} 5^{+} (3, 111, CH_{naphthyr.}), b^{-} 5^{+} (4, 5)^{-} 0.0112, 111, CH_{naphthyr.}), 7.89 (dd, <math>{}^{3}J = 3.0 \text{ Hz}, {}^{4}J = 1.3 \text{ Hz}, 1\text{ H}, CH_{pyrrole}), 7.89 (d, {}^{3}J = 6.0 \text{ Hz}, 1\text{ H}, CH_{naphthyr.}), 7.66-7.62 (m, 2H, CH_{Ar}), 7.55-7.50 (m, 2H, CH_{Ar}), 7.00 (s, 1H, CH_{naphthyr.}), 6.87 (dd, {}^{3}J = 3.0 \text{ Hz}, {}^{3}J = 3.8 \text{ Hz}, 1\text{ H}, CH_{pyrrole}), 6.73 (dd, {}^{3}J = 3.8 \text{ Hz}, {}^{4}J = 1.3 \text{ Hz}, 1\text{ H}, CH_{pyrrole}), 1.40 (s, 9H, CH_{3/Bu}) ppm. {}^{13}C \text{ NMR} (62.9 \text{ MHz}, CDCl_3): \delta = 151.8 (C_{Ar}), 150.5, 146.7 (CH_{naphthyr.}), 137.4, 135.4, 134.6, 131.5 (C_{Ar}), 128.1, 125.8 (CH_{Ar}), 120.4 (C_{naphthyr.}), 114.9, 114.6, 113.5, 108.6, 105.3 (CH), 34.9 (C), 31.5 (CH_{3/Bu}) ppm. IR (ATR): <math>\tilde{v} = 2957$ (m), 2865 (w), 1597 (m), 1491 (m), 1421 (w), 1361 (m), 1267 (w), 1178 (w), 1108 (w), 1037 (w), 908 (w), 830 (s), 809 (m), 714 (s), 701 (s), 621 (w), 542 (m) cm^{-1}. MS (EI, 70 eV): m/z (%) = 300 ([M⁺], 100), 286 (18), 285 (81), 284 (5), 270 (11), 269 (10), 268 (7), 257 (21), 256 (6), 255 (15), 243 (12), 242 (14), 214 (3), 143 (6), 128 (28). HRMS (EI, 70 eV): calcd. for C₂₁H₂₀N₂ ([M]⁺) 300.39690, found 300.39686.

7.53 (d, ${}^{3}J = 8.3$ Hz, 1H, CH_{Ar}), 7.37 (dd, ${}^{3}J = 2.9$ Hz, ${}^{4}J = 1.4$ Hz, 1H, CH_{pyrrole}), 7.13 (d,

 ${}^{3}J = 8.3$ Hz, 1H, CH_{Ar}), 6.92 (d, ${}^{3}J = 5.7$ Hz, 1H, CH_{naphthyr}.), 6.72 (dd, ${}^{3}J = 3.8$ Hz, ${}^{4}J = 1.4$ Hz, 1H, CH_{pytrole}), 6.68 (dd, ${}^{3}J = 3.8$ Hz, ${}^{3}J = 2.9$ Hz, 1H, CH_{pytrole}), 6.60 (s, 1H, CH_{naphthyr}.), 2.50 (t, ${}^{3}J = 7.6$ Hz, 2H, CH₂), 1.59 (tq, ${}^{3}J = 7.6$ Hz, ${}^{3}J = 7.3$ Hz, 2H, CH₂), 0.90 (t, ${}^{3}J = 7.3$ Hz, 3H, CH₃) ppm. 1³C NMR (75 MHz, C₆D₆): $\delta = 151.1$, 147.4 (CH_{naphthyr}.), 143.1, 137.1, 136.4, 134.4, 131.6 (C), 129.0, 128.6 (CH_{Ar}), 120.3 (C_{naphthyr}.), 115.2, 114.3, 113.5, 108.2, 105.1 (CH_{Ar}), 38.1, 24.9 (CH₂), 14.0 (CH₃) ppm. IR (ATR): $\tilde{v} = 2955$ (w), 2926 (w), 2868 (w), 1596 (m), 1489 (m), 1422 (m), 1364 (w), 1302 (w), 1177 (w), 829 (m), 808 (s), 713 (s), 700 (s), 568 (m) cm⁻¹. MS (EI, 70 eV): *m/z* (%) = 286 ([M⁺], 100), 258 (13), 257 (66), 256 (11), 255 (25), 243 (6), 242 (8), 229 (3), 228 (3), 202 (2). HRMS (EI, 70 eV): calcd. for C₂₀H₁₈N₂ ([M]⁺) 286.14645, found 286.14708.

6-(4-*n*-Hexylphenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5j. Reaction of 4j (0.46 mmol, 150 mg,) with Bi(OTf)₃ (0.46 mmol, 299 mg) gave 5j as a yellow oil (67 mg, 45%). ¹H NMR (300 MHz, C₆D₆): δ = 8.79

(s, 1H, CH_{naphthyr}.), 8.44 (d, ${}^{3}J = 5.8$ Hz, 1H, CH_{naphthyr}.), 7.55 (d, ${}^{3}J = 8.2$ Hz, 2H, CH_{Ar}), 7.37 (dd, ${}^{3}J = 3.0$ Hz, ${}^{4}J = 1.3$ Hz, 1H, CH_{pyrrole}), 7.17 (d, ${}^{3}J = 8.2$ Hz, 2H, CH_{Ar}), 6.91 (d, ${}^{3}J = 5.8$ Hz, 1H, CH_{naphthyr}.), 6.73 (dd, ${}^{3}J = 3.8$ Hz, ${}^{4}J = 1.3$ Hz, 1H, CH_{pyrrole}), 6.69 (dd, ${}^{3}J = 3.8$ Hz, ${}^{3}J = 3.8$ Hz, 1H, CH_{pyrrole}), 6.61 (s, 1H, CH_{naphthyr}.), 2.57 (t, ${}^{3}J = 7.7$ Hz, 2H, CH₂), 1.62–1.58 (m, 2H, CH₂), 1.34–1.24 (m, 6H, CH₂), 0.90 (t, ${}^{3}J = 6.8$ Hz, 3H, CH₃) ppm. 13 C NMR (75 MHz, C₆D₆): $\delta = 151.1$, 147.4 (CH_{naphthyr}.), 143.4, 137.1, 136.4, 134.4, 131.6 (C), 129.0, 128.7 (CH_{Ar}), 120.3 (C), 115.2, 114.3, 113.5, 108.3, 105.1 (CH), 36.2, 32.2, 31.9, 29.4, 23.1 (CH₂), 14.4 (CH₃) ppm. IR (ATR): $\tilde{v} = 2923$ (s), 2853 (m), 1597 (m), 1491 (m), 1422 (m), 1365 (w), 1303 (w), 1176 (w), 1037 (w), 828 (s), 810 (s), 714 (s), 702 (s), 569 (m) cm⁻¹. MS (EI, 70 eV): m/z (%) = 328 ([M⁺], 100), 271 (5), 270 (3), 258 (13), 257 (53), 256 (10), 255 (22), 243 (4), 242 (7), 229 (3), 228 (3). HRMS (EI, 70 eV): calcd. for C₂₃H₂₄N₂ ([M]⁺) 328.19340, found 328.19321.

6-(Thiophen-3-yl)pyrrolo[1,2-*a*][1,6]naphthyridine 5k. Reaction of 4k (0.46 mmol, 115 mg,) with Bi(OTf)₃ (0.46 mmol, 301 mg) gave 5k as a white solid (82 mg, 72%); mp 234–235 °C. ¹H NMR (300 MHz, C_6D_6):

 $\delta = 8.76$ (s, 1H, CH_{naphthyr.}), 8.43 (d, ${}^{3}J = 5.7$ Hz, 1H, CH_{naphthyr.}), 7.34 (dd, ${}^{3}J = 2.8$ Hz, ${}^{4}J = 1.6$ Hz, 1H, CH_{pyrrole}), 7.26 (dd, ${}^{3}J = 5.0$ Hz, ${}^{4}J = 1.3$ Hz, 1H, CH_{thioph.}), 7.19 (dd, ${}^{4}J = 3.0$ Hz, ${}^{4}J = 1.3$ Hz, 1H, CH_{thioph.}), 6.97 (dd, ${}^{3}J = 5.0$ Hz, ${}^{4}J = 3.0$ Hz, 1H, CH_{thioph.}), 6.88 (d, ${}^{3}J = 5.7$ Hz, 1H, CH_{naphthyr.}), 6.70–6.66 (m, 2H, CH_{pyrrole}), 6.59 (s, 1H, CH_{naphtyr.}) ppm.

¹³C NMR (75 MHz, C₆D₆): δ = 151.0, 147.5 (CH_{naphthyr}), 139.3, 137.0, 131.1, 128.9 (C), 127.9, 126.0, 123.6 (CH), 120.0 (C_{naphthyr}), 114.9, 114.2, 113.5, 108.2, 105.0 (CH_{naphthyr}) ppm. **IR (ATR)**: \tilde{v} = 2922 (w), 1599 (w), 1495 (w), 1422 (w), 1357 (w), 1258 (s), 1230 (s), 1171 (s), 1034 (s), 838 (w), 785 (m), 706 (s), 636 (s), 570 (m), 540 (m) cm⁻¹. **MS (EI, 70 eV)**: *m/z* (%) = 250 ([M⁺], 100), 249 (18), 248 (9), 223 (3), 222 (2), 205 (10), 204 (2), 203 (3), 178 (3), 151 (2). **HRMS (EI, 70 eV)**: calcd. for C₁₅H₁₀N₂S ([M]⁺) 250.05592, found 250.05610.

¹H/¹³C/¹⁹F NMR spectra for all substrates

3-Bromo-2-([1H]-pyrrol-1-yl)pyridine 1a

3-((4-Fluorophenyl)ethynyl)-2-([1H]-pyrrol-1-yl)pyridine 2c

3-((4-Methylphenyl)ethynyl)-2-([1H]-pyrrol-1-yl)pyridine 2d

3-((4-tert-Butylphenyl)ethynyl)-2-([1H]-pyrrol-1-yl)pyridine 2e

3-((4-Methoxyphenyl)ethynyl)-2-([1*H*]-pyrrol-1-yl)pyridine 2f

3-((3-Methylphenyl)ethynyl)-2-([1H]-pyrrol-1-yl)pyridine 2g

3-((3-Methoxyphenyl)ethynyl)-2-([1H]-pyrrol-1-yl)pyridine 2h

3-((4-Methoxy-2-methylphenyl)ethynyl)-2-([1H]-pyrrol-1-yl)-pyridine 2i

2-([1H]-pyrrol-1-yl)-3-(thiophen-3-ylethynyl)pyridine 2j

~ S46 ~

2-([1*H*]-pyrrol-1-yl)-3-((triisopropylsilyl)ethynyl)pyridine 2k

1 Origin	Value Bruker BioSpin Conhu			_ 50000
2 Solvent 3 Temperature	CDCl3 298.2	Si [/] Pr ₃		45000
4 Pulse Sequence 5 Experiment	zg30 1D			45000
6 Number of Scans 7 Receiver Gain	16 51		115 114 110 110	40000
8 Relaxation Delay 9 Pulse Width	1.0000 10.0000		ľ	-
10 Acquisition Time 11 Spectrometer Frequency 12 Spectral Width	5.2954 300.13 6188 1			_ 35000
13 Lowest Frequency 14 Nucleus	-1246.9 1H			ŀ
15 Acquired Size 16 Spectral Size	32768 65536			_ 30000
				25000
				_ 23000
				_ 20000
				-
				- 15000
				-
				_ 10000
	7.89			5000
	8.40 8.39 8.38 8.38			
				0
	ず 共 8 8 8 8	년 년 초 8		-
10.0 9.5 9.0	8.5 8.0		.5 1.0 0.5 0.0	_
		r1 (ppm)		
Parameter	Value			85000
Parameter 1 Origin 2 Solvent	Value Bruker BioSpin GmbH			85000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence	Value Bruker BioSpin GmbH CDCI3 298.4 zqpq30		18.77	85000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans	Value Bruker BioSpin GmbH CDCI3 298.4 2gpg30 1D 1024			- 85000 - 80000 - 75000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay	Value Bruker BioSpin GmbH CDC3 298.4 299.30 10 1024 2050 2.0000			- 85000 - 80000 - 75000 - 70000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time	Value Bruker BioSpin GmbH CDCI3 298.4 29930 10 1024 2050 2.0000 1.8176		18.77	- 85000 - 80000 - 75000 - 70000 - 65000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectrameter Frequency 12 Spectral Width	Value Bruker BioSpin GmbH CDCJ3 298.4 299.3 10 10 2050 2.0000 1.8176 75.48 18028.8			- 85000 - 80000 - 75000 - 70000 - 65000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectral Width 3 Lowest Frequency 13 Lowest Frequency 14 Nucleus 15 Acquired Stra	Value Bruker BioSpin GmbH CDCI3 298.4 299.30 10 10 1024 2050 2.0000 1.8176 75.48 18028.8 1-1457.9 13C 32768			- 85000 - 80000 - 75000 - 70000 - 65000 - 55000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectral Width 12 Spectral Width 13 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size 16 Spectral Size	Value Bruker BioSpin GmbH CDC3 298.4 299.4 10 1024 2050 2.0000 1.8176 75.48 18028.8 -1457.9 13C 32768 65536			- 85000 - 80000 - 75000 - 70000 - 65000 - 60000 - 55000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectral Width 12 Spectral Width 13 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size	Value Bruker BioSpin GmbH CDCI3 298.4 299.4 299.30 10 10 2050 2.0000 10.0000 1.8176 75.48 18028.8 1-1457.9 13C 32768 65536			- 85000 - 75000 - 75000 - 70000 - 65000 - 55000 - 55000 - 45000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Reclever Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectral Width 12 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size	Value Bruker BioSpin GmbH CDC3 298.4 299.4 10 10 2050 2.0000 10.0000 1.8176 75.48 18028.8 -1457.9 13C 32768 65536	8	18.77	- 85000 - 80000 - 75000 - 70000 - 65000 - 55000 - 55000 - 45000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectral Width 12 Spectral Width 13 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size	Value Bruker BioSpin GmbH CDCI3 298.4 299930 10 10 1024 2050 2.0000 1.8176 75.48 18028.8 1-1457.9 13C 32768 65536	17 to GGB		- 85000 - 75000 - 75000 - 65000 - 55000 - 55000 - 45000 - 40000 - 35000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 12 Spectra Vidth 13 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size	Value Bruker BioSpin GmbH CDCJ3 298,4 29pg30 10 1024 2050 2,0000 1,8176 75,48 1457,9 13C 32768 65536	7/16 cod		85000 80000 75000 65000 55000 45000 45000 40000 35000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectrometer Frequency 12 Spectral Width 13 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size	Value Bruker BioSpin GmbH CDCI3 298,4 299,43 299,43 10 10 1024 2050 2.0000 10.0000 1.8176 18028,8 18028,8 18028,8 1487,9 13C 32768 65536	7716 003		 85000 85000 75000 75000 65000 65000 55000 45000 45000 35000 35000 25000 25000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectrometer Frequency 12 Spectral Width 13 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size	Value Value Bruker BioSpin GmbH CDCI3 298.4 299930 10 10 1024 2050 2.0000 1.8176 75.48 18028.8 -1457.9 13C 32768 65536	716.003		85000 80000 75000 65000 55000 45000 40000 35000 35000 25000 25000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectral Width 12 Spectral Width 13 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size	Value Bruker BioSpin GmbH CDC3 298.4 299.4 299.4 2050 2.0000 10.0000 1.8176 75.48 18028.8 1-1457.9 13C 32768 65536	7716 003		 85000 85000 75000 75000 65000 65000 55000 55000 45000 45000 35000 35000 25000 25000 15000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number Of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectrometer Frequency 12 Spectral Width 13 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size	Value Value Bruker BioSpin GmbH CDCI3 298.4 299930 10 10 1024 2050 2.0000 1.8176 75.48 18028.8 -1457.9 13C 32768 65536		18,77	85000 80000 75000 65000 55000 45000 45000 45000 35000 25000 25000 25000 15000 15000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectral Width 12 Spectral Width 13 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size	Value Bruker BioSpin GmbH CDC3 298.4 299.4 299.4 2050 2.0000 10.0000 1.8176 75.48 18028.8 1-1457.9 13C 32768 65536	716 003		85000 80000 75000 65000 55000 45000 45000 45000 35000 25000 15000 5000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number Of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectrometer Frequency 12 Spectral Width 13 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size	Value Bruker BioSpin GmbH CDCI3 298.4 239930 10 10 1024 2050 2.0000 1.8176 75.48 18028.8 -1457.9 13C 32758 65536		11.48	 85000 85000 75000 75000 65000 65000 55000 55000 40000 40000 30000 20000 10000 10000 5000 10000 10000 10000 10000
Parameter 1 Origin 2 Solvent 3 Temperature 4 Pulse Sequence 5 Experiment 6 Number of Scans 7 Receiver Gain 8 Relaxation Delay 9 Pulse Width 10 Acquisition Time 11 Spectral Width 12 Spectral Width 13 Lowest Frequency 14 Nucleus 15 Acquired Size 16 Spectral Size	Value Bruker BioSpin GmbH CDC3 298.4 299.4 299.4 2050 2.0000 10.0000 1.8176 75.48 18028.8 1-1457.9 13C 32768 65536		11.48	 85000 85000 75000 65000 65000 55000 45000 45000 35000 45000 25000 15000 15000 5000 5000 -5000

3-(*n*-Hex-1-yn-1-yl)-2-([1*H*]-pyrrol-1-yl)pyridine 2l

3-(Cyclohexylethynyl)-2-([1H]-pyrrol-1-yl)pyridine 2m

6-Phenylpyrrolo[1,2-*a*][1,8]naphthyridine 3a

6-(2-Fluorophenyl)pyrrolo[1,2-*a*][1,8]naphthyridine 3b

6-(4-Tolyl)pyrrolo[1,2-*a*][1,8]naphthyridine 3d

6-(4-tert-Butylphenyl)pyrrolo[1,2-a][1,8]naphthyridine 3e

6-(4-Methoxyphenyl)pyrrolo[1,2-*a*][1,8]naphthyridine 3f

6-(3-Methoxyphenyl)pyrrolo[1,2-*a*][1,8]naphthyridine 3h

6-(4-Methoxy-2-methylphenyl)pyrrolo[1,2-*a*][1,8]naphthyridine 3i

6-(Thiophen-3-yl)pyrrolo[1,2-a][1,8]naphthyridine 3j

6-(*n*-Butyl)pyrrolo[1,2-*a*][1,8]naphthyridine 31

6-(Cyclohexyl)pyrrolo[1,2-*a*][1,8]naphthyridine 3m

3-(Phenylethynyl)-4-([1H]-pyrrol-1-yl)pyridine 4a

3-((3-Methylphenyl)ethynyl)-4-([1*H*]-pyrrol-1-yl)pyridine 4b

3-((4-Methoxy-2-methylphenyl)ethynyl)-4-([1*H*]-pyrrol-1-yl)pyridine 4c

3-(Naphtalen-1-ylethynyl)-4-([1H]-pyrrol-1-yl)pyridine 4d

3-((4-Trifluoromethylphenyl)ethynyl)-4-([1H]-pyrrol-1-yl)pyridine 4e

Parameter	Value		-
1 Origin	Bruker BioSpin GmbH		-
2 Solvent	C6D6		1
3 Temperature	298.8		F
4 Pulse Sequence	zgfhigqn		-
5 Number of Scans	64		-
6 Receiver Gain	812		
Relaxation Delay Rulco Width	10,0000		-
9 Acquisition Time	0.9787	B.	
10 Acquisition Date	2016-08-27T11:27:00	92	-
11 Spectrometer Frequency	282.40	1	E
12 Spectral Width	66964.3	1	-
13 Lowest Frequency	-61722.4		-
14 Nucleus	19F		
15 Acquired Size	65536		-
to spectral size	131072	1	E
			-
			-
			Ľ
			-1
			Ĺ
			P
			-
			E.
			-
			E.
			-
			-

3-((4-Methylphenyl)ethynyl)-4-([1*H*]-pyrrol-1-yl)pyridine 4f

3-((4-Methoxyphenyl)ethynyl)-4-([1H]-pyrrol-1-yl)pyridine 4g

3-((4-tert-Butylphenyl)ethynyl)-4-([1H]-pyrrol-1-yl)pyridine 4h

3-((4-*n*-Propylphenly)ethynyl)-4-([1*H*]-pyrrol-1-yl)pyridine 4i

3-((4-*n*-Hexylphenyl)ethynyl)-4-([1*H*]-pyrrol-1-yl)pyridine 4j

3-(Thiophen-3-ylethynyl)-4-([1*H*]-pyrrol-1-yl)pyridine 4k

4-([1H]-pyrrol-1-yl)-3-((triisopropylsilyl)ethynyl)pyridine 4l

3-([Cyclopropyl]ethynyl)-4-(1*H*-pyrrol-1-yl)pyridine 4m

6-(Phenyl)pyrrolo[1,2-a][1,6]naphthyridine 5a

6-(3-Methylphenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5b

6-(4-Methoxy-2-methylphenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5c

6-(Naphth-1-yl)pyrrolo[1,2-a][1,6]naphthyridine 5d

6-(4-[Trifluoromethyl]phenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5e

6-(4-Methylphenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5f

6-(4-Methoxyphenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5g

100 90 f1 (ppm)

6-(4-tert-Butylphenyl)pyrrolo[1,2-a][1,6]naphthyridine 5h

6-(4-*n*-Propylphenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5i

6-(4-*n*-Hexylphenyl)pyrrolo[1,2-*a*][1,6]naphthyridine 5j

80

70

60

50

40

90 f1 (ppm)

-115.19 -115.19 -114.29 -113.47 -113.47 -108.27

110

100

-151.05 -147.36 143.43

150

140

130

120

170

160

-36.15 -32.14 -31.86 -29.42

30

-14.36

-30000

-20000 -10000 -0 -10000

-23.04

20

10

