Ir(III)-catalyzed aryl C-H bond carbenoid functionalization cascade: access to 1,3-dihydroindole-2-ones

Siyi Bai, Xun Chen, Xinwei Hu, Yuanfu Deng, Huanfeng Jiang, and Wei Zeng*

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China Corresponding author: *zengwei@scut.edu.cn*

Supporting Information

Table of Contents

1.	General Experimental Information	2
2.	Control Experiments for the Mechanism Studies	3
3.	Single crystal data about 3b	10
4.	¹ H NMR and ¹³ C NMR copies of all products	18

1. General Experimental Information

General Methods: All reactions were carried out in flame-dried sealed tubes with magnetic stirring. Unless otherwise noted, all experiments were performed under argon atmosphere. Solvents were treated with 4 Å molecular sieves or sodium and distilled prior to use. Flash chromatography was performed on silica gel (40~63 mm) by standard technique. ¹H and ¹³C NMR spectra were recorded on a 400 MHz NMR spectrometer (400 MHz for ¹ H and 100 MHz for ¹³ C). Splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q). Splitting patterns that could not be interpreted or easily visualized are designated as multiple (m). Low resolution mass spectra were recorded using HPLC Mass Spectrometer. High resolution exact mass measurements (HR-MS) were performed on a TOF spectrometer. Infrared spectra (IR) were reported as wavelength numbers (cm⁻¹). Infrared spectra were recorded by preparing a KBr pellet containing the title compound. Crystal data were obtained by employing graphite monochromated Mo - K\alpha radiation ($\lambda = 1.54178$ Å) at 293 (2) K and operating in the φ - ω scan mode. The structure was solved by direct methods SHELXS-97.

2. Control Experiments for the Mechanism Studies

The crude ¹H NMR spectrum for the KIE values from 1a and d_2 -1a

Figure S1. The conversion of 1a after 3 min was monitored by ¹H NMR method

Figure S2. The conversion of 1a after 6 min was monitored by ¹H NMR method

Figure S3. The conversion of 1a after 9 min was monitored by ¹H NMR method

Figure S4. The conversion of 1a after 12 min was monitored by ¹H NMR method

Figure S5. The combined crude ¹H NMR spectrum of the parallel experiments from the conversion of **1a** to *d*-**4a**

Figure S6. The conversion of d_2 -1a after 3 min was monitored by ¹H NMR method

Figure S7. The conversion of d_2 -1a after 6 min was monitored by ¹H NMR method

Figure S8. The conversion of d_2 -1a after 9 min was monitored by ¹H NMR method

Figure S9. The conversion of d_2 -1a after 12 min was monitored by ¹H NMR method

Figure S10. The combined crude ¹H NMR spectrum of the parallel experiments from the conversion of d_2 -1a to d-4 ^a

Time (min)	3	6	9	12
¹ H NMR yield of 4a from 1a (%)	15	36	48	62
¹ H NMR yield of d_1 -4a from d_2 -1a (%)	11	17	29	39

 $\begin{array}{c}
70 \\
70 \\
70 \\
70 \\
70 \\
9 = 5.2333x + 0.8 \\
R^2 = 0.992 \\
50 \\
40 \\
30 \\
20 \\
10 \\
0 \\
5 \\
10 \\
15 \\
\end{array}$

Table S1. The relative yields (%) of 4a and d_1 -4a were monitored by ¹H-NMR method

Figure S11. The plot of initial rates for the conversion of 1a

Figure S12. The plot of initial rates for the conversion of d_2 -1a

The Competitive Kinetic Isotope Effect Derived from 4a and d₄-4a

Figure S13. The conversion of 4a and d_4 -4a was monitored by ¹H-NMR method

3. Single crystal data about 3b

Fingure S14. The single crystal structure of 3b (the ellipsoid contour probability level is 30%)

Table S2.	Crystal	data	and	structure	refinement	for 3b .
	2					

Empirical formula	C ₁₉ H ₁₉ NO ₃
Formula weight	309.35
Temperature	293(2) K
Wavelength	1.54184 A
Space group	P 21/c
a (Å)	13.8048(3)

b (Å)	15.2327(3)
c (Å)	15.2102(4)
α(°)	90
β(°)	90
γ(°)	90
$V(Å^3)$	3198.47
Z	8
$Dc (g cm^{-3})$	1.285
Crystal size (mm)	0.25 x 0.20 x 0.18
Limiting indices	-14<=h<=15, -17<=k<=17, -17<=l<=12
Reflections collected / unique	7244 / 2439 [R(int) = 0.0221]
Completeness to theta $= 62.65$	94.8 %
Max. and min. transmission	0.8841 and 0.8441
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2439 / 0 / 210
Goodness-of-fit on F^2	1.089
Final R indices [I>2sigma(I)]	R1 = 0.0511, wR2 = 0.1399
R indices (all data)	R1 = 0.0571, wR2 = 0.1448
Largest diff. peak and hole	0.300 and -0.434 e.A^-3

Table S3. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for **3b**. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)	
O(1)	1660(1)	4560(1)	2138(1)	63(1)	
O(1)	1009(1)	4300(1)	2136(1)	03(1)	
C(2)	3404(1)	5054(1)	-208(1)	44(1)	
O(3)	3250(1)	4393(1)	1896(1)	75(1)	
C(4)	2435(1)	4403(1)	1632(1)	49(1)	
N(5)	3283(1)	5932(1)	91(1)	50(1)	
C(6)	1658(1)	6270(1)	333(1)	49(1)	
O(7)	3915(1)	7287(1)	-243(1)	81(1)	
C(8)	3218(2)	3525(1)	-391(1)	51(1)	
C(9)	2923(1)	4291(1)	35(1)	44(1)	
C(10)	4425(2)	4274(1)	-1224(1)	54(1)	
C(11)	2545(2)	6275(1)	655(2)	51(1)	
C(12)	3904(2)	6497(1)	-350(2)	57(1)	
C(13)	4144(1)	5045(1)	-834(1)	47(1)	
C(14)	3961(2)	3494(1)	-1007(1)	54(1)	
C(15)	2121(1)	4238(1)	704(1)	47(1)	
C(16)	4497(2)	5964(1)	-972(2)	57(1)	
C(17)	4253(2)	2629(2)	-1414(2)	73(1)	
C(18)	1850(2)	4740(2)	3060(2)	71(1)	
C(19)	970(2)	6637(2)	825(2)	82(1)	

C(20)	2784(2)	6625(2)	1449(2)	74(1)	
C(21)	1145(3)	7013(2)	1622(2)	93(1)	
C(22)	2061(3)	7005(2)	1938(2)	96(1)	
C(23)	915(2)	5031(3)	3454(2)	97(1)	

O(1)-C(4) 1.330(2) O(1)-C(18) 1.450(3) C(2)-C(9) 1.389(3) C(2)-C(13) 1.397(3) C(2)-N(5) 1.422(3) O(3)-C(4) 1.194(2) C(4)-C(15) 1.497(3) N(5)-C(12) 1.388(3) N(5)-C(11) 1.430(3) C(6)-C(11) 1.318(3) C(6)-C(19) 1.333(4)0.9300 C(6)-H(6) O(7)-C(12) 1.214(3) 1.391(3) C(8)-C(14) 1.396(3) C(8)-C(9)C(8)-H(8) 0.9300 C(9)-C(15) 1.506(3) C(10)-C(13) 1.371(3) C(10)-C(14) 1.389(3) C(10)-H(10) 0.9300 C(11)-C(20) 1.362(4)C(12)-C(16) 1.491(3) C(13)-C(16) 1.497(3) C(14)-C(17) 1.510(3) C(15)-H(15A) 0.9700 0.9700 C(15)-H(15B) C(16)-H(16A) 0.9700 0.9700 C(16)-H(16B) C(17)-H(17A) 0.9600 C(17)-H(17B) 0.9600 C(17)-H(17C) 0.9600 C(18)-C(23) 1.490(4)0.9700 C(18)-H(18A) C(18)-H(18B) 0.9700 C(19)-C(21) 1.362(5) 0.9300 C(19)-H(19) C(20)-C(22) 1.372(4)

Tabl	le S4.	Bond	lengths	[A]	and	angles	[deg]	for 3b .	
------	--------	------	---------	-----	-----	--------	-------	-----------------	--

C(20)-H(20)	0.9300
C(21)-C(22)	1.352(5)
C(21)-H(21)	0.9300
C(22)-H(22)	0.9300
C(23)-H(23A)	0.9600
C(23)-H(23B)	0.9600
C(23)-H(23C)	0.9600
C(4)-O(1)-C(18)	117.20(17)
C(9)-C(2)-C(13)	121.48(19)
C(9)-C(2)-N(5)	130.24(17)
C(13)-C(2)-N(5)	108.27(16)
O(3)-C(4)-O(1)	123.8(2)
O(3)-C(4)-C(15)	126.04(19)
O(1)-C(4)-C(15)	110.18(16)
C(12)-N(5)-C(2)	110.84(17)
C(12)-N(5)-C(11)	120.26(17)
C(2)-N(5)-C(11)	128.17(16)
C(11)-C(6)-C(19)	116.8(2)
C(11)-C(6)-H(6)	121.6
C(19)-C(6)-H(6)	121.6
C(14)-C(8)-C(9)	123.84(19)
C(14)-C(8)-H(8)	118.1
C(9)-C(8)-H(8)	118.1
C(2)-C(9)-C(8)	115.89(18)
C(2)-C(9)-C(15)	125.20(18)
C(8)-C(9)-C(15)	118.91(17)
C(13)-C(10)-C(14)	119.92(19)
C(13)-C(10)-H(10)	120.0
C(14)-C(10)-H(10)	120.0
C(6)-C(11)-C(20)	123.8(2)
C(6)-C(11)-N(5)	115.9(2)
C(20)-C(11)-N(5)	120.1(2)
O(7)-C(12)-N(5)	123.8(2)
O(7)-C(12)-C(16)	128.2(2)
N(5)-C(12)-C(16)	107.95(18)
C(10)-C(13)-C(2)	120.74(19)
C(10)-C(13)-C(16)	130.39(18)
C(2)-C(13)-C(16)	108.87(18)
C(10)-C(14)-C(8)	118.1(2)
C(10)-C(14)-C(17)	121.7(2)
C(8)-C(14)-C(17)	120.1(2)
C(4)-C(15)-C(9)	114.48(16)
C(4)-C(15)-H(15A)	108.6

C(9)-C(15)-H(15A)	108.6	
C(4)-C(15)-H(15B)	108.6	
C(9)-C(15)-H(15B)	108.6	
H(15A)-C(15)-H(15B)	107.6	
C(12)-C(16)-C(13)	104.02(16)	
C(12)-C(16)-H(16A)	111.0	
C(13)-C(16)-H(16A)	111.0	
C(12)-C(16)-H(16B)	111.0	
C(13)-C(16)-H(16B)	111.0	
H(16A)-C(16)-H(16B)	109.0	
C(14)-C(17)-H(17A)	109.5	
C(14)-C(17)-H(17B)	109.5	
H(17A)-C(17)-H(17B)	109.5	
C(14)-C(17)-H(17C)	109.5	
H(17A)-C(17)-H(17C)	109.5	
H(17B)-C(17)-H(17C)	109.5	
O(1)-C(18)-C(23)	107.23(19)	
O(1)-C(18)-H(18A)	110.3	
C(23)-C(18)-H(18A)	110.3	
O(1)-C(18)-H(18B)	110.3	
C(23)-C(18)-H(18B)	110.3	
H(18A)-C(18)-H(18B)	108.5	
C(6)-C(19)-C(21)	123.4(3)	
C(6)-C(19)-H(19)	118.3	
C(21)-C(19)-H(19)	118.3	
C(11)-C(20)-C(22)	118.0(3)	
C(11)-C(20)-H(20)	121.0	
C(22)-C(20)-H(20)	121.0	
C(22)-C(21)-C(19)	118.6(3)	
C(22)-C(21)-H(21)	120.7	
C(19)-C(21)-H(21)	120.7	
C(21)-C(22)-C(20)	119.4(3)	
C(21)-C(22)-H(22)	120.3	
C(20)-C(22)-H(22)	120.3	
C(18)-C(23)-H(23A)	109.5	
C(18)-C(23)-H(23B)	109.5	
H(23A)-C(23)-H(23B)	109.5	
C(18)-C(23)-H(23C)	109.5	
H(23A)-C(23)-H(23C)	109.5	
H(23B)-C(23)-H(23C)	109.5	

Table S5. Anisotropic	displacement parameters	(A^2 x	10^3) for 3b .
inson berrinnson opie	and place interne parameters	(11 2 11	10 5/101 00

U11	U22	U33	U23	U13	U12

O(1)	44(1)	99(1)	47(1)	-4(1)	2(1)	1(1)	
C(2)	34(1)	48(1)	50(1)	4(1)	-2(1)	2(1)	
O(3)	42(1)	119(2)	65(1)	-8(1)	-6(1)	10(1)	
C(4)	41(1)	52(1)	53(1)	5(1)	2(1)	0(1)	
N(5)	35(1)	46(1)	69(1)	2(1)	6(1)	0(1)	
C(6)	28(1)	58(1)	60(1)	9(1)	1(1)	6(1)	
O(7)	58(1)	49(1)	135(2)	9(1)	24(1)	-5(1)	
C(8)	49(1)	49(1)	56(1)	2(1)	-1(1)	-2(1)	
C(9)	37(1)	50(1)	47(1)	3(1)	-1(1)	0(1)	
C(10)	44(1)	69(1)	48(1)	5(1)	6(1)	7(1)	
C(11)	43(1)	43(1)	68(1)	6(1)	7(1)	2(1)	
C(12)	38(1)	50(1)	83(2)	10(1)	4(1)	-1(1)	
C(13)	34(1)	56(1)	52(1)	8(1)	0(1)	2(1)	
C(14)	54(1)	58(1)	51(1)	-3(1)	1(1)	5(1)	
C(15)	40(1)	50(1)	51(1)	4(1)	2(1)	-4(1)	
C(16)	39(1)	61(1)	71(1)	15(1)	7(1)	-1(1)	
C(17)	80(2)	69(2)	71(2)	-12(1)	13(1)	8(1)	
C(18)	60(1)	104(2)	48(1)	-3(1)	-5(1)	6(1)	
C(19)	50(1)	84(2)	113(2)	28(2)	18(1)	14(1)	
C(20)	61(2)	79(2)	84(2)	-16(1)	1(1)	0(1)	
C(21)	89(2)	72(2)	119(3)	7(2)	51(2)	20(2)	
C(22)	97(2)	94(2)	96(2)	-30(2)	20(2)	7(2)	
C(23)	79(2)	158(3)	53(2)	-10(2)	3(1)	32(2)	

Table S6. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (A² x 10³) for **3b**.

	х	У	Z	U(eq)	
	1520	(022	212	50	
H(0)	1320	0022	-212	38	
H(8)	2898	3005	-255	61	
H(10)	4926	4273	-1633	64	
H(15A)	1625	4662	551	56	
H(15B)	1830	3659	673	56	
H(16A)	5181	6012	-835	68	
H(16B)	4393	6151	-1574	68	
H(17A)	4871	2453	-1186	110	
H(17B)	4294	2694	-2041	110	
H(17C)	3777	2191	-1273	110	
H(18A)	2335	5197	3120	85	
H(18B)	2083	4216	3354	85	
H(19)	338	6636	614	99	
H(20)	3418	6608	1655	89	

H(21)	646	7269	1942	112	
H(22)	2199	7255	2481	115	
H(23A)	724	5580	3197	145	
H(23B)	993	5102	4077	145	
H(23C)	426	4597	3341	145	

Table S7. Torsion angles [deg] for 3b.

C(18)-O(1)-C(4)-O(3)	1.0(3)
C(18)-O(1)-C(4)-C(15)	-179.6(2)
C(9)-C(2)-N(5)-C(12)	-178.4(2)
C(13)-C(2)-N(5)-C(12)	2.2(2)
C(9)-C(2)-N(5)-C(11)	-8.3(3)
C(13)-C(2)-N(5)-C(11)	172.31(19)
C(13)-C(2)-C(9)-C(8)	-0.7(3)
N(5)-C(2)-C(9)-C(8)	179.92(19)
C(13)-C(2)-C(9)-C(15)	179.78(18)
N(5)-C(2)-C(9)-C(15)	0.4(3)
C(14)-C(8)-C(9)-C(2)	1.7(3)
C(14)-C(8)-C(9)-C(15)	-178.76(19)
C(19)-C(6)-C(11)-C(20)	0.4(3)
C(19)-C(6)-C(11)-N(5)	-175.9(2)
C(12)-N(5)-C(11)-C(6)	103.2(2)
C(2)-N(5)-C(11)-C(6)	-66.1(3)
C(12)-N(5)-C(11)-C(20)	-73.2(3)
C(2)-N(5)-C(11)-C(20)	117.5(3)
C(2)-N(5)-C(12)-O(7)	176.8(2)
C(11)-N(5)-C(12)-O(7)	5.8(3)
C(2)-N(5)-C(12)-C(16)	-1.4(2)
C(11)-N(5)-C(12)-C(16)	-172.41(18)
C(14)-C(10)-C(13)-C(2)	1.1(3)
C(14)-C(10)-C(13)-C(16)	-177.8(2)
C(9)-C(2)-C(13)-C(10)	-0.6(3)
N(5)-C(2)-C(13)-C(10)	178.87(18)
C(9)-C(2)-C(13)-C(16)	178.43(18)
N(5)-C(2)-C(13)-C(16)	-2.1(2)
C(13)-C(10)-C(14)-C(8)	-0.1(3)
C(13)-C(10)-C(14)-C(17)	-179.5(2)
C(9)-C(8)-C(14)-C(10)	-1.3(3)
C(9)-C(8)-C(14)-C(17)	178.0(2)
O(3)-C(4)-C(15)-C(9)	-16.0(3)
O(1)-C(4)-C(15)-C(9)	164.54(17)
C(2)-C(9)-C(15)-C(4)	-68.9(3)
C(8)-C(9)-C(15)-C(4)	111.6(2)

O(7)-C(12)-C(16)-C(13)	-177.9(2)
N(5)-C(12)-C(16)-C(13)	0.1(2)
C(10)-C(13)-C(16)-C(12)	-179.9(2)
C(2)-C(13)-C(16)-C(12)	1.2(2)
C(4)-O(1)-C(18)-C(23)	171.2(2)
C(11)-C(6)-C(19)-C(21)	0.6(4)
C(6)-C(11)-C(20)-C(22)	-0.9(4)
N(5)-C(11)-C(20)-C(22)	175.2(2)
C(6)-C(19)-C(21)-C(22)	-0.9(5)
C(19)-C(21)-C(22)-C(20)	0.3(5)
C(11)-C(20)-C(22)-C(21)	0.5(5)

4. ¹H NMR and ¹³C NMR copies of all products

¹H NMR spectrum (400 MHz, CDCl₃) of **3a**

¹³C NMR spectrum (100 MHz, CDCl₃) of **3a**

175.61 170.80	149.68 149.22	138.13 131.78	124.02 123.70 123.28 123.19 117.77	77 43 77 11 76 79	60.70	38.40 36.09	14 <u>.</u> 04
1 1	\leq			\checkmark		57	1

¹H NMR spectrum (400 MHz, CDCl₃) of **4a**

¹³C NMR spectrum (100 MHz, CDCl₃) of 4a

174.50	149.35 148.53 143.38 138.22	124.08 120.12 11231	77.36 77.05 76.73	36.34
	\sim 1 1 1	511	\checkmark	1

¹H NMR spectrum (400 MHz, CDCl₃) of **3b**

¹³C NMR spectrum (100 MHz, CDCl₃) of **3b**

175.66 170.93	149.77 149.15	138.07 132.11	123.12 117.42	77 42 77 10 76 79	60.66	38.37 36.15	20.79 14.04
1 1	\leq	11		\checkmark	1	トイ	

¹H NMR spectrum (400 MHz, CDCl₃) of **3c**

^{13}C NMR spectrum (100 MHz, CDCl₃) of 3c

¹H NMR spectrum (400 MHz, CDCl₃) of **3d**

¹³C NMR spectrum (100 MHz, CDCl₃) of **3d**

¹H NMR spectrum (400 MHz, CDCl₃) of **3e**

¹³C NMR spectrum (100 MHz, CDCl₃) of **3e**

¹H NMR spectrum (400 MHz, CDCl₃) of **3f**

^{13}C NMR spectrum (100 MHz, CDCl₃) of 3f

- 175.16 - 170.18 - 157.76 - 157.76 - 149.16 - 138.19 - 138.19 - 138.19 - 138.19 - 138.19 - 138.19	<pre></pre>	- 60.88	38.2836.37	- 14.00
--	-------------	---------	---------------------------------------	---------

¹³C NMR spectrum (100 MHz, CDCl₃) of **3g**

	~ 174.93 ~ 170.20	- 149.18	- 138.19 - 131.43 - 127.07 123.92 119.27	77.38 77.06 76.74	- 38.21	- 14.01
--	----------------------	----------	--	-------------------------	---------	---------

¹H NMR spectrum (400 MHz, CDCl₃) of **3h**

¹³C NMR spectrum (100 MHz, CDCl₃) of **3h**

174.81 170.19	149.22 149.18	138.19 134.29 127.40 126.72 123.94 115.00 115.70	90.90	38.16 35.84	14.01
11	4		ī	57	1

¹H NMR spectrum (400 MHz, CDCl₃) of **3i**

¹³C NMR spectrum (100 MHz, CDCl₃) of **3i**

¹H NMR spectrum (400 MHz, CDCl₃) of **3j**

^{13}C NMR spectrum (100 MHz, CDCl₃) of 3j

¹H NMR spectrum (400 MHz, CDCl₃) of **3k**

¹³C NMR spectrum (100 MHz, CDCl₃) of **3k**

¹H NMR spectrum (400 MHz, CDCl₃) of **3**l

^{13}C NMR spectrum (100 MHz, CDCl₃) of **3**l

174.92	149.35 148.60 143.43 138.23 137.83 124.04	120 <u>.</u> 32 112.81	77.34 77.02 76.70	36.10	21.84
1		-	\checkmark		

¹H NMR spectrum (400 MHz, CDCl₃) of 3m

 ^{13}C NMR spectrum (100 MHz, CDCl₃) of 3m

¹H NMR spectrum (400 MHz, CDCl₃) of **3n**

¹³C NMR spectrum (100 MHz, CDCl₃) of **3n**

¹³C NMR spectrum (100 MHz, CDCl₃) of **30**

- 175.88	∠ 150.24 149.35	138.30 131.28	123.67 123.47 123.47 123.04 122.18 121.12	₹77.36 77.04 76.72	- 36.25	- 19.11
----------	--------------------	------------------	--	--------------------------	---------	---------

^{13}C NMR spectrum (100 MHz, CDCl₃) of 3p

175.57	148.82 148.48	138 35	125.55 123.47 123.11 122.27 122.08	77.35 77.03 76.72	36.28
1	\checkmark		Canal and a second s	\checkmark	1

¹H NMR spectrum (400 MHz, CDCl₃) of 3q

^{13}C NMR spectrum (100 MHz, CDCl₃) of 3q

¹H NMR spectrum (400 MHz, CDCl₃) of **3r**

^{13}C NMR spectrum (100 MHz, CDCl₃) of 3r

- 175.65 - 170.86 149.85 - 149.67 - 142.24 - 131.72 - 131.72	(123.64 123.69 117.69 117.69 777.38 76.74	- 60.68	∠ 38.20 ~ 36.11	- 21.04	- 14.03
--	--	---------	--------------------	---------	---------

¹H NMR spectrum (400 MHz, CDCl₃) of 3s

 ^{13}C NMR spectrum (100 MHz, CDCl₃) of 3s

¹H NMR spectrum (400 MHz, CDCl₃) of 3t

^{13}C NMR spectrum (100 MHz, CDCl₃) of 3t

- 1/0.96 - 170.89	- 155.54	$ L \frac{142.40}{142.20} $	- 131.69	124.62 123.71 122.95 1122.60 117.32	₹ 77.36 77.05 76.73	- 60.68 - 55.95	∕ 37.90 ∕ 35.92	- 13.99
----------------------	----------	-----------------------------	----------	---	---------------------------	--------------------	--------------------	---------

¹H NMR spectrum (400 MHz, CDCl₃) of 3u

¹³C NMR spectrum (100 MHz, CDCl₃) of **3u**

175.50 170.80	147 83 147 79	137.77 131.28 123.46 117.83	77.35 77.03 76.72	60.87	38.66 36.03 29.70	13.99
1	\leq		\rightarrow		\leq	

¹H NMR spectrum (400 MHz, CDCl₃) of 3v

¹³C NMR spectrum (100 MHz, CDCl₃) of **3v**

¹H NMR spectrum (400 MHz, CDCl₃) of 3w

13 C NMR spectrum (100 MHz, CDCl₃) of **3w**

¹H NMR spectrum (400 MHz, CDCl₃) of **3x**

¹³C NMR spectrum (100 MHz, CDCl₃) of **3x**

¹H NMR spectrum (400 MHz, CDCl₃) of **3y**

¹³C NMR spectrum (100 MHz, CDCl₃) of **3y**

- 175.60 - 171.19	149.60 149.28	- 138 14 - 131 84	- 123.24 - 117.59	<u>√</u> 77.37 77.05 76.73	- 51.83	38.2836.10
	7		1 1		1	1.0

^{13}C NMR spectrum (100 MHz, CDCl₃) of 3z

- 175.63 - 170.89		138.14 131.75	124.01 123.67 123.31 123.31 123.19 117.83	<pre>77.38 77.06 76.75 -64.64</pre>	∠ 38.35 - 36.09 - 30.43	19.03 13.66
----------------------	--	------------------	--	-------------------------------------	-------------------------------	----------------

¹³C NMR spectrum (100 MHz, CDCl₃) of **3-1a**

¹H NMR spectrum (400 MHz, CDCl₃) of **4b**

¹³C NMR spectrum (100 MHz, CDCl₃) of **4b**

¹³C NMR spectrum (100 MHz, CDCl₃) of **4d**

166.08	150.23 150.04 145.06	138.61 136.67 122.75 122.37 122.37 122.16 121.52 110.33 106.31	77.36 77.04 76.73	59.64	14.61 13.16
1	$\overline{}$		\checkmark	1	57

¹³C NMR spectrum (100 MHz, CDCl₃) of 4e

 1 H NMR spectrum (400 MHz, CDCl₃) of **4f**

^{13}C NMR spectrum (100 MHz, CDCl₃) of 4f

- 105.90		- 137.03	- 121.84	- 11110 ∖ 108.49	₹77.33 77.01 76.69	63.36 57.91 51.15
----------	--	----------	----------	---------------------	--------------------------	-------------------------

 13 C NMR spectrum (100 MHz, CDCl₃) of **6**

	- 160.82 - 154.75 - 148.90	- 135.06 - 125.06 122.66 122.66 112.76 118.17 118.17 113.17 113.17	(40.41) (
--	----------------------------------	--	--------------

¹H NMR spectrum (400 MHz, CDCl₃) of **1a**

¹H NMR spectrum (400 MHz, CDCl₃) of d_5 -1a

¹H NMR spectrum (400 MHz, CDCl₃) of d_4 -4a

