Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Cyclopropanation of [60]Fullerobenzofurans via

Electrosynthesis

Jun-Jie Wang,^a Hao-Sheng Lin,^a Chuang Niu,^a and Guan-Wu Wang*^{ab}

 ^aCAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
 ^bState Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

E-mail: gwang@ustc.edu.cn

Table of Contents

1.	1. HPLC trace of the crude reaction mixture of dianionic fullerobenzofuran				
	$1a^{2-}$ with diethyl dibromomalonate	S2			
2.	¹ H NMR and ¹³ C NMR spectra of compounds 2a-4a and 2b	S2-S10			
3.	¹ H NMR spectrum of 3b and 4b mixture	S10			
4.	UV-vis spectra of compounds 2a-4b	S11-S13			
5.	Single-crystal X-ray crystallography of compound 2a	S13-S14			
6.	Optimized xyz coordinates of compounds 2a-4a	S15-S21			
7.	Comparison of calculated and experimental ¹ H NMR spectra of				
	compounds 2a-4a	S22-S28			

1. HPLC trace of the crude reaction mixture of dianionic fullerobenzofuran $1a^{2-}$ with diethyl dibromomalonate

Fig. S1 HPLC trace of the crude reaction mixture of dianionic fullerobenzofuran $1a^{2-}$ with diethyl dibromomalonate. The mixture was eluted on a ZARBOX SIL column (4.6×250 mm) with toluene at a flow rate of 1.0 mL/min with the detector wavelength set at 326 nm.

2. ¹H NMR and ¹³C NMR spectra of compounds 2a-4a and 2b

S8

3. ¹H NMR spectrum of 3b and 4b mixture

4. UV-vis spectra of compounds 2a-4b

5. Single-crystal X-ray crystallography of compound 2a

Brown block crystals of 2a were obtained by slow diffusion of CHCl₃/methanol solution at 4 °C in a refrigerator. Single-crystal X-ray diffraction data were collected diffractometer equipped with CCD on a a area detector using graphite-monochromated Cu K α radiation (λ = 1.54184 Å) in the scan range 8.68°< 2 θ < 139.93°. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation.

Fig. S2 ORTEP diagram for one enantiomer of 2a with thermal ellipsoids shown at 50%

probability.	The	chloroform	molecule	was	omitted	for	clarity.
--------------	-----	------------	----------	-----	---------	-----	----------

Empirical formula	$C_{74}H_{16}O_6 \bullet 3CHCl_3$
Formula weight	1358.97
Temperature/K	289(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	21.0174(6)
<i>b</i> /Å	9.9144(2)
c/Å	26.3443(8)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	104.108(3)
$\gamma^{\prime \circ}$	90
Volume/Å ³	5323.9(3)
Ζ	4
$ ho_{\rm calc} {\rm g/cm}^3$	1.695
μ/mm^{-1}	4.878
F(000)	2728.0
Crystal size/mm ³	$0.350 \times 0.320 \times 0.210$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2θ range for data collection/°	8.676 to 139.928
Index ranges	$-24 \le h \le 25, -3 \le k \le 11, -32 \le l \le 30$
Reflections collected	19282
Independent reflections	9762 [$R_{int} = 0.0298, R_{sigma} = 0.0511$]
Data/restraints/parameters	9762/18/852
Goodness-of-fit on F^2	1.093
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0977, wR_2 = 0.2206$
Final R indexes [all data]	$R_1 = 0.1249, wR_2 = 0.2410$
Largest diff. peak/hole/e Å ⁻³	1.19/-0.75

6. Optimized xyz coordinates of compounds 2a-4a

Cartesian coordinates for **2a**, **3a**, and **4a** obtained at the B3LYP/6-31G* level.

2a			
01			
С	-0.21255200	1.94672900	0.77436800
С	-0.31064900	1.95402000	-0.69686100
С	-1.46900800	1.52537300	-1.31803600
С	-2.79949000	1.27711600	-0.58925600
С	-2.67835200	1.26391100	1.01426800
С	-1.27178000	1.52920000	1.55589900
С	1.14362400	1.63191000	1.13024300
С	1.97232900	1.59473600	-0.11403200
С	0.98315400	1.64010200	-1.23504800
С	1.08565000	0.81818700	-2.35004200
С	-1.36432900	0.67909800	-2.45989100
С	-3.18815400	-0.07840600	-1.20402300
С	-3.64751300	-1.15065200	-0.47143600
С	-3.54028100	-1.15028200	1.00664300
С	-2.99350900	-0.07990900	1.67707600
С	-2.07195400	-0.31498600	2.75541600
С	-1.01179600	0.67838900	2.67306700
С	0.30015400	0.33398100	3.02147000
С	1.39968200	0.81479200	2.22467400
С	3.06550600	0.44109900	-0.18107700
С	3.13377900	-0.47385100	0.99971300
С	2.40765200	-0.25607900	2.15975700
С	1.89993200	-1.38149900	2.91615400
С	0.60162300	-1.02048000	3.45386400
С	-0.41249200	-1.97164000	3.53721100
С	-1.77739300	-1.61180900	3.18279300
С	-2.37577700	-2.73418500	2.50224500
С	-3.23529000	-2.50309800	1.42247700
С	-2.42470600	-0.31378400	-2.39784500
С	-1.46929900	-4.60133200	-1.05622800
С	-1.70507800	-3.79800900	-2.17533900
С	-0.59001900	-3.32862600	-2.97768900
С	0.71685900	-3.68076600	-2.63365800
С	0.95933200	-4.51828500	-1.47208900
С	-0.01495200	-4.97003000	0.75431600
С	-1.30922800	-4.60138200	1.29159700
С	-2.20858100	-4.36790100	0.17361100

С	-3.14528500	-3.33553500	0.23784800
С	-3.39632100	-2.50116700	-0.92377600
С	-2.69241300	-2.73391500	-2.11125300
С	-0.88684100	-1.97016300	-3.40066300
С	0.12960500	-1.01944700	-3.45216100
С	1.48980000	-1.37868500	-3.09706900
С	1.77702700	-2.68843200	-2.69941200
С	2.66698400	-2.91041100	-1.58593700
С	2.16820800	-4.04223100	-0.82278900
С	2.26326300	-4.04458100	0.56859700
С	1.15314800	-4.52039600	1.37508100
С	-1.39063100	-3.79907300	2.43355000
С	-0.17666400	-3.32955300	3.07716600
С	1.07133000	-3.68307000	2.55972600
С	2.13125300	-2.69179700	2.48202300
С	2.85969000	-2.91320700	1.25682800
С	3.32721500	-1.81557200	0.52449600
С	3.22931600	-1.81223400	-0.92566200
С	2.98227000	-0.46465200	-1.37205000
С	2.09514700	-0.24975900	-2.41766300
С	-2.19241100	-1.61198400	-2.86448900
С	-0.10887500	0.33437000	-2.98172100
С	-0.11391900	-4.96855100	-0.69894400
С	-3.83595900	2.37519700	-0.78608300
С	-4.40011800	2.90402900	-1.94550800
С	-4.22253200	2.87672400	0.44793800
С	-5.34145600	3.92424300	-1.84307600
Н	-4.11200200	2.52854000	-2.92363600
С	-5.16027700	3.89621000	0.59389200
С	-5.72004200	4.41822500	-0.58067000
Н	-5.80061600	4.35857500	-2.72443300
Н	-5.42614900	4.25101800	1.58119100
0	-3.60104200	2.28451400	1.50629600
0	-6.64759100	5.41704900	-0.59962300
С	-7.07669000	5.96328200	0.63796700
Н	-7.80740200	6.73412400	0.38678200
Н	-7.55365600	5.20307800	1.27037800
Н	-6.24291100	6.41879800	1.18826500
С	3.45673000	1.91174200	-0.16161200
C	4.05702800	2.50479900	-1.41929200
С	4.09254600	2.45148200	1.11446800
0	5.24730300	3.06705200	-1.14328700
0	3.66078000	3.70337000	1.33843600
С	5.95555400	3.64548300	-2.27060200

Н	6.10342600	2.86456900	-3.02254300
Н	5.32455700	4.42198300	-2.71368600
С	7.26734700	4.19640300	-1.74719000
Н	7.09500600	4.97274700	-0.99506200
Н	7.87161800	3.40399100	-1.29489900
Н	7.83653700	4.63696100	-2.57280900
С	4.22056700	4.36536500	2.50106000
Н	4.00019900	3.75866900	3.38464200
Н	5.30828800	4.40590400	2.38564400
С	3.59767300	5.74534200	2.58149700
Н	3.82257500	6.33019300	1.68396000
Н	2.51034600	5.67769000	2.68638600
Н	3.99591300	6.27987800	3.45066600
0	3.56502800	2.45920700	-2.52337800
0	4.87103100	1.85036600	1.81608000
3 a			
01			
С	-3.04227700	0.96432700	-2.04474400
С	-2.51434800	-0.39281100	-2.30548900
С	-2.50394400	-1.34155200	-1.30758500
С	-3.25809100	-1.19286900	0.02503900
С	-3.82012100	0.29058300	0.30332000
С	-3.54215800	1.30596200	-0.80837400
С	-2.22520100	1.90336900	-2.78617800
С	-1.20039500	1.15919900	-3.48992600
С	-1.37488800	-0.25149800	-3.18576400
С	-0.25274100	-1.07281100	-3.03382600
С	-1.33924300	-2.16133600	-1.12469800
С	-2.16070900	-1.64128100	1.00341900
С	-1.85019700	-0.97994500	2.16888600
С	-2.37805600	0.37888900	2.42349000
С	-3.19636100	1.00247200	1.50755500
С	-2.98045000	2.38776000	1.19486600
С	-3.19409200	2.57574600	-0.23106000
С	-2.42395300	3.50527300	-0.93646000
С	-1.92820500	3.16125400	-2.24779000
С	0.08052300	1.69167700	-3.63640700
С	0.39139900	2.99356500	-3.06555300
С	-0.59407800	3.71369700	-2.38528700
С	-0.26411800	4.40287600	-1.14703100
С	-1.39708700	4.27333800	-0.24912800
С	-1.18808600	4.09099500	1.11773900
С	-2.00092000	3.13499800	1.85776800

С	-1.16140000	2.48797200	2.83396700
С	-1.34376600	1.12744200	3.10597200
С	-1.12847600	-2.34079600	0.29212600
С	2.13294900	0.02910600	2.45570500
С	1.85164400	-1.22669400	1.93785000
С	2.45785300	-1.73212400	0.66181600
С	3.34769900	-0.68479500	-0.14247100
С	3.47227500	0.67923900	0.46255400
С	2.42133500	2.31881800	1.96110800
С	1.28556900	2.19129700	2.85042800
С	1.10309400	0.77958200	3.14582400
С	-0.19003100	0.26354200	3.26766300
С	-0.50112900	-1.02177800	2.69179500
С	0.50406300	-1.73452500	2.02414700
С	1.31448100	-2.33602900	-0.09187800
С	1.11517800	-2.13069900	-1.44517900
С	1.94068700	-1.16624600	-2.19483700
С	2.93508100	-0.43632000	-1.56104800
С	3.06802900	0.97076500	-1.83536700
С	3.39304400	1.65443500	-0.59756800
С	2.90087900	2.94281500	-0.36250800
С	2.40750400	3.28585500	0.94896600
С	0.17944400	3.02952100	2.70447200
С	0.16099100	4.02726500	1.64464400
С	1.25392500	4.15215300	0.78462600
С	1.03680800	4.34358500	-0.64027800
С	2.05648300	3.59368200	-1.35082400
С	1.73987500	2.93522500	-2.53897400
С	2.25900900	1.59774300	-2.78907000
С	1.24388800	0.83615200	-3.47005500
С	1.08123100	-0.52107500	-3.16856500
С	0.18052600	-2.40862600	0.79160100
С	-0.23017400	-2.05122900	-1.97565100
С	2.95418800	0.99443200	1.70835900
С	-4.54312500	-2.00401800	0.11369900
С	-4.77354500	-3.37146200	-0.02579500
С	-5.60907800	-1.15857300	0.38295200
С	-6.06912300	-3.86204800	0.10662600
Н	-3.95429200	-4.05366400	-0.23578700
С	-6.91982100	-1.60886600	0.52125700
С	-7.13714800	-2.98629400	0.37796500
Н	-6.28445400	-4.91992000	0.00454000
Н	-7.71579400	-0.90608900	0.73063500
0	-5.26034900	0.15401600	0.50037100

Ο	-8.36087900	-3.57569600	0.48609900
С	-9.48589200	-2.75237100	0.75312700
Н	-10.34473700	-3.42501000	0.79547500
Н	-9.38465300	-2.23107500	1.71443300
Н	-9.64187200	-2.01343600	-0.04379300
С	3.92179900	-2.00477600	0.35281400
С	4.97001900	-2.11904900	1.44007300
С	4.21653100	-3.07287000	-0.70189900
Ο	5.77719700	-3.02523900	1.44971300
Ο	4.90658500	-1.15551100	2.36407700
Ο	5.22171800	-2.66918100	-1.48998400
Ο	3.63614600	-4.12783000	-0.79349100
С	5.87801100	-1.24541200	3.44155100
Н	5.75417800	-2.21373500	3.93600700
Н	6.88017200	-1.21921800	3.00288200
С	5.62873600	-0.08144300	4.38075100
Н	5.74126400	0.87480600	3.85995800
Н	4.62099900	-0.12805800	4.80548800
Н	6.35204700	-0.11469900	5.20272000
С	5.68167000	-3.63366200	-2.47069700
Н	5.94065300	-4.55881400	-1.94768500
Н	4.85578000	-3.85188800	-3.15485700
С	6.87186600	-3.02186300	-3.18286500
Н	7.67960400	-2.80684200	-2.47617400
Н	7.25026500	-3.72004600	-3.93790700
Н	6.59232000	-2.08994900	-3.68436100
4 a			
01			
С	-2.34448700	-0.60139600	2.37537500
С	-3.13456000	0.59135000	1.99835800
С	-3.66762800	0.70344600	0.73322500
С	-3.74568800	-0.45819200	-0.27049800
С	-2.87922200	-1.74999300	0.14696600
С	-2.13988800	-1.62906500	1.48354400
С	-1.26769900	-0.15666300	3.23540300
С	-1.37843600	1.28248300	3.39962700
С	-2.52268700	1.73854800	2.63449100
С	-2.47305100	2.97398700	1.97662000
С	-3.57396200	1.95508100	0.03508600
С	-3.24654800	0.25323300	-1.53963100
С	-2.31757700	-0.28110100	-2.40611700
С	-1.53131300	-1.47278000	-2.01613000
С	-1.71890200	-2.07891900	-0.79654900

С	-0.57465200	-2.48574100	-0.02714300
С	-0.83202300	-2.21487700	1.36889800
С	0.22295100	-1.80776700	2.19495400
С	-0.00509700	-0.75174700	3.15103200
С	-0.22979100	2.06904900	3.48357600
С	1.08088400	1.44740100	3.39070700
С	1.19246800	0.06195800	3.22325100
С	2.17334900	-0.49016100	2.31261000
С	1.56738200	-1.66812900	1.66536200
С	1.81718100	-1.95912100	0.33548000
С	0.72565200	-2.33992300	-0.52701300
С	0.92146900	-1.73368700	-1.82141100
С	-0.19544400	-1.30277900	-2.54947600
С	-3.31272300	1.67665600	-1.36657000
С	0.92708300	2.16890600	-3.03303400
С	-0.32393000	2.78215500	-2.95905400
С	-0.54988600	3.85293400	-1.99967700
С	0.48749200	4.27191700	-1.16445800
С	1.79004600	3.63688800	-1.25327000
С	2.78795100	1.43619300	-1.79399700
С	2.17523500	0.26413200	-2.43672700
С	1.02691300	0.72678100	-3.18706800
С	-0.13730300	-0.04381900	-3.24870000
С	-1.44124100	0.58764500	-3.16059600
С	-1.53206600	1.97784300	-3.02638900
С	-1.89091200	3.69871000	-1.46980400
С	-2.14712800	3.96755400	-0.12502400
С	-1.07190400	4.40521300	0.74674800
С	0.22073500	4.55353700	0.23737900
С	1.36018200	4.09148200	1.00866900
С	2.32694600	3.52628200	0.08135800
С	3.06099100	2.38953700	0.43588200
С	3.34293000	1.35040700	-0.52606900
С	2.13999200	-0.96476500	-1.79818900
С	2.82100400	-1.21252200	-0.48704900
С	3.47683100	0.05492700	0.21483400
С	3.01248000	0.35485700	1.60485200
С	2.86202300	1.77960700	1.73723700
С	1.93468300	2.32452600	2.63273100
С	1.16492900	3.50201400	2.25750200
С	-0.17424400	3.34646500	2.78826400
С	-1.27409600	3.78792000	2.04859300
С	-2.49051200	2.53517700	-2.10804600
С	-3.00985600	3.08329600	0.64264300

С	2.00590200	2.59987600	-2.16761100
С	-5.13049500	-1.07690800	-0.40140800
С	-6.35800300	-0.50878200	-0.73741200
С	-5.06314800	-2.43303800	-0.11822500
С	-7.49319800	-1.31272200	-0.78157700
Н	-6.43522900	0.55121100	-0.96361500
С	-6.17465300	-3.27166600	-0.15122500
С	-7.40306900	-2.68666400	-0.48960700
Н	-8.46433100	-0.90388500	-1.03847300
Н	-6.06737100	-4.32357000	0.07948400
0	-3.81202400	-2.87266700	0.19674500
0	-8.57682800	-3.37568800	-0.56156900
С	-8.56317300	-4.76521300	-0.27263300
Η	-9.59441500	-5.10389600	-0.38674000
Η	-7.92054900	-5.31608500	-0.97188600
Η	-8.22843400	-4.95959300	0.75476500
С	4.30797100	-1.15920100	-0.17541700
С	5.30049400	-1.01094100	-1.30805500
С	4.81193000	-2.05113100	0.95368200
С	5.19557800	-4.30491600	1.56462300
Η	6.25495000	-4.10366200	1.75274400
С	7.56286800	-1.37217200	-1.92572400
Η	7.25652300	-1.91127000	-2.82731700
0	4.71121300	-3.34131800	0.59534900
0	6.50350200	-1.48664400	-0.94013300
0	5.06544100	-0.51247700	-2.38514400
0	5.24451100	-1.65604200	2.01040400
Η	4.65425500	-4.15359000	2.50343500
С	4.96576800	-5.68688600	0.98472500
Н	5.31883400	-6.44685700	1.69013000
Н	3.90150700	-5.85927200	0.79614400
Н	5.50843600	-5.81222000	0.04239700
Н	7.67620400	-0.31624400	-2.18897300
С	8.82082400	-1.94967700	-1.30733300
Η	9.64865800	-1.87564000	-2.02070100
Н	9.09669400	-1.40390300	-0.39976700
Н	8.68222200	-3.00430400	-1.04906000

7. Comparison of calculated and experimental ¹H NMR spectra of compounds 2a-4a

Fig. S4 Comparison of the calculated ¹H NMR spectrum at the B97-2/def2-TZVP level with the experimental ¹H NMR spectrum of compound **3a**

Fig. S5 Comparison of the calculated ¹H NMR spectrum at the B97-2/def2-TZVP level with experimental ¹H NMR spectrum of compound **4a**

Fig. S6 Comparison of the calculated ¹H NMR spectrum at the B3LYP/6-311++G level with the experimental ¹H NMR spectrum of compound **2a**

Fig. S7 Comparison of the calculated ¹H NMR spectrum at the B3LYP/6-311++G level with the experimental ¹H NMR spectrum of compound **3a**

Fig. S8 Comparison of the calculated ¹H NMR spectrum at the B3LYP/6-311++G level with the experimental ¹H NMR spectrum of compound **4a**

 Table S1. Calculated ¹H NMR data at the B97-2/def2-TZVP level

Stanotumo	Chemical	TT	П	п	H_4	H ₅	H ₆	H ₇	H ₈
Structure	shifts	Π_1	п2	П3	(OCH ₃)	(CH ₂)	(CH ₂)	(CH ₃)	(CH ₃)
					4.18	4 20	4 20	1.61	1.50
20	δ (calcd)	7.98	7.09	6.99	3.92	4.39	4.30	1.49	1.45
2a					3.90	4.54	4.29	1.31	1.25
	δ (expt)	7.64	6.73	6.85	3.93	4.41	4.41	1.363	1.362
					4.22	1.00	4 5 5	1.88	1.70
2-	δ (calcd)	7.90	7.14	7.10	3.98	4.00	4.55	1.79	1.56
3 a					3.97	4.37	4.27	1.42	1.33
	δ (expt)	7.59	6.74	6.98	3.97	4.65-4.55	4.46	1.53	1.41
					4.22	1 55	1 2 1	1.72	1.49
4.	δ (calcd)	8.30	7.22	7.04	3.94	4.55	4.54	1.59	1.34
4a					3.93	4.50	4.23	1.42	1.22
	δ (expt)	7.96	6.87	6.92	3.98	4.62-4.49	4.48-4.40	1.51	1.39

Table S2. Calculated ¹H NMR data at the B3LYP/6-311++G level

Structure	Chemical	Н.	Ha	На	H_4	H_5	H ₆	H ₇	H ₈
Siructure	shifts	11]	112	113	(OCH ₃)	(CH ₂)	(CH ₂)	(CH ₃)	(CH ₃)
					4.41	4.50	1 16	1.74	1.80
	δ (calcd)	8.15	7.30	7.16	4.13	4.39	4.40	1.70	1.69
2a					4.13	4.55	4.42	1.50	1.49
	δ (expt)	7.64	6.73	6.85	3.93	4.41	4.41	1.363	1.362
					4.47	4.02	4 74	2.11	1.94
2-	δ (calcd)	8.12	7.32	7.40	4.23	4.95	4.74	2.07	1.79
<i>3</i> a					4.23	4.91	4.49	1.69	1.55
	δ (expt)	7.59	6.74	6.98	3.97	4.65-4.55	4.46	1.53	1.41
					4.55	1.62	4.50	1.90	1.72
	δ (calcd)	8.57	7.40	7.32	4.21	4.05	4.39	1.77	1.61
4a					4.21	4.01	4.49	1.62	1.45
	δ (expt)	7.96	6.87	6.92	3.98	4.62-4.49	4.48-4.40	1.51	1.39

Linear correlations between the experimental and calculated chemical shifts of 2a-4a (Note: the calculated chemical shifts for the protons in the OCH₃ and OCH₂CH₃ moieties had been averaged for comparison).

