Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

## SUPPORTING INFORMATION

<u>Manuscript title:</u> Synthesis and conformations of [2.*n*]metacyclophan-1-ene epoxides and their conversion to [*n*.1]metacyclophanes †

<u>Author(s):</u> Thamina Akther,<sup>a</sup> Md. Monarul Islam,<sup>a,b</sup> Shofiur Rahman,<sup>c</sup> Paris E. Georghiou,<sup>c</sup> Taisuke Matsumoto,<sup>d</sup> Junji Tanaka,<sup>d</sup> Carl Redshaw<sup>e</sup> and Takehiko Yamato\*<sup>a</sup>

<sup>a</sup>Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga-shi, Saga 840-8502, Japan.

E-mail: <u>yamatot@cc.saga-u.ac.jp</u>

<sup>b</sup>Chemical Research Division, Bangladesh Council of Scientific and Industrial Research(BCSIR), Dhanmondi, Dhaka-1205, Bangladesh.

<sup>c</sup>Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada A1B3X7.

<sup>d</sup> Institute of Materials Chemistry and Engineering, Kyushu University, 6-1, Kasugakoen, Kasuga 816-8580, Japan.

<sup>e</sup>School of Mathematics and Physical Sciences, The University of Hull, Cottingham Road, Hull, Yorkshire HU6 7RX, UK.

## Table of contents

|             |                                                        | Page |
|-------------|--------------------------------------------------------|------|
| Figure S1:  | <sup>1</sup> H NMR spectrum of <b>2a</b>               | S4   |
| Figure S2:  | <sup>13</sup> C NMR spectrum of <b>2a</b>              | S4   |
| Figure S3:  | <sup>1</sup> H NMR spectrum of <b>2b</b>               | S5   |
| Figure S4:  | <sup>13</sup> C NMR spectrum of <b>2b</b>              | 85   |
| Figure S5:  | <sup>1</sup> H NMR spectrum of <b>3a</b>               | S6   |
| Figure S6:  | <sup>13</sup> C NMR spectrum of <b>3a</b>              | S6   |
| Figure S7:  | <sup>1</sup> H NMR spectrum of <b>3b</b>               | S7   |
| Figure S8:  | <sup>13</sup> C NMR spectrum of <b>3b</b>              | S7   |
| Figure S9:  | <sup>1</sup> H NMR spectrum of <i>anti-4</i> a         | S8   |
| Figure S10: | <sup>13</sup> C NMR spectrum of <i>anti</i> -4a        | S8   |
| Figure S11: | IR spectrum of <i>anti</i> -4a                         | S9   |
| Figure S12: | Mass spectrum of anti-4a                               | S9   |
| Figure S13: | <sup>1</sup> H NMR spectrum of <i>anti-</i> 4b         | S10  |
| Figure S14: | <sup>13</sup> C NMR spectrum of <i>anti</i> -4b        | S10  |
| Figure S15: | IR spectrum of <i>anti</i> -4b                         | S11  |
| Figure S16: | Mass spectrum of anti-4b                               | S11  |
| Figure S17: | <sup>1</sup> H NMR spectrum of <i>syn-</i> 4b          | S12  |
| Figure S18: | <sup>13</sup> C NMR spectrum of <i>syn</i> -4b         | S12  |
| Figure S19: | <sup>1</sup> H NMR spectrum of <i>anti</i> -5a         | S13  |
| Figure S20: | <sup>13</sup> C NMR spectrum of <i>anti</i> -5a        | S13  |
| Figure S21: | IR spectrum of <i>anti-5a</i>                          | S14  |
| Figure S22: | Mass spectrum of anti-5a                               | S14  |
| Figure S23: | <sup>1</sup> H NMR spectrum of <i>syn-</i> <b>5b</b>   | S15  |
| Figure S24: | <sup>13</sup> C NMR spectrum of <i>syn</i> - <b>5b</b> | S15  |
| Figure S25: | IR spectrum of <i>syn-</i> 5b                          | S16  |
| Figure S26: | Mass spectrum of <i>syn-</i> 5b                        | S16  |
| Figure S27: | <sup>1</sup> H NMR spectrum of <i>syn-6a</i>           | S17  |
| Figure S28: | <sup>13</sup> C NMR spectrum of <i>syn-6a</i>          | S17  |
| Figure S29: | IR spectrum of <i>syn-6a</i>                           | S18  |
| Figure S30: | Mass spectrum of syn-6a                                | S18  |

| Figure S31:   | <sup>1</sup> H NMR spectrum of <i>syn-</i> <b>6b</b>                                                              | S19    |
|---------------|-------------------------------------------------------------------------------------------------------------------|--------|
| Figure S32:   | <sup>13</sup> C NMR spectrum of <i>syn-</i> <b>6b</b>                                                             | S19    |
| Figure S33:   | IR spectrum of <i>syn-</i> <b>6b</b>                                                                              | S20    |
| Figure S34:   | Mass spectrum of <i>syn-</i> <b>6b</b>                                                                            | S20    |
| Figure S35:   | X-ray crystal structure of <i>anti</i> -4a                                                                        | S21    |
| Figure S36:   | X-ray crystal structure of <i>anti</i> -4b                                                                        | S22    |
| Figure S37:   | X-ray crystal structure of <i>anti</i> -5a                                                                        | S23    |
| Figure S38:   | X-ray crystal structure of <i>syn-</i> 5b                                                                         | S24    |
| Table S1:     | Summary of crystal data for the compounds of <i>anti</i> -4a, <i>anti</i> -4b, <i>anti</i> -5a and <i>syn</i> -5b | S25    |
| Figure S39:   | HPLC chromatogram of anti-6a                                                                                      | S26    |
| Figure S40:   | Geometry-optimized (B3LYP/6-31G(d)) structure of <i>anti</i> - <b>4a</b> (Ellipsoid and Ball-and-stick)           | S27    |
| Figure S41:   | Geometry-optimized (B3LYP/6-31G(d)) structure of <i>anti</i> - <b>4b</b> (Ellipsoid and Ball-and-stick)           | S27    |
| Figure S42:   | Geometry-optimized (B3LYP/6-31G(d)) structure of <i>anti</i> - <b>5a</b> (Ellipsoid and Ball-and-stick)           | S28    |
| Figure S43:   | Geometry-optimized (B3LYP/6-31G(d)) structure of <i>syn</i> - <b>5b</b> (Ellipsoid and Ball-and-stick)            | S28    |
| Figure S44:   | Computed molecular orbital plots (B3LYP/6–31G*) of <i>anti</i> - <b>5a</b> : the HOMO levels and the LUMO levels. | S29    |
| Figure S45:   | Computed molecular orbital plots (B3LYP/6–31G*) of <i>syn-</i> <b>5b</b> : the HOMO levels and the LUMO levels.   | S29    |
| Figure S46:   | Computed molecular orbital plots (B3LYP/6–31G*) of <i>anti</i> - <b>6a</b> : the HOMO levels and the LUMO levels. | S30    |
| Figure S47:   | Computed molecular orbital plots (B3LYP/6–31G*) of <i>syn</i> - <b>6b</b> : the HOMO levels and the LUMO levels.  | S30    |
| Tables S2–S5: | The xyz file for the structure shown in Figures S40–S43.                                                          | S31–37 |









Figure S4. <sup>13</sup>C–NMR spectrum of compound 2b (100 MHz, CDCl<sub>3</sub>, 293 K).



Figure S6. <sup>13</sup>C–NMR spectrum of compound 3a (100 MHz, CDCl<sub>3</sub>, 293 K).



Figure S8. <sup>13</sup>C–NMR spectrum of compound 3b (100 MHz, CDCl<sub>3</sub>, 293 K).



Figure S10. <sup>13</sup>C–NMR spectrum of compound anti-4a (100 MHz, CDCl<sub>3</sub>, 293 K).



Figure S11. IR spectrum of compound *anti*-4a.



Figure S12. Mass spectrum of compound *anti*-4a.



Figure S13. <sup>1</sup>H–NMR spectrum of compound *anti-*4b (300 MHz, CDCl<sub>3</sub>, 293 K).



Figure S14. <sup>13</sup>C–NMR spectrum of compound *anti*-4b (100 MHz, CDCl<sub>3</sub>, 293 K).



Figure S15. IR spectrum of compound *anti*-4b.



Figure S16. Mass spectrum of compound anti-4b.



Figure S17. <sup>1</sup>H–NMR spectrum of compound *syn*-4b (300 MHz, CDCl<sub>3</sub>, 293 K).



Figure S18. <sup>13</sup>C–NMR spectrum of compound *syn*-4b (100 MHz, CDCl<sub>3</sub>, 293 K).



 $\delta$  / ppm

Figure S20. <sup>13</sup>C–NMR spectrum of compound *anti*-5a (100 MHz, CDCl<sub>3</sub>, 293 K).



Figure S21. IR spectrum of compound *anti-5a*.



Figure S22. Mass spectrum of compound *anti-5a*.



Figure S23. <sup>1</sup>H–NMR spectrum of compound *syn*-5b (300 MHz, CDCl<sub>3</sub>, 293 K).



Figure S24. <sup>13</sup>C–NMR spectrum of compound *syn*-5b (100 MHz, CDCl<sub>3</sub>, 293 K).



Figure S25. IR spectrum of compound *syn*-5b.



Figure S26. Mass spectrum of compound *syn*-5b.



Figure S28. <sup>13</sup>C–NMR spectrum of compound *anti*-6a (100 MHz, CDCl<sub>3</sub>, 293 K).



Figure S29. IR spectrum of compound *anti*-6a.



Figure S30. Mass spectrum of compound *anti-6a*.



Figure S32. <sup>13</sup>C–NMR spectrum of compound *syn*-6b (100 MHz, CDCl<sub>3</sub>, 293 K).



Figure S33. IR spectrum of compound *syn*-6b.



Figure S34. Mass spectrum of compound *syn*-6b.



Top view



Side view





Top view



Side view





Side view







Side view



| Parameter                    | anti-4a           | anti-4b           | anti-5a           | syn-5b                                         |
|------------------------------|-------------------|-------------------|-------------------|------------------------------------------------|
| Empirical formula            | $C_{32}H_{46}O_2$ | $C_{34}H_{50}O_2$ | $C_{32}H_{46}O_3$ | C <sub>34</sub> H <sub>50</sub> O <sub>3</sub> |
| Formula weight               | 462.71            | 490.77            | 478.71            | 506.76                                         |
| Crystal system               | Monoclinic        | Triclinic         | Triclinic         | Triclinic                                      |
| Space group                  | $P 2_1/n$         | C 2/c             | C 2/c             | $P 2_1/n$                                      |
| $a[\text{\AA}]$              | 10.8892(5)        | 18.5100(18)       | 18.0647(12)       | 9.879(3)                                       |
| b[Å]                         | 14.5980(6)        | 11.9741(12)       | 10.9779(8)        | 36.171(5)                                      |
| $c[\text{\AA}]$              | 17.6382(8)        | 14.7028(15)       | 15.0137(10)       | 17.228(4)                                      |
| $\alpha[^{\circ}]$           | 90.0000           | 90.0000           | 90.0000           | 90.0000                                        |
| eta[°]                       | 91.421(6)         | 113.069(8)        | 109.868(8)        | 89.9800(2)                                     |
| γ[°]                         | 90.0000           | 90.0000           | 90.0000           | 90.0000                                        |
| Volume[Å <sup>3</sup> ]      | 2802.9(2)         | 2998.1(6)         | 2800.2(4)         | 6156(2)                                        |
| Ζ                            | 4                 | 4                 | 4                 | 10                                             |
| Dcalcd[Mg/m <sup>3</sup> ]   | 1.096             | 1.087             | 1.135             | 1.367                                          |
| Temperature [K]              | 100               | 100               | 100               | 123                                            |
| Unique reflns                | 5100              | 2748              | 2566              | 5711                                           |
| Obsd reflns                  | 2895              | 1242              | 1445              | 5711                                           |
| Parameters                   | 335               | 192               | 168               | 385                                            |
| <i>R</i> (int)               | 0.1036            | 0.1471            | 0.1450            | 0.0300                                         |
| $R[I > 2\sigma(I)]^{[a]}$    | 0.0655            | 0.0757            | 0.0649            | 0.0427                                         |
| wR2[all data] <sup>[b]</sup> | 0.2843            | 0.3461            | 0.4263            | 0.5100                                         |
| GOF on $F^2$                 | 1.033             | 1.371             | 1.417             | 1.519                                          |
| CCDC Number                  | 1526807           | 1526816           | 1526819           | 1526822                                        |

Table S1. X-ray crystal structure of compounds *anti*-4a, *anti*-4b, *anti*-5a and *syn*-5b.

<sup>a</sup> Conventional R on  $F_{hkl}$ :  $\Sigma ||F_o| - |F_c||/\sigma |F_o|$ .

<sup>b</sup> Weighted R on  $|F_{hkl}|^2$ :  $\Sigma[w(F_o^2 - F_c^2)^2]/\Sigma[w(F_o^2)^2]^{1/2}$ 



Figure S39. HPLC chromatogram of anti-6a.

## General description for the DFT computational study

Density functional theory (DFT) computational studies were carried out to determine the geometry-optimized energies of compounds **5-6**. The starting structures were generated with the initial geometries based upon the X-ray structures. The DFT level of theory using the popular B3LYP (Becke, three-parameter, Lee-Yang-Parr)<sup>1</sup> exchange-correlation functional with the 6-31G(d) basis set. The individual geometry-optimized structures of these molecules were first conducted in the gas phase and then in solvent (chloroform) with the B3LYP/6-31G(D) basis set using Gaussian-09.<sup>2</sup>



**Figure S40**. Geometry-optimized structure of *anti*-conformation of **5a** (in gas phase) of: *Left*: Ellipsoid *anti*-conformation of **5a** and *Right*: Ball-and-stick *anti*-conformation of **5a** in gas phase. Colour code: hydrogen = white, carbon = dark grey and oxygen atom = red.



**Figure S41**. Geometry Geometry-optimized structure of *syn*-conformation of **5b** (in gas phase) of: *Left*: Ellipsoid *syn*-conformation of **5b** and *Right*: Ball-and-stick *syn*-conformation of **5b** in gas phase. Colour code: hydrogen = white, carbon = dark grey and oxygen atom = red.



**Figure S42**. Geometry Geometry-optimized structure of *anti*-conformation of **6a** (in gas phase) of: *Left*: Ellipsoid *anti*-conformation of **6a** and *Right*: Ball-and-stick *anti*-conformation of **6a** in gas phase. Colour code: hydrogen = white, carbon = dark grey and oxygen atom = red.



**Figure S43**. Geometry Geometry-optimized structure of *syn*-conformation of **6b** (in gas phase) of: *Left*: Ellipsoid *syn*-conformation of **6b** and *Right*: Ball-and-stick *syn*-conformation of **6b** in gas phase. Colour code: hydrogen = white, carbon = dark grey and oxygen atom = red.



**Figure S44**. Computed molecular orbital plots (B3LYP/6–31G\*) of *anti-***5a**: the HOMO levels and the LUMO levels.



**Figure S45**. Computed molecular orbital plots (B3LYP/6–31G\*) of *syn*-**5b**: the HOMO levels and the LUMO levels.



**Figure S46**. Computed molecular orbital plots (B3LYP/6–31G\*) of *anti-6a*: the HOMO levels and the LUMO levels.



**Figure S47**. Computed molecular orbital plots (B3LYP/6–31G\*) of *syn-6b*: the HOMO levels and the LUMO levels.

**Table S2**. The xyz file for the structure shown in Figure S40 is given below.

81 3D

| 3D |           |           |           |
|----|-----------|-----------|-----------|
| С  | -0.787600 | 2.541100  | 0.206300  |
| С  | -1.723800 | 3.730100  | -0.023100 |
| Н  | -2.513900 | 3.741500  | 0.734000  |
| Н  | -2.200500 | 3.705400  | -1.009100 |
| Н  | -1.163400 | 4.661900  | 0.064000  |
| С  | -1.495400 | 1.273000  | 0.642100  |
| С  | -0.979100 | 0.300400  | 1.526800  |
| 0  | 0.262800  | 0.439200  | 2.112900  |
| С  | 0.270800  | 1.195200  | 3.321100  |
| Н  | -0.392300 | 0.746100  | 4.074200  |
| Н  | -0.024700 | 2.234000  | 3.141400  |
| Н  | 1.300400  | 1.175000  | 3.687300  |
| С  | -1.697300 | -0.880400 | 1.786400  |
| С  | -2.965000 | -1.048500 | 1.217100  |
| Н  | -3.504100 | -1.961900 | 1.448100  |
| С  | -3.529200 | -0.098200 | 0.365500  |
| С  | -2.760900 | 1.038300  | 0.086600  |
| Н  | -3.160200 | 1.772300  | -0.603600 |
| С  | -4.919200 | -0.262100 | -0.276900 |
| С  | -5.613100 | -1.567300 | 0.157500  |
| Н  | -6.599700 | -1.636600 | -0.314800 |
| Н  | -5.762300 | -1.607300 | 1.242600  |
| Н  | -5.041100 | -2.452900 | -0.141500 |
| С  | -4.778000 | -0.282600 | -1.817400 |
| Н  | -4.331700 | 0.642600  | -2.196900 |
| Н  | -5.760800 | -0.398600 | -2.291500 |
| Н  | -4.142100 | -1.114800 | -2.139800 |
| С  | -5.824800 | 0.921900  | 0.137900  |
| Н  | -5.407600 | 1.884100  | -0.177700 |
| Н  | -5.951800 | 0.954600  | 1.226000  |
| Н  | -6.818000 | 0.823800  | -0.317900 |
| С  | -1.087500 | -2.025300 | 2.574100  |
| Н  | -1.799100 | -2.371700 | 3.335500  |
| Н  | -0.190100 | -1.684300 | 3.096900  |
| С  | -0.727300 | -3.215400 | 1.651100  |
| Н  | -0.383800 | -4.058700 | 2.266600  |
| Н  | -1.644900 | -3.556200 | 1.150700  |
| С  | 0.328000  | -2.865000 | 0.590400  |
| Н  | 1.319600  | -2.806200 | 1.060400  |
| Н  | 0.121400  | -1.862400 | 0.207300  |
| С  | 0.358300  | -3.846100 | -0.588900 |
| С  | 1.410800  | -3.552500 | -1.674200 |
| С  | 1.264500  | -2.198600 | -2.413000 |
| С  | 1.741100  | -0.969400 | -1.651900 |
| С  | 0.946300  | 0.186400  | -1.543100 |
| 0  | -0.274300 | 0.276800  | -2.198000 |
| С  | -0.191100 | 0.530400  | -3.597600 |
| Η  | 0.306700  | -0.285800 | -4.136200 |
| Н  | 0.346200  | 1.465000  | -3.806200 |

| Н | -1.220300 | 0.618400  | -3.955100 |
|---|-----------|-----------|-----------|
| С | 1.334000  | 1.239600  | -0.701800 |
| С | 0.527200  | 2.505100  | -0.513100 |
| С | 0.917300  | 3.594900  | -1.503200 |
| Η | 0.708100  | 3.271700  | -2.528700 |
| Η | 1.994500  | 3.783500  | -1.430600 |
| Η | 0.392900  | 4.534500  | -1.322800 |
| 0 | 0.438400  | 2.933900  | 0.860600  |
| С | 2.563600  | 1.164300  | -0.045800 |
| С | 3.430700  | 0.077500  | -0.204600 |
| С | 2.986100  | -0.976800 | -1.008700 |
| Η | 3.610800  | -1.854600 | -1.130200 |
| С | 4.790100  | 0.066700  | 0.519000  |
| С | 5.617600  | -1.192200 | 0.198100  |
| Η | 6.579600  | -1.145100 | 0.721200  |
| Η | 5.827900  | -1.279600 | -0.874200 |
| Η | 5.111000  | -2.108100 | 0.523000  |
| С | 4.557700  | 0.114300  | 2.047800  |
| Η | 4.013200  | 1.016000  | 2.346700  |
| Η | 5.516400  | 0.108300  | 2.581500  |
| Η | 3.974600  | -0.751600 | 2.380800  |
| С | 5.614500  | 1.303300  | 0.088900  |
| Η | 5.099100  | 2.239100  | 0.328700  |
| Η | 5.803000  | 1.292300  | -0.991000 |
| Η | 6.583700  | 1.315100  | 0.602800  |
| Η | 2.829700  | 1.984400  | 0.614000  |
| Η | 1.820100  | -2.271500 | -3.359900 |
| Η | 0.211800  | -2.063600 | -2.682800 |
| Η | 1.344700  | -4.347000 | -2.430000 |
| Н | 2.416000  | -3.637700 | -1.242100 |
| Η | 0.527000  | -4.867400 | -0.215900 |
| Η | -0.636800 | -3.858300 | -1.059000 |

 Table S3. The xyz file for the structure shown in Figure S41 is given below.

87 3D С -0.345300 -0.234600 2.813300 0 0.302200 -1.517800 2.921900 С 1.141600 -0.396300 2.590900 С 2.140600 - 0.042900 3.687000Η  $2.351100 \quad 1.029100 \quad 3.709500$ Н 3.083400 -0.571900 3.508500 Η 1.766700 -0.354000 4.663800 С 1.731300 -0.465000 1.193800 С  $2.359500 \quad 0.632200 \quad 0.582000$ 0 2.419000 1.823800 1.293700 С 3.716000 2.304200 1.647900 Η  $4.400100 \quad 1.477500 \quad 1.870300$ Η 3.587800 2.917000 2.544800 Η 4.148400 2.928700 0.858100 С 2.852500 0.537900 -0.735500

| С | 3.389200  | 1.727600  | -1.515500 |
|---|-----------|-----------|-----------|
| С | 2.409900  | 2.907800  | -1.698000 |
| С | 1.090800  | 2.540200  | -2.391000 |
| С | 0.193700  | 3.763600  | -2.634700 |
| С | -1.176700 | 3.449200  | -3.264200 |
| С | -2.134100 | 2.603900  | -2.403100 |
| С | -2.579700 | 3.282300  | -1.100200 |
| С | -3.508300 | 2.419400  | -0.214700 |
| С | -2.895500 | 1.113100  | 0.249900  |
| С | -1.925500 | 1.089700  | 1.272100  |
| 0 | -1.704500 | 2.293400  | 1.919000  |
| С | -0.395400 | 2.858200  | 1.884200  |
| Н | 0.015800  | 2.848200  | 0.870400  |
| Н | 0.300200  | 2.333000  | 2.542300  |
| Н | -0.506200 | 3.891600  | 2.224700  |
| С | -1.326700 | -0.123600 | 1.661400  |
| С | -1.760000 | -1.308600 | 1.045400  |
| С | -2.751400 | -1.329200 | 0.061600  |
| С | -3.289600 | -0.094500 | -0.326100 |
| Н | -4.054500 | -0.058900 | -1.098300 |
| С | -3.273800 | -2.627400 | -0.581400 |
| С | -2.602000 | -3.883200 | 0.003300  |
| Н | -3.008300 | -4.779800 | -0.478900 |
| Н | -2.779500 | -3.975600 | 1.080600  |
| Н | -1.519500 | -3.880600 | -0.163600 |
| С | -3.004800 | -2.595800 | -2.104200 |
| Н | -3.377800 | -3.511500 | -2.579600 |
| Н | -1.931000 | -2.518200 | -2.310500 |
| Н | -3.497400 | -1.744900 | -2.586500 |
| С | -4.797500 | -2.747200 | -0.337100 |
| Н | -5.186600 | -3.665700 | -0.793800 |
| Н | -5.347900 | -1.903300 | -0.765900 |
| Н | -5.020000 | -2.780100 | 0.735600  |
| Н | -1.308100 | -2.229000 | 1.390400  |
| Н | -3.804100 | 3.015600  | 0.655400  |
| Н | -4.425000 | 2.194400  | -0.775400 |
| Η | -3.105300 | 4.217800  | -1.341200 |
| Н | -1.704300 | 3.570200  | -0.508500 |
| Н | -3.025200 | 2.369900  | -3.003900 |
| Η | -1.670400 | 1.637400  | -2.171000 |
| Н | -1.013600 | 2.930400  | -4.219800 |
| Н | -1.670800 | 4.398700  | -3.516400 |
| Н | 0.725300  | 4.465100  | -3.293700 |
| Н | 0.051500  | 4.300700  | -1.686400 |
| Η | 0.561300  | 1.798800  | -1.780300 |
| Η | 1.302500  | 2.047700  | -3.352300 |
| Η | 2.188000  | 3.353800  | -0.721100 |
| Н | 2.925000  | 3.682400  | -2.284200 |
| Η | 3.685700  | 1.365500  | -2.508100 |

| 4.312100  | 2.107000                                                                                                                                                                                                                                                                 | -1.057400                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.810300  | -0.712400                                                                                                                                                                                                                                                                | -1.358300                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.284100  | -1.857600                                                                                                                                                                                                                                                                | -0.745800                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.718500  | -1.695000                                                                                                                                                                                                                                                                | 0.521100                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.261500  | -2.529400                                                                                                                                                                                                                                                                | 1.036100                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.344000  | -3.213300                                                                                                                                                                                                                                                                | -1.474000                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.529700  | -3.136000                                                                                                                                                                                                                                                                | -2.786800                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.478100  | -2.904700                                                                                                                                                                                                                                                                | -2.582400                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.570400  | -4.094000                                                                                                                                                                                                                                                                | -3.319600                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.915600  | -2.363400                                                                                                                                                                                                                                                                | -3.460300                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.816600  | -3.551800                                                                                                                                                                                                                                                                | -1.809500                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.876400  | -4.515600                                                                                                                                                                                                                                                                | -2.330100                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.420600  | -3.620500                                                                                                                                                                                                                                                                | -0.897400                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.273500  | -2.795900                                                                                                                                                                                                                                                                | -2.456700                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.778800  | -4.362000                                                                                                                                                                                                                                                                | -0.618400                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.330200  | -4.477900                                                                                                                                                                                                                                                                | 0.321400                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.857200  | -5.306200                                                                                                                                                                                                                                                                | -1.169300                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.721900  | -4.210300                                                                                                                                                                                                                                                                | -0.374800                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.208800  | -0.780900                                                                                                                                                                                                                                                                | -2.367400                                                                                                                                                                                                                                                                                                                                                                                              |
| -0.916200 | 0.271000                                                                                                                                                                                                                                                                 | 4.132100                                                                                                                                                                                                                                                                                                                                                                                               |
| -0.174900 | 0.288300                                                                                                                                                                                                                                                                 | 4.932700                                                                                                                                                                                                                                                                                                                                                                                               |
| -1.725200 | -0.404200                                                                                                                                                                                                                                                                | 4.434500                                                                                                                                                                                                                                                                                                                                                                                               |
| -1.344100 | 1.268900                                                                                                                                                                                                                                                                 | 4.013900                                                                                                                                                                                                                                                                                                                                                                                               |
|           | 4.312100<br>2.810300<br>2.284100<br>1.718500<br>1.261500<br>2.344000<br>1.529700<br>0.478100<br>1.570400<br>1.915600<br>3.816600<br>3.876400<br>4.273500<br>1.778800<br>2.330200<br>1.857200<br>0.721900<br>3.208800<br>-0.916200<br>-0.174900<br>-1.725200<br>-1.344100 | 4.3121002.1070002.810300-0.7124002.284100-1.8576001.718500-1.6950001.261500-2.5294002.344000-3.2133001.529700-3.1360000.478100-2.9047001.570400-4.0940001.915600-2.3634003.816600-3.5518003.876400-4.5156004.420600-3.6205004.273500-2.7959001.778800-4.3620002.30200-4.4779001.857200-5.3062000.721900-4.2103003.208800-0.780900-0.9162000.271000-0.1749000.288300-1.725200-0.404200-1.3441001.268900 |

Table S4. The xyz file for the structure shown in Figure S42 is given below.

81 3D С -0.172800 -0.301000 2.156100 С 0.437400 -1.315600 3.167300 Η 1.102200 -2.019100 2.683000 Η -0.387800 -1.862100 3.636600 1.004000 -0.803800 Η 3.950200 С -1.009600 -0.981200 1.029300 С -0.407900 -1.918900 0.162600 0 0.778700 -2.541300 0.533300 С 0.605600 -3.903600 0.922800 0.201100 -4.511400 Η 0.104800 Η -0.062200 -3.984300 1.789500 1.596600 -4.279400 Η 1.191600 С -0.915300 -2.171200 -1.124200 С -0.159900 -2.963000 -2.189600 С 1.375800 -2.785500 -2.307200 Η 1.868800 -3.347300 -1.507700 Н 1.682100 -3.267400 -3.247200 С 1.905100 -1.342700 -2.276000 Η 1.514100 -0.836000 -1.392000 Η 1.525900 -0.781100 -3.142400 С 3.446500 -1.293300 -2.271400 С 4.100100 0.086800 -2.038900

| С | 4.152700  | 0.631300  | -0.582500 |
|---|-----------|-----------|-----------|
| С | 2.796400  | 1.006900  | -0.005900 |
| С | 2.155300  | 0.331300  | 1.060800  |
| 0 | 2.834800  | -0.491800 | 1.933300  |
| С | 3.515000  | -1.676100 | 1.530000  |
| Ĥ | 3.201400  | -2.010800 | 0.541500  |
| Н | 3.265900  | -2.455300 | 2.259600  |
| Н | 4 600600  | -1 522200 | 1 551800  |
| C | 0 798500  | 0.599700  | 1 337900  |
| Ĉ | 0 185300  | 1 676500  | 0 673500  |
| Č | 0.832200  | 2.461900  | -0.277900 |
| C | 2.129100  | 2.067400  | -0.622800 |
| H | 2.658900  | 2.601900  | -1.408100 |
| С | 0.174900  | 3.669700  | -0.968200 |
| C | -1.254100 | 3.931400  | -0.456100 |
| H | -1.673700 | 4.808500  | -0.961800 |
| Н | -1.270800 | 4.132500  | 0.621400  |
| Н | -1.920800 | 3.084700  | -0.656300 |
| С | 0.100300  | 3.420700  | -2.493500 |
| H | -0.366100 | 4.275400  | -2.999000 |
| Н | -0.494600 | 2.527200  | -2.714600 |
| Н | 1.093600  | 3.277300  | -2.931700 |
| С | 1.021300  | 4.936300  | -0.697500 |
| Н | 0.578300  | 5.807600  | -1.195600 |
| Н | 2.046800  | 4.826800  | -1.065900 |
| Н | 1.074100  | 5.149300  | 0.376400  |
| Н | -0.859100 | 1.869700  | 0.890800  |
| Н | 4.679500  | -0.082600 | 0.052100  |
| Н | 4.782400  | 1.531200  | -0.600100 |
| Н | 3.608400  | 0.830900  | -2.679900 |
| Н | 5.140100  | 0.030400  | -2.388700 |
| Н | 3.807800  | -1.678000 | -3.236200 |
| Н | 3.829600  | -1.998800 | -1.519800 |
| Н | -0.613900 | -2.693900 | -3.151800 |
| Н | -0.359100 | -4.039300 | -2.072500 |
| С | -2.158500 | -1.623700 | -1.450800 |
| С | -2.887500 | -0.831100 | -0.556100 |
| С | -2.271900 | -0.491900 | 0.653600  |
| Η | -2.777100 | 0.176600  | 1.332800  |
| С | -4.293300 | -0.331400 | -0.940500 |
| С | -4.216400 | 0.515900  | -2.232400 |
| Н | -3.575200 | 1.393300  | -2.087300 |
| Н | -5.215100 | 0.869200  | -2.517600 |
| Н | -3.813500 | -0.055500 | -3.075300 |
| С | -5.214100 | -1.551100 | -1.185100 |
| Н | -6.221200 | -1.220600 | -1.468400 |
| Н | -5.299800 | -2.163300 | -0.280000 |
| Н | -4.834800 | -2.193300 | -1.987300 |
| С | -4.933200 | 0.533500  | 0.162200  |
| Η | -5.023100 | -0.011300 | 1.108200  |
| Η | -5.940700 | 0.835900  | -0.145800 |
| Η | -4.359300 | 1.447900  | 0.351100  |
| Н | -2.560100 | -1.830500 | -2.440200 |

С -1.000800 0.570500 3.143000 С -0.268800 1.698500 3.863300 Η 0.811900 1.544500 3.912800 -0.436700 Η 2.639400 3.327200 Η -0.690500 1.800500 4.866500 -2.153900 0 0.313800 3.434700

Table S5. The xyz file for the structure shown in Figure S43 is given below.

87 3D С -0.653800 0.308900 2.171600С -0.196900 -0.418900 3.470600 0.545500 -1.180800 3.272900 Η Η -1.079400 -0.883000 3.923300 0.230300 0.285200 4.190000 Η С -1.357800 -0.641700 1.155800 С -0.742000 -1.823800 0.689200 0 0.382300 -2.322800 1.339200 С 0.123200 -3.473100 2.145600 Η -0.646500 -3.262900 2.8976001.063200 -3.718800 2.647100 Η Η -0.193700 -4.330700 1.541400С -1.191400 -2.486500 -0.470300 С -0.497600 -3.695600 -1.093500 С 1.043100 -3.725300 -1.208100 С 1.708400 -2.511900 -1.873200 С 3.234300 -2.693300 -1.962800 С 4.021600 -1.530100 -2.597900 С 3.906900 -0.168500 -1.886700 С 4.462600 -0.147400 -0.453700 С 4.156300 1.145700 0.352900 С 2.674600 1.452200 0.442500 С 1.830500 0.884800 1.429100 0 2.369200 0.317100 2.569000 С 3.027900 -0.948400 2.529200 Η 2.571400 -1.610800 1.790000 2.908400 -1.385400 3.526100 Η Η 4.099100 -0.837900 2.328700 С 0.434100 1.033300 1.328400 С -0.066500 1.865700 0.308000С 0.737700 2.527500 -0.614500 С 2.113000 2.273800 -0.533900 Η 2.786200 2.725300 -1.258300 С 0.181400 3.460700 -1.704400 С -1.345600 3.635800 -1.602800 Η -1.693600 4.313700 -2.390400 Η -1.643400 4.067700 -0.640100 Η -1.874500 2.684100 -1.728600

| С | 0.506200  | 2.874400  | -3.099200 |
|---|-----------|-----------|-----------|
| Н | 0.122600  | 3.531200  | -3.889900 |
| Н | 0.047600  | 1.886800  | -3.224500 |
| Н | 1.584800  | 2.763100  | -3.252800 |
| С | 0.835000  | 4.856700  | -1.572700 |
| Н | 0.456100  | 5.530800  | -2.350600 |
| Н | 1.924100  | 4.808700  | -1.675900 |
| Н | 0.611500  | 5.303600  | -0.597200 |
| Н | -1.141900 | 1.975100  | 0.237000  |
| Н | 4.595100  | 1.060000  | 1.353100  |
| Н | 4.660000  | 1.990000  | -0.134600 |
| Н | 5.553000  | -0.286200 | -0.482000 |
| Н | 4.061100  | -1.004300 | 0.094700  |
| Н | 4.431000  | 0.587900  | -2.489100 |
| Н | 2.854900  | 0.135200  | -1.873700 |
| Н | 3.686400  | -1.403600 | -3.637300 |
| Н | 5.080500  | -1.821800 | -2.656100 |
| Н | 3.446500  | -3.602700 | -2.543600 |
| Н | 3.623700  | -2.894600 | -0.954700 |
| Н | 1.466800  | -1.610000 | -1.298600 |
| Н | 1.293800  | -2.359000 | -2.881000 |
| Н | 1.490000  | -3.861900 | -0.218700 |
| Η | 1.296700  | -4.628200 | -1.782900 |
| Η | -0.914200 | -3.805700 | -2.103000 |
| Η | -0.805800 | -4.608300 | -0.560900 |
| С | -2.354100 | -2.014800 | -1.083200 |
| С | -3.072700 | -0.918900 | -0.593200 |
| С | -2.538100 | -0.240600 | 0.504800  |
| Н | -3.053700 | 0.628400  | 0.880500  |
| С | -4.384200 | -0.490100 | -1.279300 |
| С | -4.110000 | -0.147100 | -2.762800 |
| Н | -3.395100 | 0.679700  | -2.848400 |
| Н | -5.038400 | 0.154700  | -3.263300 |
| Η | -3.699600 | -1.001000 | -3.312200 |
| С | -5.400000 | -1.655500 | -1.205800 |
| Η | -6.341200 | -1.374900 | -1.694800 |
| Η | -5.622200 | -1.914800 | -0.164400 |
| Η | -5.021900 | -2.556200 | -1.701200 |
| С | -5.023600 | 0.742500  | -0.612600 |
| Η | -5.252900 | 0.563700  | 0.443500  |
| Η | -5.962700 | 0.989400  | -1.120800 |
| Η | -4.375100 | 1.624000  | -0.675300 |
| Η | -2.705100 | -2.534300 | -1.971600 |
| С | -1.609200 | 1.364100  | 2.811400  |
| С | -0.992300 | 2.672300  | 3.292000  |
| Η | -1.040500 | 3.415000  | 2.487800  |
| Η | -1.577300 | 3.041700  | 4.137600  |
| Η | 0.060800  | 2.568000  | 3.566200  |
| 0 | -2.781300 | 1.126100  | 3.033500  |