New selenosteroids as antiproliferative agents

Alma G. Fuentes-Aguilar,^{a,#} Laura L. Romero-Hernández,^{a,#} Ailed V. Arenas-González,^{a,#} Penélope Merino-Montiel,^{a,*} Sara Montiel-Smith,^a Socorro Meza-Reyes,^a José Luis Vega-Báez,^a Gabriela G. Plata,^b José M. Padrón,^b Óscar López,^{c,*} José G. Fernández-Bolaños^c

^aFacultad de Ciencias Químicas, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, PUE, Mexico. e-mail: <u>penelope.merino@correo.buap.mx</u>; Tel: +52 222 2295500-7382

^bBioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, c/ Astrofísico Francisco Sánchez 2, E-38206 La Laguna, Spain.

^cDepartamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado 1203, E-41071, Seville, Spain. e-mail: <u>osc-lopez@us.es</u>; Fax: +34 954624960; Tel: +34 954 559997

TABLE OF CONTENTS

1.	. General procedure for the preparation of ebselen analogues 9–11				
	1.1.	Compound	10		
	1.2.	Compound	11		
2.	General p	procedure for the preparation of selenosemicarbazones 16–18	sS4		
	2.1.	Compound	16		
	2.2.	Compound	17		
3.	General p	procedure for the preparation of 2-aminobenzoxazoles 24, 25	S6		
	3.1.	Compound	24		
	3.2.	Compound	25		
4.	General p	procedure for the preparation of selenoureas 28–32	S7		
	4.1.	Compound	29		
	4.2.	Compound	30		
	4.3.	Compound	31		
	4.4.	Compound	32		
			-		
5.	Compour	ud 37	S9		
6.	General p	S10			
	6.1.	Compound	40		
7.	Compour	ıd 41			
8	Compour	ıd 44			
9.	Compour	ıd 45			

10. Compound 46	S13
11. Compound 47	S15
Scheme S1. Plausible mechanism for the synthesis of 27	
Scheme S2. Mechanism for the GPx-like activity of estrone selenoureas	
(PhSH method)	S16
Table S1. Antiproliferative activity (GI ₅₀ , µM) of selenosteroids against	st human solid
tumour cells	S17

1. General procedure for the preparation of ebselen analogues 9–11

To a solution of amines **2**, **5** or **6** (0.22 mmol) in dry CH_2Cl_2 (7 mL) were added a solution of freshly-prepared chloroselenyl derivative **8** (1.6 equiv.) in dry CH_2Cl_2 (1 mL) and Et_3N (1.9 equiv.). The corresponding solution was stirred at rt and under Ar for 2 h. Then, it was diluted with CH_2Cl_2 (12 mL) and washed with H_2O (3 x 10 mL). The combined organic fractions were dried over MgSO₄, filtered and the filtrate was concentrated to dryness. The residue was purified by column chromatography using the eluant indicated in each case.

1.1. (25*R*)-3*a*-(3'-Oxobenzo[*d*][1,2]selenazol-2'(3*H*)-yl)-5β-spirostane (10). Yield: 71 mg, 54%. $[\alpha]_D^{26}$ -49 (c 0.20, CH₂Cl₂). ¹H-NMR (CDCl₃, 500 MHz) δ 8.04 (m, 1H, H-1''), 7.60 (brd, 1H, $J_{3'',4''}$ = 7.9 Hz, H-4''), 7.56 (td, 1H, $J_{2'',3''}$ = 6.9 Hz, $J_{2'',4''}$ = 1.1 Hz, H-2''), 7.40 (dd, 1H, $J_{1'',3''}$ = 0.9 Hz, H-3''), 4.94 (brs, 1H, H-3), 4.40 (m, 1H, H-16), 3.47 (ddd, 1H, $J_{26ax,26eq}$ = 10.9 Hz, $J_{25,26eq}$ = 8.3 Hz, $J_{24,26eq}$ = 4.2 Hz, H-26eq), 3.37 (t, 1H, $J_{25,26ax}$ = 10.9 Hz, H-26ax), 2.30 (td, 1H, $J_{4a,4b}$ = 14.8 Hz, $J_{H,H}$ = 5.7 Hz, H-4a), 1.78 (dd, 1H, $J_{16,17}$ = 8.5 Hz, $J_{17,20}$ = 6.9 Hz, H-17), 2.04–1.91 (m, 2H, H-6a, H-15a), 1.87–1.85 (m, 4H, H-2a, H-2b, H-5, H-20), 1.72 (brdd, 1H, $J_{H,H}$ = 2.6 Hz, $J_{12a,12b}$ = 12.4 Hz, H-12a), 1.69–1.57 (m, 7H, H-1a, H-4b, H-8, H-23a, H-23b, H-24a, H-25), 1.45–1.31 (m, 5H, H7a, H-9, H-11a, H-11b, H-24b), 1.31-1.13 (m, 5H, H-1b, H-6b, H-12b, H-14, H-15b), 1.09 (brdd, 1H, $J_{H,H}$ = 3.0 Hz, $J_{7a,7b}$ = 13.3 Hz, H-7b), 1.05 (s, 3H,

CH₃-19), 0.97 (d, 3H, $J_{20,21} = 6.9$ Hz, CH₃-21), 0.77 (d, 3H, $J_{25,27} = 6.4$ Hz, CH₃-27), 0.79 (s, 3H, CH₃-18) ppm; ¹³C-NMR (CDCl₃, 125.7 MHz) δ 167.5 (CO), 138.3 (C-4'), 131.8 (C-2''), 128.6 (C-1''), 127.6 (C-5'), 126.2 (C-3''), 123.4 (C-4''), 109.4 (C-22), 81.0 (C-16), 67.0 (C-26), 62.4 (C-17), 56.5 (C-14), 51.3 (C-3), 41.8 (C-20), 40.9 (C-13), 40.8 (C-9), 40.3 (C-12), 39.0 (C-5), 35.3 (C-10), 35.0 (C-8), 32.5 (C-1), 31.9 (C-15), 31.5 (C-23), 31.2 (C-4), 30.4 (C-25), 28.9 (C-24), 26.6, 26.5 (C-6, C-7), 25.6 (C-2), 24.2 (C-19), 21.0 (C-11), 17.3 (C-27), 16.6 (C-18), 14.6 (C-21) ppm; HRESI-MS *m/z* calcd for C₃₄H₄₇NNaO₃⁸⁰Se ([M+Na]⁺): 620.2613, found: 620.2598.

1.2. (25R)-3 α -(3'-Oxobenzo[d][1,2]selenazol-2'(3H)-yl)-5 α -spirostan-12-one (11).

Yield: 43 mg, 23%. $[\alpha]_D^{26}$ +37 (*c* 0.19, CH₂Cl₂). ¹H-NMR (CDCl₃, 300 MHz) δ 8.04 (d, 1H, $J_{1'',2''} = 7.7$ Hz, H-1''), 7.60–7.58 (m, 2H, H-4'', H-2''), 7.41 (td, 1H, $J_{1'',3''} = 1.3$ Hz, H-3"), 4.88 (brs, 1H, H-3), 4.37–4.30 (m, 1H, H-16), 3.48 (m, 1H, H-26eq), 3.34 (t, 1H, $J_{25,26ax} = J_{26ax,26eq} = 10.9$ Hz, H-26ax), 2.52 (dd, 1H, $J_{16,17} = 6.9$ Hz, $J_{17,20} = 8.6$ Hz, H-17), 2.42 (t, 1H, $J_{9,11\alpha} = J_{11\alpha,11\beta} = 13.8$ Hz, H-11 α), 2.26 (dd, 1H, $J_{9,11\beta} = 4.8$ Hz, H-11 β), 2.11 (m, 1H, H-15a), 2.07-1.85 (m, 4H, H-2a, H-4, H-7a, H-8), 1.82-1.27 (m, 16H, H-1a, H-1b, H-2b, H-5, H-6a, H-6b, H-7b, H-9, H-14, H-15b, H-20, H-23a, H-23b, H-24a, H-24b, H-25), 1.07 (d, 3H, J_{20,21} = 6.8 Hz, CH₃-21), 1.06 (s, 3H, CH₃-18), 0.94 (s, 3H, CH₃-19), 0.78 (d, 3H, $J_{25,27}$ = 6.3 Hz, CH₃-27) ppm; ¹³C-NMR (CDCl₃, 75.5 MHz) δ 213.5 (C-12), 167.5 (CO), 138.1 (C-4'), 131.9 (C-2''), 128.6 (C-1''), 127.4 (C-5'), 126.3 (C-3"), 123.6 (C-4"), 109.4 (C-22), 79.3 (C-16), 67.0 (C-26), 56.1, 56.0 (C-9, C-14), 55.2 (C-13), 53.6 (C-17), 50.3 (C-3), 42.3 (C-20), 41.1 (C-5), 37.5 (C-11), 36.5 (C-10), 34.5 (C-1), 34.4 (C-8), 33.3 (C-4), 31.5 (C-7), 31.2 (C-15), 30.3 (C-23), 29.8 (C-25), 28.9 (C-24), 28.2 (C-6), 26.3 (C-2), 17.2 (C-27), 16.1 (C-18), 13.4 (C-21), 11.2 (C-19) ppm; HRESI-MS m/z calcd for C₃₄H₄₅NNaO₄⁸⁰Se ([M+Na]⁺): 634.2406, found: 634.2380.

2. General procedure for the preparation of selenosemicarbazones 16–18

To a solution of 5α -spirostan-3-one **12** or hecogenin **4** (0.23 mmol) in EtOH (22 mL) was dropwise added glacial AcOH up to pH 5, and then, the corresponding selenosemicarbazide (1.3 equiv.). The mixture was stirred at 70 °C in the dark and under

Ar overnight; then, it was concentrated to dryness and the residue was purified by column chromatography (75:1 CH_2Cl_2 –MeOH) to give compounds **16–18**.

2.1. (25'R)-1-(5'α-Spirostan-3'-ylidene)-4-*p*-tolyl-3-selenosemicarbazone

(16, 1:1 *E/Z*). Yield: 43 mg, 30%; mp 132-135 °C (dec.); $[\alpha]_D^{25}$ -36 (c, 0.35, CH₂Cl₂); ¹H-NMR (CDCl₃, 500 MHz) δ 9.39 (brs, 1H, NHPh), 8.98, 8.97 (2brs, 1H each, N-NH *E*/*Z*), 7.47 (m, 2H, Ar-H-*o*), 7.17 (m, 2H, Ar-H-*m*), 4.39 (m, 1H, H-16'), 3.46 (ddd, 1H, $J_{26'ax, 26'eq} = 11.0$ Hz, $J_{H,H} = 1.7$ Hz, $J_{H,H} = 4.0$ Hz, H-26'eq), 3.36 (t, 1H, $J_{25', 26'ax} = 11.0$ Hz, H-26'ax), 2.34 (s, 3H, CH₃-Ar), 2.16–1.25 (m, 23H, H-1'a, H-2'a, H-2'b, H-4'a, H-4'b, H-6'a, H-6'b, H-7'a, H-7'b, H-8', H-11'a, H-11'b, H-12'a, H-15'a, H-15'b, H-17', H-20', H-23'a, H-23'b, H-24'a, H-24'b, H-25'), 1.17-1.10 (m, 3H, H-1'b, H-12'b, H-14'), 0.96 (d, 3H, $J_{20',21'} = 6.9$ Hz, CH₃-21'), 0.94 (s, 3H, CH₃-19'), 0.78 (s, 3H, CH₃-18'), 0.79 (m, 3H, CH₃-27'), 0.72 (m, 1H, H-9') ppm; ¹³C-NMR (CDCl₃, 125.7 MHz) δ 175.2, 175.0 (CSe E/Z), 157.0, 156.9 (C-3' E/Z), 136.6 (Ar-C-p), 136.1 (Ar-C-ipso), 129.4 (Ar-C-m), 125.3 (x2) (Ar-C-o, E/Z), 109.3 (C-22'), 80.8 (C-16'), 67.0 (C-26'), 62.3 (C-17'), 56.2 (x2) (C-14' E/Z), 54.0, 53.8 (C-9' E/Z), 46.9, 45.8 (C-5' E/Z), 41.7 (C-20'), 40.7, 40.6 (C-13' E/Z), 40.0 (x2) (C-12' E/Z), 38.5 (C-1' or C-4'), 37.8, 37.6 (C-1' or C-4' *E/Z*), 36.4, 36.3 (C-10' *E/Z*), 35.1 (C8'), 32.0, 31.9, 31.8 (C-2', C-7', C-15'), 31.5 (C-23'), 30.4 (C-25'), 29.8 (C-6'), 28.9 (C-24'), 21.2 (C-11', CH₃-Ar), 17.2 (C-27'), 16.6 (C-18'), 14.6 (C-21'), 11.8, 11.5 (C-19' *E/Z*) ppm; HRESI-MS *m/z* calcd for $C_{35}H_{52}N_3O_2^{80}Se$ ([M+H]⁺): 626.3219, found: 626.3203.

2.2. (25'*R*)-1-(3'-β-Hydroxy-5'α-spirostan-12'-ylidene)-4-*p*-tolyl-3-

selenosemicarbazone (17, 5.2:1 *E/Z*). Yield: 22.5 mg, 15%. $[\alpha]_D^{27}$ +13 (*c*, 0.21, CH₂Cl₂). ¹H-NMR (CDCl₃, 500 MHz) δ 9.45 (brs, 1H, NHPh), 9.08 (brs, 1H, NHCSe), 7.45 (m, 2H, Ar-H-*o*), 7.44 (m, 2H, Ar-H-*o*, *Z*), 7.15 (m, 2H, Ar-H-*p*), 7.02 (m, 2H, Ar-H-*p*, *Z*), 4.38 (m, 1H, H-16'), 3.60 (m, 1H, H-3'), 3.46 (ddd, 1H, $J_{26'ax,26'eq} = 11.1$ Hz, $J_{25',26'eq} = 3.1$ Hz, $J_{24',26'eq} = 1.8$ Hz, H-26'eq), 3.34 (t, 1H, $J_{25',26'ax} = 11.1$ Hz, H-26'ax), 2.68–2.64 (m, 2H, H-2'a, H-17'), 2.10 (m, 1H, H-23'a), 2.33 (s, 3H, CH₃-Ar), 1.93–1.82 (m, 3H, H-2'b, H-8', H-15'a), 1.79–1.67 (m, 3H, H-1'a, H-4'a, H-7'a),

1.65–1.57 (m, 4H, H-7'b, H-11'a, H-24'a, H-25'), 1.47–1.30 (m, 9H, H-6'a, H-6'b, H-11'b, H-14', H-15'b, H-20', H-23'b, H-24'b), 1.13 (d, 3H, $J_{20',21'} = 6.9$ Hz, CH₃-21'), 1.09–1.03 (m, 2H, H-1'b, H-5'), 1.00 (s, 3H, CH₃-18'), 0.97–0.92 (m, 2H, H-4'b, H-9'), 0.91 (s, 3H, CH₃-19'), 0.78 (d, 3H, $J_{25',27'} = 6.3$ Hz, CH₃-27') ppm; ¹³C-NMR (CDCl₃, 125.7 MHz) δ 175.3 (CSe), 161.5 (C-12'), 136.5 (Ar-C-*p*), 135.9 (Ar-C-*ipso*), 129.4 (Ar-C-*m*), 124.9 (Ar-C-*o*), 109.5 (C-22'), 79.7 (C-16'), 70.9 (C-3'), 70.0 (C-26'), 56.2 (C-14'), 55.6 (C-17'), 54.3 (C-9'), 49.5 (C-13'), 44.8 (C-5'), 42.2 (C-20'), 37.9 (C-11'), 37.0 (C-1'), 36.3 (C-10'), 34.5 (C-8'), 31.7 (C-4'), 31.8 (C-7'), 31.3 (C-15'), 31.2 (C-23'), 30.3 (C-25'), 28.8 (C-24'), 28.3 (C-6'), 23.4 (C-2'), 21.2 (CH₃-Ar), 17.7 (C-18'), 17.2 (C-27'), 14.7 (C-21'), 12.2 (C-19') ppm; HRESI-MS *m/z* calcd for C₃₅H₅₂N₃O₃⁸⁰Se ([M+H]⁺): 642.3168, found: 642.152.

3. General procedure for the preparation of 2-aminobenzoxazoles 24, 25

To a solution of 2-amino-3-hydroxyestra-1,3,5(10)-trien-17-one **22** (50.4 mg, 0.18 mmol) in THF (10 mL) was added the corresponding isoselenocyanate (5.0 equiv.), and the resulting mixture was refluxed during the time indicated in each case. After that, it was concentrated to dryness, and the residue was purified by column chromatography (cyclohexane \rightarrow 9:1 cyclohexane–EtOAc).

3.1. 2'-(Phenylamino)estra-1,3,5(10)-trieno[2,3-d]oxazol-17-one (24). Phenyl isoselenocyanate (161.4 mg, 0.89 mmol) was used, and the reaction took place during 24 h. Yield: 36.4 mg, 43%; mp > 250 °C; $\left[\alpha \frac{P^5}{D} + 126 (c \ 1.01, \ CH_2Cl_2); \ ^1H-NMR (500)\right]$ MHz, CDCl₃) δ 8.13 (brs, 1H, NH), 7.60 (m, 2H, Ar-H-o), 7.43 (s, 1H, H-4), 7.38 (m, 2H, Ar-H-m), 7.09 (t, 1H, J_{m,p}= 7.4 Hz, Ar-H-p), 7.07 (s, 1H, H-1), 2.99 (m, 2H, H-6a, H-6b), 2.51 (dd, 1H, J_{15,16a}= 8.6 Hz, J_{16a,16b}= 18.8 Hz, H-16a), 2.44 (m, 1H, H-11a), 2.36 (td, 1H, $J_{8,9}=J_{9,11\beta}=10.9$ Hz, $J_{9,11\alpha}=4.2$ Hz, H-9), 2.15 (dt, 1H, $J_{15a,16b}=J_{15b,16b}=8.9$ Hz, H-16b), 2.07 (m, 1H, H-15a), 2.03 (m, 1H, H-7a), 1.99 (dt, 1H, J_{11a,12a}=J_{11b,12a}= 2.9 Hz, J_{12a,12b}= 12.6 Hz, H-12a), 1.64 (m, 1H, H-15b), 1.62 (m, 1H, H-8), 1.60 (m, 1H, H-11b), 1.56 (m, 1H, H-14), 1.53 (m, 1H, H-12b), 1.45 (m, 1H, H-7b), 0.93 (s, 3H, CH₃-18) ppm; ¹³C-NMR (125.7 MHz, CDCl₃) δ 220.9 (C-17), 158.2 (C-2'), 146.5 (C-3), 140.5 (C-10), 138.2 (Ar-C-ipso), 136.2 (C-2), 130.8 (C-5), 129.4 (Ar-C-m), 123.2 (Ar-C-p), 118.4 (Ar-C-o), 113.8 (C-4), 108.9 (C-1), 50.7 (C-14), 48.1 (C-13), 44.6 (C-9), 38.4 (C-8), 36.0 (C-16), 31.8 (C-12), 29.9 (C-6), 26.7 (C-7), 26.3 (C-11), 21.8 (C-15), 14.0 (C-18) ppm; HRESI-MS *m/z* calcd for C₂₅H₂₇N₂O₂ [M+H]⁺: 387.2067, found: 387.2058.

3.2. 2'-[(p-Bromophenyl)amino]estra-1,3,5(10)-trieno[2,3-d]oxazol-17-one (25). p-Bromophenyl isoselenocyanate (230.4 mg, 0.88 mmol) was used, and the reaction took place during 14 h. Yield: 68.5 mg, 82%; mp > 250 °C; $\left[\alpha_{D}^{25} + 89 (c \ 1.06, CH_2Cl_2)\right]$; ¹H-NMR (500 MHz, CDCl₃) δ 7.53–7.47 (m, 4H, Ar-H), 7.44 (s, 1H, H-4), 7.06 (s, 1H, H-1), 2.99 (m, 2H, H-6a, H-6b), 2.51 (dd, 1H, J_{15,16a}= 8.7 Hz, J_{16a,16b} = 19.0 Hz, 1H, H-16a), 2.46 (m, 1H, H-11a), 2.37 (m, 1H, td, 1H, $J_{8,9}=J_{9,11\beta}=11.3$ Hz, $J_{9,11\alpha}=3.7$ Hz, H-9), 2.15 (dt, 1H, J_{15a,16b}=J_{15b,16b}=8.8 Hz, H-16b), 2.08 (m, 1H, H-15a), 2.04 (m, 1H, H-7a), 2.00 (dt, 1H, $J_{11a,12a}=J_{11b,12a}=3.0$ Hz, $J_{12a,12b}=12.7$ Hz, H-12a), 1.64 (m, 1H, H-15b), 1.62 (m, 1H, H-8), 1.61 (m, 1H, H-11b), 1.55 (m, 1H, H-14), 1.53 (m, 1H, H-12b), 1.50 (m, 1H, H-7b), 0.93 (s, 3H, CH₃-18) ppm; ¹³C-NMR (125.7 MHz, CDCl₃) δ 220.8 (C-17), 157.3 (C-2'), 146.4 (C-3), 140.6 (C-10), 137.2 (Ar-C-ipso), 136.5 (C-2), 132.4 (Ar-C-m), 131.4 (C-5), 119.8 (Ar-C-o), 115.7 (Ar-C-p), 114.2 (C-4), 108.9 (C-1), 50.8 (C-14), 48.1 (C-13), 44.7 (C-9), 38.4 (C-8), 36.0 (C-16), 31.8 (C-12), 30.0 (C-6), 26.7 (C-7), 26.3 (C-11), 21.8 (C-15), 14.0 (C-18) ppm; HRESI-MS *m/z* calcd for C₂₅H₂₆⁷⁹BrN₂O₂ [M+H]⁺: 465.1172, found: 465.1163.

4. General procedure for the preparation of selenoureas 28-32

To a solution of 2-amino-3-methoxyestra-1,3,5(10)-trien-17-one **26** (100 mg, 0.33 mmol) in CH_2Cl_2 (5 mL) was added the corresponding isoselenocyanate (3.0 equiv.), and the resulting mixture was stirred at rt, under Ar and in the dark during the time indicated in each case. Then, it was concentrated to dryness and the residue was purified by column chromatography (3:2 cyclohexane-CH₂Cl₂).

4.1. 3-Methoxy-2-[3'-(p-tolyl)selenoureido]estra-1,3,5(10)-trien-17-one (29). *p*-Tolyl isoselenocyanate (196.1 mg, 1.00 mmol) was used, and the reaction took place during

13.5 h. Yield: 98.1 mg, 60%; mp 125 °C (dec.); $\left[\alpha \int_{D}^{28} +72 (c \ 1.01, CH_2Cl_2); ^{1}H-NMR (300 MHz, CDCl_3) \delta 8.19 (m, 2H, NH, H-1), 8.09 (brs, 1H, NH), 7.23 (m, 4H, Ar-H), 6.62 (s, 1H, H-4), 3.77 (s, 3H, OMe), 2.88 (m, 2H, H-6a, H-6b), 2.50 (dd, 1H, <math>J_{15,16a}$ = 8.6 Hz, $J_{16a,16b}$ = 18.8 Hz, H-16a), 2.40 (m, 1H, H-11a), 2.36 (s, 3H, CH_3 -Ar), 2.29 (m, 1H, H-9), 2.15 (dt, 1H $J_{15a,16b}$ = $J_{15b,16b}$ =8.6 Hz, H-16b), 2.06 (m, 1H, H-15a), 2.02 (m, 1H, H-7a), 1.97 (m, 1H, H-12a), 1.63 (m, 1H, H-15b), 1.58 (m, 1H, H-8), 1.52 (m, 1H, H-14), 1.50 (m, 3H, H-11b, H-12b, H-7b), 0.91 (s, 3H, CH_3-18) ppm; ¹³C-NMR (75 MHz, CDCl_3) \delta 220.8 (C-17), 177.8 (CSe), 149.9 (C-3), 137.7 (C-10), 136.0 (Ar-C-*p*), 134.6 (Ar-C-*ipso*), 132.2 (C-5), 130.4 (Ar-C-*o*), 125.6 (Ar-C-*m*), 124.5 (C-2), 122.6 (C-1), 111.7 (C-4), 56.0 (OMe), 50.5 (C-14), 48.1 (C-13), 44.1 (C-9), 38.3 (C-8), 36.0 (C-16), 31.7 (C-12), 29.7 (C-6), 26.6 (C-7), 26.1 (C-11), 21.7 (C-15), 21.2 (CH_3-Ar), 14.0 (C-18) ppm; HRESI-MS *m*/*z* calcd for C₂₇H₃₃N₂O₃⁸⁰Se [M+H]⁺: 513.1651, found: 513.1634.

4.2. 3-Methoxy-2-[3'-(p-methoxyphenyl)selenoureido]estra-1,3,5(10)-trien-17one (30). p-Methoxyphenyl isoselenocyanate (212.5 mg, 1.00 mmol) was used, and the reaction took place during 15.5 h. Yield: 120.2 mg, 71%; mp 186-190 °C (dec.); $\left[\alpha\right]_{b}^{28}$ +92 (c 1.04, CH₂Cl₂); ¹H-NMR (500 MHz, CDCl3) δ 8.36 (brs, 1H, NH), 8.19 (s, 1H, H-1), 8.0 (brs, 1H, NH), 7.28 (m, 2H, Ar-H-o), 6.93 (m, 2H, Ar-H-m), 6.62 (s, 1H, H-4), 3.81 (s, 3H, OMe), 3.76 (s, 3H, Ar-OMe), 2.88 (m, 2H, H-6a, H-6b), 2.50 (dd, 1H, $J_{15,16a}$ =8.7 Hz, $J_{16a,16b}$ = 19.2 Hz, H-16a), 2.40 (m, 1H, H-11a), 2.27 (td, 1H, $J_{8,9}=J_{9,11\beta}=11.2$ Hz, $J_{9,11\alpha}=3.6$ Hz, H-9), 2.14 (dt, 1H $J_{15a,16b}=J_{15b,16b}=8.9$ Hz, H-16b), 2.08-2.00 (m, 2H, H-15a, H-7a), 1.96 (m, 1H, H-12a), 1.67-1.46 (m, 6H, H-15b, H-8, H-14, H-12b, H-11b, H-7b), 0.90 (s, 3H, CH₃-18) ppm; ¹³C-NMR (125.7 MHz, CDCl₃) δ 220.7 (C-17), 177.7 (CSe), 158.9 (Ar-C-p), 149.8 (C-3), 135.9 (Ar-C-ipso), 132.0 (C-10), 129.8 (C-5), 127.6 (Ar-C-o), 124.5 (C-5), 122.6 (C-1), 114.8 (Ar-C-m), 111.5 (C-4), 55.9 (OMe), 55.5 (Ar-OMe), 50.4 (C-14), 48.0 (C-13), 44.0 (C-9), 38.2 (C-8), 35.9 (C-16), 31.5 (C-12), 29.4 (C-6), 26.5 (C-7), 26.0 (C-11), 21.6 (C-15), 13.9 (C-18) ppm; HRESI-MS *m/z* calcd for C₂₇H₃₃N₂O₂⁸⁰Se [M+H]⁺: 497.1702, found: 497.1679.

4.3. **3-Methoxy-2-[3'-(***p***-chlorophenyl)selenoureido]estra-1,3,5(10)-trien-17-one (31).** *p*-Chlorophenyl isoselenocyanate (216.5 mg, 1.00 mmol) was used, and the reaction took place during 7.5 h. Yield: 64.7 mg, 38%. $\left[\alpha\right]_{D}^{29}$ +79 (*c* 1.01, CH₂Cl₂); ¹H-NMR (500 MHz, CDCl₃) δ 8.15 (s, 1H, NH), 7.99 (s, 1H, NH), 7.75 (s, 1H, H-1), 7.35 (m, 4H, Ar-H), 6.66 (s, 1H, H-4), 3.81 (s, 3H, OMe), 2.90 (m, 2H, H-6a, H-6b), 2.51 (dd, 1H, $J_{15,16a}$ = 8.3 Hz, $J_{16a,16b}$ = 18.5 Hz, H-16a), 2.35 (m, 1H, H-11a), 2.27 (m, 1H, H-9), 2.15 (dt, 1H, $J_{15a,16b}$ = $J_{15b,16b}$ =8.6 Hz, H-16b), 2.07–1.95 (m, 3H, H-15a, H-7a, H-12a), 1.66–14.0 (m, 6H, H-15b, H-8, H-14, H-12b, H-11b, H-7b), 0.91 (s, 3H, CH₃-18) ppm; ¹³C-NMR (125.7 MHz, CDCl₃) δ 220.7 (C-17), 177.8 (CSe), 150.2 (C-3), 136.8 (Ar-C-*ipso*), 136.4 (Ar-C-*p*), 132.5 (C-10), 132.4 (C-5), 129.4 (Ar-C-*o*), 126.8 (Ar-C-*m*), 123.5 (C-2), 122.9 (C-1), 111.9 (C-4), 55.9 (OMe), 50.3 (C-14), 47.9 (C-13), 43.9 (C-9), 38.1 (C-8), 35.8 (C-16), 31.5 (C-12), 29.6 (C-6), 26.4 (C-7), 25.9 (C-11), 21.5 (C-15), 13.9 (C-18) ppm; HRESI-MS *m*/*z* calcd for C₂₆H₃₀³⁵ClN₂O₂⁸⁰Se ([M]⁺): 517.1156, found: 517.1139.

4.4. **2-[3'-(p-Bromophenyl)selenoureido]-3-methoxyestra-1,3,5(10)-trien-17-one** (**32).** *p*-Bromophenyl isoselenocyanate (261.4 mg, 1.00 mmol) was used, and the reaction took place during 7 h. Yield: 148 mg, 80%; mp 140-145 °C (dec.); $\left[\alpha\right]_{D}^{28}$ +91 (*c* 1.03, CH₂Cl₂); ¹H-NMR (300 MHz,CDCl₃) δ 8.22 (s, 1H, NH), 8.11 (s, 1H, NH), 7.73 (s, 1H, H.1), 7.50 (m, 2H, Ar-H-*o*), 7.28 (m, 2H, Ar-H-*m*), 6.66 (s, 1H, H-4), 3.80 (s, 3H, OMe), 2.89 (m, 2H, H-6a, H-6b), 2.50 (dd, 1H, $J_{15,16a}$ = 8.3 Hz, $J_{16a,16b}$ = 18.5 Hz, 1H, H-16a), 2.34 (m, 1H, H-11a), 2.26 (m, 1H, H-9), 2.15 (dt, 1H, $J_{15a,16b}$ = $J_{15b,16b}$ =8.9 Hz, H-16b), 2.07–1.94 (m, 3H, H-15a, H-7a, H-12a), 1.68–1.40 (m, 6H, H-15b, H-8, H-14, H-12b, H-11b, H-7b), 0.90 (s, 3H, CH₃-18) ppm; ¹³C-NMR (125.7 MHz, CDCl₃) δ 220.6 (C-17), 177.8 (CSe), 150.2 (C-3), 136.9 (C-10, Ar-C-*ipso*), 132.4 (Ar-C-*m*, C-10), 127.0 (Ar-C-*o*), 123.5 (C-2), 123.0 (C-1), 120.5 (Ar-C-*p*), 112.0 (C-4), 55.9 (OMe), 50.3 (C-14), 48.0 (C-13), 43.9 (C-9), 38.1 (C-8), 35.9 (C-16), 31.5 (C-12), 29.6 (C-6), 26.4 (C-7), 26.0 (C-11), 21.6 (C-15), 13.9 (C-18) ppm; HRESI-MS *m/z* calcd for C₂₆H₃₀⁷⁷BrN₂O₂⁸⁰Se ([M+H]⁺): 561.0650, found: 561.0627.

5. 3-(2'-Azidoethoxy)estra-1,3,5(10)-trien-17-one (37). To a solution of 3-(2'bromoethoxy)estra-1,3,5(10)-trien-17-one 33 (99.7 mg, 0.26 mmol) in dry DMF (15 mL) was added NaN₃ (48.4 mg, 0.79 mmol, 3.0 equiv.), and the corresponding mixture was stirred at 70 °C and under Ar for 2 h. Then, it was concentrated to dryness, and the residue was partitioned between CH₂Cl₂ (10 mL) and brine (10 mL). The organic layer was washed with H₂O (10 mL), dried over MgSO₄ and filtered. The filtrate was concentrated to dryness to give pure 37, without any further purification. Yield: 109.6 mg, quant. $\left[\alpha\right]_{D}^{27}$ +71 (c 1.32, CH₂Cl₂); ¹H-NMR (500 MHz, CDCl₃) δ 7.20 (d, 1H, $J_{1,2}$ = 8.6 Hz, H-1), 6.73 (dd, 1H, J_{2,4}= 2.8 Hz, H-2), 6.66 (d, 1H, H-4), 4.36 (t, 2H, J_{H,H}=5.1 Hz, CH₂O), 3.56 (t, 2H, CH₂N), 2.88 (m, 2H, H-6a, H-6b), 2.49 (dd, 1H, J_{15,16a}= 8.6 Hz, J_{16a,16b}= 19.1 Hz, 1H, H-16a), 2.39 (m, 1H, H-11a), 2.25 (td, 1H, J_{8,9}=J_{9,11β}=10.3 Hz, J_{9,11a}=4.1 Hz, H-9), 2.13 (dt, 1H, J_{15a,16b}=J_{15b,16b}=8.9 Hz, H-16b), 2.07–1.93 (m, 3H, H-15a, H-7a, H-12a), 1.66-1.39 (m, 6H, H-15b, H-8, H-14, H-12b, H-11b, H-7b), 0.90 (s, 3H, CH₃-18) ppm; ¹³C-NMR (125.7 MHz, CDCl₃) δ 221.1 (C-17), 156.4 (C-3), 138.1 (C-5), 133.0 (C-10), 126.6 (C-1), 115.0 (C-4), 112.3 (C-2), 67.1 (CH₂O), 50.6 (C-14), 50.4 (CH₂N), 48.3 (C-13), 44.1 (C-9), 38.5 (C-8), 36.0 (C-16), 31.7 (C-12), 29.8 (C-6), 26.7 (C-7), 26.1 (C-11), 21.7 (C-15), 14.0 (C-18) ppm; HRESI-MS m/z calcd for C₂₀H₂₅N₃NaO₂ ([M+Na]⁺): 362.1839, found: 362.1834.

6. General procedure for the preparation of selenoureas 39, 40

To a solution of 3-(2'-aminoethoxy)estra-1,3,5(10)-trien-17-one **38** (60.0 mg, 0.19 mmol) in CH_2Cl_2 (5 mL) was added the corresponding isoselenocyanate (3.0 equiv.), and the reaction was kept at rt, under Ar and in the dark during the time indicated in each case. After that, it was concentrated to dryness, and the residue was purified by column chromatography (4:1 cyclohexane–EtOAc).

6.1. 3-[**2**'-(**3**''-*p*-**Chlorophenylselenoureido**)ethoxy]estra-1,3,5(10)-trien-17-one (40). *p*-Chlorophenyl isoselenocyanate (124.3 mg, 0.56 mmol) was used, and the reaction took place for 2h. Yield: 30.3 mg, 30%. ¹H-NMR (300 MHz, CDCl₃) δ 8.32 (s, 1H, NH), 7.39 (m, 2H, Ar-H-*m*), 7.20 (d, 1H, $J_{1,2}$ = 8.6 Hz, H-1), 7.14 (m, 2H, Ar-H-*o*), 6.77 (s, 1H, NH), 6.63 (dd, 1H, $J_{2,4}$ = 2.7 Hz, 1H, H-2), 6.55 (d, 1H, H-4), 4.14 (m, 4H, H-1', H-2'), 2.88 (m, 2H, H-6a, H-6b), 2.51 (dd, 1H, $J_{15,16a}$ = 8.4 Hz, $J_{16a,16b}$ = 18.3 Hz, H- 16a), 2.39 (m, 1H, H-11a), 2.25 (m, 1H, H-9), 2.13 (m, 1H, H-16b), 2.06 (m, 1H, H-15a), 2.02 (m, 1H, H-7a), 1.96 (m, 1H, H-12a), 1.63 (m, 1H, H-15b), 1.57 (m, 1H, H-8), 1.52 (m, 1H, H-14), 1.50 (m, 2H, H-11b, H-12b), 1.44 (m, 1H, H-7b), 0.91 (s, 3H, CH₃-18) ppm; ¹³C-NMR (500 MHz, CDCl₃) δ 220.9 (C-17), 179.6 (CSe), 156.3 (C-3), 138.3 (C-5), 130.7 (Ar-C-*m*), 129.0 (Ar-C-*ipso*), 127.4 (C-10), 132.5 (Ar-C-*p*), 126.7 (C-1), 126.5 (Ar-C-*o*), 114.5 (C-4), 112.3 (C-2), 66.3 (C-1'), 50.5 (C-14), 48.1 (C-13), 47.8 (C-2'), 44.1 (C-9), 38.5 (C-8), 36.0 (C-16), 31.7 (C-12), 29.8 (C-6), 26.6 (C-7), 26.1 (C-11), 21.7 (C-15), 14.0 (C-18) ppm. HRESI-MS *m*/*z* calcd for C₂₇H₃₁³⁵ClN₂NaO₂⁸⁰Se ([M+Na]⁺): 553.1131, found: 553.1114.

7. 3-(2'-Formamidoethoxy)estra-1,3,5(10)-trien-17-one (41). To a vigorously stirred solution of 3-(2'-aminoethoxy)estra-1,3,5(10)-trien-17-one 38 (30 mg, 95.7 µmol) in a 1:1 CH₂Cl₂-sat. aq. NaHCO₃ mixture (20 mL) at 0 °C was added AFA (0.1 mL). Stirring was kept at rt for 3 h, and then, both layers were separated. The organic layer was dried over MgSO₄, filtered and the filtrate was concentrated to dryness. The residue was purified by column chromatography (100:1 CH₂Cl₂-MeOH). Yield: 17.1 mg, 52%. $[\alpha]_{D}^{27}$ +70 (c 0.84, CH₂Cl₂); ¹H-NMR (500 MHz, CDCl₃) δ 8.22 (brs, 1H, CHO), 7.20 (d, 1H, J_{1.2}= 8.7 Hz, H-1), 6.70 (dd, 1H, J_{2.4}= 2.8 Hz, H-2), 6.63 (d, 1H, H-4), 6.02 (brs, 1H, NH), 4.04 (t, 2H, J_{HH}=5.1 Hz, CH₂O), 3.71 (q, 2H, J_{HNH}=5.1 Hz, CH₂N), 2.89 (m, 2H, H-6a, H-6b), 2.50 (dd, 1H, J_{15,16a}= 8.3 Hz, J_{16a,16b}= 18.4 Hz, H-16a), 2.39 (m, 1H, H-11a), 2.25 (td, 1H, $J_{8,9}=J_{9,11\beta}=10.8$ Hz, $J_{9,11\alpha}=4.4$ Hz, H-9), 2.14 (dt, 1H, $J_{15a,16b}=J_{15b,16b}=9.0$ Hz, H-16b), 2.08–1.99 (m, 2H, H-15a, H-7a), 1.97–1.94 (m, 1H, H-12a), 1.66–1.39 (m, 6H, H-15b, H-8, H-14, H-11b, H-12b, H-7b), 0.91 (s, 3H, CH₃-18); ¹³C-NMR (125.7 MHz, CDCl₃) δ 221.0 (C-17), 161.3 (CHO), 156.5 (C-3), 138.1 (C-5), 132.9 (C-10), 126.7 (C-1), 114.6 (C-4), 112.3 (C-2), 66.7 (CH₂O), 50.5 (C-14), 48.1 (C-13), 44.1 (C-9), 38.5 (C-8), 37.7 (CH₂N), 36.0 (C-16), 31.7 (C-12), 29.8 (C-6), 26.6 (C-7), 26.1 (C-11), 21.7 (C-15), 14.0 (C-18) ppm; HRESI-MS m/z calcd for C₂₁H₂₇NNaO₃ ([M+Na]⁺): 364.1883, found: 364.1870.

8. (25*R*)-3β-tert-Butyldiphenylsilyloxy-26-hydroxy-22-oxocholest-5-en-16β-yl

acetate (44). To a cooled solution of 43 (2.8 g, 4.29 mmol) in dry CH₂Cl₂ (30 mL) were dropwise added Ac₂O (7 mL, 74.0 mmol) and BF₃·OEt₂ (5.6 mL, 45.37 mmol) under Ar. The mixture was stirred at 0 °C for 10 min, poured into iced water and stirred overnight. The organic layer was separated, washed several times with sat. aq. NaHCO3 and brine, dried over MgSO4, filtrated, and the filtrate was concentrated to dryness. The residue was purified by column chromatography (4:1 hexane-EtOAc) to give 44 as a white foam. Yield: 1.59 g, 52%. $[\alpha]_D^{20}$ -5 (c 0.1, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) & 7.67 (m, 4H, Ar-H-m), 7.41 (m, 2H, Ar-Hp), 7.35 (m, 4H, Ar-H-o), 5.10 (m, 1H, H-6), 4.95 (td, 1H, $J_{16,17}=J_{16,15eq}=7.9$ Hz, J_{16,15ax}= 4.8 Hz, H-16), 3.52 (m, 1H, H-3), 3.41 (d, 2H, J_{25,26}= 5.9 Hz, H-26), 2.94 (dq, 1H, $J_{20,17} = 11.0$ Hz, $J_{20,21} = 7.1$ Hz, H-20), 2.62 (ddd, 1H, $J_{23a,24a} = 8.5$ Hz, $J_{23a,24b} = 6.6$ Hz, $J_{23a,23b} = 18.1$ Hz, H-23a), 2.38 (ddd, 1H, $J_{23b,24b} = 8.6$ Hz, $J_{23b,24a} =$ 5.8 Hz, H-23b), 2.36 (m, 1H, H-15a), 2.31 (m, 1H, H-4a), 2.12 (ddd, 1H, J_{3,4b}= 5.0 Hz, $J_{4b,6}$ = 1.9 Hz, $J_{4a,4b}$ = 13.4 Hz, H-4b), 1.95 (s, 3H, OAc), 1.89 (m, 1H, H-12eq), 1.87 (m, 1H, H-17), 1.86 (m, 1H, H-7a), 1.68 (m, 1H, H-1a), 1.68 (m, 1H, H-24a), 1.67 (m, 1H, H-2a), 1.59 (m, 1H, H-2b), 1.56 (m 1H, H-25), 1.45 (m, 1H, H-8), 1.45 (m, 1H, H-11a), 1.42 (m, 1H, H-11b), 1.42 (m, 1H, H-7b), 1.33 (m, 1H, H-24b), 1.20 (ddd, 1H, $J_{11eq,12ax}$ = 4.8 Hz, $J_{11ax,12ax}$ = $J_{12a,12b}$ =12.5 Hz, H-12ax), 1.12 (d, 3H, J_{20,21} = 7.1 Hz, CH₃-21), 1.05 (s, 9H, -C(CH₃)₃), 0.99 (m, 1H, H-15b), 0.98 (s, 3H, CH₃-19), 0.94 (m, 1H, H-14), 0.90 (d, 3H, J_{25,27}= 6.8 Hz, CH₃-27), 0.84 (m, 5H, H-9, H-1b, CH₃-18) ppm; ¹³C-NMR (125.7 MHz, CDCl₃) δ 213.9 (C-22), 170.0 (OC(O)CH₃), 141.3 (C-5), 135.9, 135.8 (Ar-C-m), 134.8, 134.8 (Ar-C-ipso), 129.6, 129.5 (Ar-C-p), 127.6, 127.6 (Ar-C-o), 120.9 (C-6), 75.8 (C-16), 73.2 (C-3), 67.5 (C-26), 55.1 (C-17), 54.1 (C-14), 49.9 (C-9), 43.6 (C-20), 42.5 (C-4), 42.0 (C-13), 39.7 (C-12), 38.6 (C-23), 37.2 (C-1), 36.5 (C-10), 35.5 (C-25), 34.9 (C-15), 31.9 (C-2), 31.7 (C-7), 31.3 (C-8), 27.1 (C(CH₃)₃), 26.3 (C-24), 21.3 (OAc), 20.8 (C-11), 19.5 (C-19), 19.2 (C(CH₃)₃), 17.0 (C-21), 16.7 (C-27), 13.3 (C-18) ppm; HRESI-MS calcd for $C_{45}H_{64}NaO_5Si$ ([M+Na]⁺): 735.4415, found: 735.4402.

9. (25*R*)-3β-tert-Butyldiphenylsilyloxy-26-mesyloxy-22-oxocholest-5-en-16β-yl

acetate (45). To a cooled solution of 44 (0.2 g, 0.28 mmol) in dry CH₂Cl₂ (2 mL) were dropwise added MsCl (90 µL, 1.12 mmol) and Et₃N (0.35 mL, 2.52 mmol) under Ar. The mixture was stirred at 0 °C for 1 h, and then, washed with aq. 5% HCl, sat. aq. NaHCO₃ and brine. The organic layer was dried over MgSO₄, filtered and concentrated to dryness. Column chromatography (17:3 hexane-EtOAc) afforded **45** as a white foam. Yield: 0.2 g, 90%. $[\alpha]_D^{20} -22$ (*c* 0.3, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 7.66 (m, 4H, Ar-H-m), 7.41 (m, 2H, Ar-H-p), 7.36 (m, 4H, Ar-H-o), 5.10 (m, 1H, H-6), 4.95 (td, 1H, $J_{16,17}=J_{15eq,16}=7.8$ Hz, $J_{15ax,16}=4.8$ Hz, H-16), 4.05 (dd, 1H, $J_{26a,25} = 6.0$ Hz, $J_{26a,26b} = 9.7$ Hz, H-26a), 4.03 (dd, 1H, $J_{25,26b} = 6.2$ Hz, H-26b), 3.52 (m, 1H, H-3), 3.01 (s, 3H, SO₂CH₃), 2.92 (dq, 1H, J_{17,20}= 11.2 Hz, $J_{20,21} = 7.1$ Hz, H-20), 2.64 (ddd, 1H, $J_{23a,24a} = 9.4$ Hz, $J_{23a,24b} = 6.3$ Hz, $J_{23a,23b} = 17.9$ Hz, H-23a), 2.35 (m, 1H, H-15a), 2.34 (m, 1H, H-23b), 2.30 (m, 1H, H-4a), 2.12 (ddd, 1H, $J_{3,4b} = 4.7$ Hz, $J_{4b,6} = 1.6$ Hz, $J_{4a,4b} = 13.3$ Hz, H-4b), 1.95 (s, 3H, COCH₃), 1.88 (m, 1H, H-12eq), 1.87 (m, 1H, H-17), 1.85 (m, 1H, H-25), 1.85 (m, 1H, H-7a), 1.70 (m, 1H, H-24a), 1.68 (m, 1H, H-1a), 1.67 (m, 1H, H-2a), 1.58 (m, 1H, H-2b), 1.45 (m, 1H, H-11a), 1.45 (m, 1H, H-8), 1.42 (m, 1H, H-7b), 1.41 (m, 1H, H-11b), 1.38 (m, 1H, H-24b), 1.20 (ddd, 1H, $J_{11eq,12ax}$ = 4.7 Hz, $J_{12ax,12eq}$ = $J_{12ax,11ax}$ = 12.4 Hz, H-12ax), 1.11 (d, 3H, $J_{20,21} = 7.1$ Hz, CH₃-21), 1.05 (s, 9H, C(CH₃)₃), 0.98 (m, 1H, H-15b), 0.98 (s, 3H, CH₃-19), 0.97 (d, 3H, J_{25,27} = 7.0 Hz, CH₃-27), 0.94 (m, 1H, H-14), 0.84 (m, 1H, H-1b), 0.84 (m, 1H, H-9), 0.84 (s, 3H, CH₃-18). ¹³C-NMR (125.7 MHz, CDCl₃) δ 212.6 (C-22), 169.9 (OC(O)CH₃), 141.3 (C-5), 135.9, 135.8 (Ar-Cm), 134.8 (x2) (Ar-C-ipso), 129.6, 129.5 (Ar-C-p), 127.6, 127.6 (Ar-C-o), 120.9 (C-6), 75.8 (C-16), 74.2 (C-26), 73.2 (C-3), 55.1 (C-17), 54.1 (C-14), 49.9 (C-9), 43.7 (C-20), 42.5 (C-4), 42.0 (C-13), 39.7 (C-12), 38.1 (C-23), 37.4 (SO₂CH₃), 37.2 (C-1), 36.5 (C-10), 34.9 (C-15), 32.7 (C-25), 31.9 (C-2), 31.7 (C-7), 31.3 (C-8), 27.1 (C(CH₃)₃), 26.4 (C-24), 21.3 (OAc), 20.8 (C-11), 19.5 (C-19), 19.2 (C(CH₃)₃), 16.8 (C-21), 16.4 (C-27), 13.3 (C-18); HRESI-MS calcd for C₄₆H₆₆NaO₇SSi ([M+Na]⁺): 813.4191, found: 813.4163.

- 10. (25R)-3β-tert-Butyldiphenylsilyloxy-22-oxo-26-selenocyanatocholest-5-en-16β-yl acetate (46). KSeCN (0.8 g, 5.55 mmol) was added to a solution of 45 (0.88 g, 1.11 mmol) in dry THF (40 mL) under Ar. The mixture was refluxed in the dark for 10 h. After that, it was concentrated to dryness and the residue was purified by column chromatography (17:3 hexane-EtOAc) to give 46 as a white foam. Yield: 0.84 g, 94%. $[\alpha]_{D}^{20}$ +1 (*c* 1.1, CHCl₃). ¹H-NMR (500 MHz, CDCl₃) δ 7.67 (m, 4H, Ar-H-*m*), 7.41 (m, 2H, Ar-H-p), 7.36 (m, 4H, Ar-C-o), 5.10 (m, 1H, H-6), 4.96 (td, 1H, $J_{16,17}=J_{15eq,16}=7.9$ Hz, $J_{15ax,16}=4.8$ Hz, H-16), 3.52 (m, 1H, H-3), 3.09 (dd, 1H, $J_{25,26a} = 5.4$ Hz, $J_{26a,26b} = 12.1$ Hz, H-26a), 2.93 (dq, 1H, $J_{17,20} = 11.1$ Hz, $J_{20,21} = 7.1$ 1H, H-20), 2.91 (dd, 1H, $J_{25,26b}$ = 7.1 Hz, H-26b), 2.65 (ddd, 1H, $J_{23a,24a}$ = 9.0 Hz, J_{23a,24b}= 6.4 Hz, J_{23a,23b}= 18.1 Hz, H-23a), 2.36 (m, 1H, H-15a), 2.36 (m, 1H, H-23b), 2.32 (m, 1H, H-4a), 2.12 (ddd, 1H, $J_{3,4b}$ = 4.9 Hz, $J_{4b,6}$ = 1.8 Hz, $J_{4a,4b}$ = 13.4 Hz, H-4b), 1.96 (s, 3H, COCH₃), 1.89 (m, 1H, H-12eq), 1.88 (m, 1H, H-17), 1.87 (m, 1H, H-25), 1.86 (m, 1H, H-7a), 1.75 (m, 1H, H-24a), 1.69 (m, 1H, H-1a), 1.68 (m, 1H, H-2a), 1.59 (m, 1H, H-2b), 1.47 (m, 1H, H-8), 1.46 (m, 1H, H-11a), 1.43 (m, 1H, H-24b), 1.42 (m, 1H, H-11b), 1.42 (m, 1H, H-7b), 1.21 (ddd, 1H, $J_{11eq,12ax}$ = 4.2 Hz, $J_{11ax,12ax} = J_{12ax,12eq} = 11.8$ Hz, H-12ax), 1.12 (d, 3H, $J_{20,21} = 7.1$ Hz, CH₃-21), 1.06 (s, 9H, C(CH₃)₃), 1.05 (d, 3H, CH₃-27), 1.0 (m, 1H, H-15b), 0.99 (s, 3H, CH₃-19), 0.96 (m, 1H, H-14), 0.85 (m, 1H, H-1b), 0.85 (m, 1H, H-9), 0.84 (s, 3H, CH₃-18); ¹³C-NMR (125.7 MHz, CDCl₃) δ 212.5 (C-22), 169.8 (OC(O)CH₃), 141.3 (C-5), 135.8, 135.8 (Ar-C-m), 134.8, 134.8 (Ar-C-ipso), 129.6, 129.5 (Ar-C-p), 127.6, 127.5 (Ar-C-o), 120.8 (C-6), 102.3 (SeCN), 75.8 (C-16), 73.2 (C-3), 55.1 (C-17), 54.0 (C-14), 49.8 (C-9), 43.6 (C-20), 42.5 (C-4), 41.9 (C-13), 39.7 (C-12), 38.4 (C-23), 37.6 (C-26), 37.2 (C-1), 36.5 (C-10), 34.9 (C-15), 34.0 (C-25), 31.9 (C-2), 31.6 (C-7), 31.3 (C-8), 29.2 (C-24), 27.1 (C(CH₃)₃), 21.3 (OC(O)CH₃), 20.8 (C-11), 19.5 (C-19), 19.3 (C-27), 19.2 (C(CH₃)₃), 16.9 (C-21), 13.3 (C-18); HRESI-MS calcd for C₄₆H₆₃NNaO₄⁸⁰SeSi ([M+Na]⁺): 824.3584, found: 824.3557.
- 11. Bis[(25R)-16β-Acetoxy-3β-tert-butyldiphenylsilyloxy-22-oxo-cholest-5-en-26yl]diselenide (47). NaBH₄ (6.0 mg, 0.16 mmol) was added, under Ar, to a solution of 46 (0.25 g, 0.31 mmol) in a dry 5:3 MeOH–THF mixture (8 mL). The mixture was stirred at rt for 30 min, and after that, the solvent was removed *in vacuo*. The

residue was partitioned between H_2O and CH_2Cl_2 ; the organic layer was dried over MgSO₄, filtrated, and the filtrate was concentrated to dryness. Column chromatography of the residue (19:1 hexane-EtOAc) afforded 47 as a yellow foam. Yield: 0.16 g, 68%. $[\alpha]_D^{22}$ +11 (c 0.2, CHCl₃); ¹H-NMR (500 MHz, CDCl₃) δ 7.67 (m, 4H, Ar-H-m), 7.41 (m, 2H, Ar-H-p), 7.36 (m, 4H, Ar-H-o), 5.10 (m, 1H, H-6), 4.93 (ddd, 1H, $J_{16,17} = J_{15eq,16} = 7.9$ Hz, $J_{15ax,16} = 4.8$ Hz, H-16), 3.51 (m, 1H, H-3), 2.96 (dd, 1H, $J_{25,26a}$ = 5.3 Hz, $J_{26a,26b}$ = 12.0 Hz, H-26a), 2.93 (dq, 1H, $J_{17,20}$ = 11.0 Hz, $J_{20,21}$ = 7.1 Hz, H-20), 2.80 (dd, 1H, $J_{26b,25}$ = 7.3 Hz, H-26b), 2.61 (ddd, 1H, $J_{23a,24a}$ = 10.4 Hz, $J_{23a,24b}$ = 5.4 Hz, $J_{23a,23b}$ = 17.8 Hz, H-23a), 2.36 (m, 1H, H-15a), 2.34 (m, 1H, H-23b), 2.31 (m, 1H, H-4a), 2.11 (ddd, 1H, $J_{3,4b}$ = 4.8 Hz, $J_{4b,6}$ = 1.8 Hz, $J_{4a,4b}$ = 13.4 Hz, H-4b), 1.95 (s, 3H, COCH₃), 1.89 (m, 1H, H-12eq), 1.87 (m, 1H, H-17), 1.85 (m, 1H, H-7a), 1.71 (m, 1H, H-24a), 1.71 (m, 1H, H-25), 1.68 (m, 1H, H-1a), 1.67 (m, 1H, H-2a), 1.59 (m, 1H, H-2b), 1.45 (m, 1H, H-11a), 1.44 (m, 1H, H-8), 1.41 (m, 1H, H-7b), 1.41 (m, 1H, H-11b), 1.37 (m, 1H, H-24b), 1.19 (td, 1H, $J_{11eq,12ax}$ = 4.8 Hz, $J_{12ax,12eq}$ = $J_{11ax,12ax}$ = 12.5 Hz, H-12ax), 1.11 (d, 3H, $J_{20,21}$ = 7.1 Hz, CH₃-21), 1.05 (s, 9H, C(CH₃)₃), 0.98 (s, 3H, CH₃-19), 0.98 (m, 1H, H-15b), 0.97 (d, 3H, J_{25,27}= 5.6 Hz, CH₃-27), 0.94 (m, 1H, H-14), 0.84 (m, 1H, H-9), 0.83 (m, 1H, H-1b), 0.83 (s, 3H, CH₃-18). ¹³C-NMR (125.7 MHz, CDCl₃) & 213.0 (C-22), 169.9 (OC(O)CH₃), 141.3 (C-5), 135.9, 135.9 (Ar-C-m), 134.8 (x2) (Ar-C-ipso), 129.6 (x2) (Ar-C-*p*), 127.6 (x2) (Ar-C-*o*), 120.9 (C-6), 75.9 (C-16), 73.2 (C-3), 55.0 (C-17), 54.0 (C-14), 49.8 (C-9), 43.6 (C-20), 42.5 (C-4), 41.9 (C-13), 39.7 (C-12), 38.9 (C-26), 38.8 (C-23), 37.2 (C-1), 36.5 (C-10), 34.9 (C-15), 34.0 (C-25), 31.9 (C-2), 31.7 (C-7), 31.3 (C-8), 29.9 (C-24), 27.1 (C(CH₃)₃), 21.4 (OC(O)CH₃), 20.8 (C-11), 19.6 (C-19), 19.5 (C-27), 19.3 (C(CH₃)₃), 16.9 (C-21), 13.3 (C-18); HRESI-MS calcd for C₉₀H₁₂₆NaO₈⁸⁰Se₂Si₂ ([M+Na]⁺): 1573.7214, found: 1573.7217.

Scheme S1. Plausible mechanism for the synthesis of 27

Scheme S2. Mechanism for the GPx-like activity of estrone selenoureas (PhSH method)

Compound				Cell lines		
	A549	HBL-100	SW1573	HeLa	T-47D	WiDr
9	>100	38±11	33.0±4.0	32.0±2.6	>100	>100
10				[a]		
11	35.0±6.2	45.0±6.8	27.0±0.7	32.0±3.2	83±23	88±17
16	69±12	89±19	89±20	86±20	83±23	>100
17	3.7±0.9	3.8±1.0	3.3±1.5	2.9±0.5	13.0±1.7	8.1±0.3
18	4.6±1.1	33±14	4.9±1.6	4.5±1.6	58±28	31±15
24	2.8 ± 0.8	12.0±2.3	6.4±2.7	4.5±1.7	4.0±1.7	0.3±0.1
25	3.1±1.2	7.6±0.8	3.6±0.2	4.2±0.4	4.1±0.1	2.4±1.1
27	>100	>100	>100	>100	>100	>100
28	2.2 ± 0.2	2.5±0.3	4.1±0.4	2.1±0.4	3.9±0.6	3.6±0.4
29	2.4±0.4	2.4±0.1	2.9±0.6	2.1±0.3	3.0±0.8	2.8 ± 0.7
30	2.7±0.3	2.3±0.4	3.3±0.6	2.3±0.5	3.2±1.0	3.3±1.0
31	2.5 ± 0.2	2.3±0.2	3.5±0.1	2.0±0.4	3.5±0.7	3.4±0.6
32	2.0±0.4	2.2 ± 0.1	3.8±0.7	2.0±0.5	2.8±0.5	3.3±1.7
34	$24.0{\pm}1.7$	94±10	>100	80±34	39.0±1.9	10.0±0.6
35	4.1±0.7	22.0±3.4	4.5±1.0	15.0±0.1	19.0±1.7	22.0±1.3
36	>100	>100	>100	>100	96	83
39	6.0±1.1	>100	93±13	61±16	7.9±1.4	7.3±0.2
40	4.4±1.4	50.0±6.8	30±3.4	31.0±6.1	76±23	64±15
42	37.0 ± 3.8	38.0±9.2	34.0±4.1	29.0±0.1	44±10	31.0±0.1
48	>100	>100	53±13	>100	>100	>100
51	1.7±0.5	2.2 ± 0.2	2.2±0.5	3.3±0.4	3.2±0.8	5.5±1.4
Ebselen	25±9	13±3	26±8	28±4	90±15	>100
5-Fluorouracil	[b]	5.5±2.3	15±4.7	4.3±1.6	47±18	49±6.7
Cisplatin	4.9±0.2	1.9±0.2	2.0±0.3	3.4±0.7	15±2.3	26±5.6

Table S1. Antiproliferative activity (GI50, µM) of selenosteroids against human solid tumour cells

[a] Not soluble under the assay conditions; [b] Not tested

¹H-NMR (500 MHz, CDCl₃) of **9**

¹³C-NMR (125.7 MHz, CDCl₃) of **9**

¹³C-NMR (125.7 MHz, CDCl₃) of **10**

¹³C-NMR (75.5 MHz, CDCl₃) of **11**

¹H-NMR (500 MHz, $CDCl_3$) of **16**

¹³C-NMR (125.7 MHz,

CDCl₃) of 16

 1 H-NMR (500 MHz, CDCl₃) of 17

¹³C-NMR (125.7 MHz, CDCl₃) of **17**

¹³C-NMR (125.7 MHz, CDCl₃) of **18**

¹H-NMR (500 MHz, CDCl₃) of **25**

¹³C-NMR (125.7 MHz, CDCl₃) of **25**

3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9

¹³C-NMR (75.5 MHz, CDCl₃) of **29**

¹H-NMR (500 MHz, CDCl3) of **30**

¹H-NMR (500 MHz, CDCl3) of **31**

3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 ppm

¹H-NMR (300 MHz,CDCl₃) of **32**

¹³C-NMR (125.7 MHz, CDCl₃) of **32**

¹H-NMR (300 MHz, CDCl3) of **34**

¹³C-NMR (125.7 MHz, CDCl₃) of **35**

¹H-NMR (300 MHz, CDCl₃) of 36

¹³C-NMR (125.7 MHz, CDCl₃) of **36**

¹³C-NMR (125.7 MHz, CDCl₃) of **37**

¹³C-NMR (125.7 MHz, CDCl₃) of **39**

 1 H-NMR (300 MHz, CDCl₃) of **40**

¹³C-NMR (500 MHz, CDCl₃) of **40**

¹³C-NMR (125.7 MHz, CDCl₃) of **41**

¹³C-NMR (125.7 MHz, CDCl₃) of **42**

¹³C-NMR (125.7 MHz, CDCl₃) of **45**

¹H-NMR (500 MHz, $CDCl_3$) of **48**

S73

¹³C-NMR (125.7 MHz, CDCl₃) of **51**