# **Supporting Information**

# Base-Mediated Insertion Reaction of Alkynes into Carbon-Carbon $\sigma$ -Bonds of Ethanones: Synthesis of Hydroxydienone and Chromone Derivatives

Fangfang Zhang, Qiyi Yao, Yang Yuan, Murong Xu, Lingkai Kong and Yanzhong Li\*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China. Fax: (+86) 021-54340096, E-mail: yzli@chem.ecnu.edu.cn

# **Table of Contents**

| 1. | General Details                              | 2  |
|----|----------------------------------------------|----|
| 2. | Preparation of Acetyenic Ketones             | 2  |
| 3. | Preparation of Alkyl Aryl Ketones 2          | 4  |
| 4. | Synthesis of hydroxydienones 3               | 5  |
| 5. | Synthesis of Chromones 5                     | 11 |
| 6. | References                                   | 19 |
| 7. | Copies of Spectra of New Products            | 20 |
| 8. | X-ray crystallography of compounds 3j and 5a | 45 |

### 1. General Details.

All reactions under  $N_2$  were performed in flame-dried glassware under an atmosphere of dry nitrogen, and the workup was carried out in air, unless otherwise noted. Dimethylformamide (DMF) were dried and distilled from calcium hydride. Column chromatographic purification of products was carried out using silica gel (200~300 mesh). The reagents were used without further purification.

<sup>1</sup>H NMR spectra was recorded at 400 MHz, <sup>13</sup>C NMR spectra was recorded at 100 MHz, and in CDCl<sub>3</sub> (containing 0.03% TMS) solutions. <sup>1</sup>H NMR spectra was recorded with tetramethylsilane ( $\delta = 0.00$  ppm) as internal reference; <sup>13</sup>C NMR spectra was recorded with CDCl<sub>3</sub> ( $\delta = 77.00$  ppm) as internal reference. High-resolution mass spectra were performed on a mass spectrometer with a TOF (for EI or ESI) or FT-ICR (for MALDI) analyzer. Single crystal X-ray diffraction data was collected in Bruker SMARTAPEX diffractiometers with molybdenum cathodes.

### 2. Preparation of Acetyenic ketones

General procedure for the preparation of Acetyenic Ketones

1.2 eq. 
$$R_1$$
  $\xrightarrow{1.0 \text{ eq. n-BuLi, N}_2}$   $\xrightarrow{1.0 \text{ eq. }}$   $\xrightarrow{1.0 \text{ eq. }}$   $R_1$   $\xrightarrow{I.2 \text{ eq. IBX}}$   $R_1$   $\xrightarrow{DMSO, rt, 2h}$   $R_1$   $\xrightarrow{I.2 \text{ eq. IBX}}$   $R_1$   $\xrightarrow{I.2 \text{ eq. IBX}}$ 

To a solution of alkyne (12 mmol) in anhydrous THF (30 mL), n-BuLi (2.5M, 10 mmol, 4 mL) was added at -78 °C. The resulting mixture was stirred at -78 °C for 1 hour, then the aldehyde (10 mmol) was added and the reaction temperature was raised to room temperature till aldehyde disappeared by TLC analysis. The resulting mixture was quenched with a saturated solution of NH<sub>4</sub>Cl and extracted with ethyl acetate (20 mL  $\times$ 3). The combined organic layers were washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. Purification by

column chromatography with petroleum ether/ethyl acetate = 5/1-10:1 as the eluent afforded the substituted alkynol.

To a solution of substituted alkynol (10 mmol) in DMSO (20 mL) in round-bottom flask, IBX (12 mmol, 3.36 g) was added at room temperature. The reaction was stirred in air until the full conversion of substituted alkynol monitored by thin-layer chromatography. The resulting mixture was quenched with water (20 mL) and filtered. Then the filtrate was extracted with ethyl acetate (20 mL  $\times$  3). The organic layers was combined, washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10/1-20:1 as the eluent afforded the acetyenic ketones .



Compounds **1a-1f**,<sup>1</sup> and **4a-4k**,<sup>2</sup> are known compounds and the spectroscopic data are in agreement with that previously reported. The analytical data of other products are as follows.



**1-(2-bromo-5-fluorophenyl)-3-(4-chlorophenyl)prop-2-yn-1-one (4l)**: Yellow solid, 70% yield; mp 104-105 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.11-7.17 (m, 1H), 7.35-7.46 (m, 2H), 7.55-7.64 (m, 2H), 7.68 (dd, J = 8.8, 4.8 Hz, 1H), 7.74 (dd, J = 8.4, 2.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  88.24, 93.67, 115.65 ( $J_{C-F} = 3.3$  Hz), 118.31, 119.57 ( $J_{C-F} = 24.3$  Hz), 120.95 ( $J_{C-F} = 22.3$  Hz), 129.48, 134.63, 136.64 ( $J_{C-F} = 7.4$  Hz), 138.01, 138.98 ( $J_{C-F} = 6.3$  Hz), 161.86 ( $J_{C-F} = 249.6$  Hz), 176.43. HRMS (ESI) calcd for C<sub>15</sub>H<sub>8</sub>BrClFO [M+H]<sup>+</sup>: 336.9426; found: 336.9423.

### 3. Preparation of Alkyl Aryl Ketones 2

General procedure for the preparation of Alkyl Aryl Ketones 2



To a Schlenk tube with a magnetic stirring bar were charged the respective nitrile **1** (1.0 mmol), arylboronic acid **2** (2.0 mmol), Pd(OAc)<sub>2</sub> (5 mol %, 11.2 mg ), bpy (10 mol%, 15.6 mg), TFA (10 equiv, 0.74 ml ), THF (5 mL), and H<sub>2</sub>O (1 mL) under N<sub>2</sub> atmosphere. The reaction mixture was stirred at 80 °C for 36 h. After cooling to r.t., the mixture was poured into EtOAc (5 mL), which was washed with sat. aq NaHCO<sub>3</sub> (2 × 10 mL) and then brine (1 × 10 mL). After extracting the aqueous layer with EtOAc (3 × 10 mL), the combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and evaporated under vacuum. Purification by column chromatography with

petroleum ether/ethyl acetate = 5/1-10:1 as the eluent afforded the alkyl aryl ketones **2**.<sup>3</sup>



Compounds **2a-2e**,<sup>4</sup> are known compounds and the spectroscopic data are in agreement with that previously reported.

### 4 Synthesis of hydroxydienones 3



In a schlenk tube acetyenic ketone **1a** (0.30 mmol, 66.1 mg),  $Cs_2CO_3$  (0.6 mmol, 195.5 mg), DMF (3.0 mL) and **2a** (0.30 mmol, 58.9 mg) was stirred at room temperature under N<sub>2</sub>. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (10 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) afforded desired compound **3a**.



### (2Z,3Z)-2-(hydroxy(phenyl)methylene)-3,4-diphenyl-1-(p-tolyl)but-3-en-1-one

(**3a**): Yellow solid, obtained in 2.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), 67.4 mg (81% yield); mp 122-123°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.23 (s, 3H), 6.66 (s, 1H), 6.90 (d, *J* = 7.6 Hz, 2H), 7.04-7.20 (m, 11H), 7.31-7.43 (m, 6H), 18.05 (d, *J* = 6.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  21.16, 110.42, 126.96, 127.14, 127.37, 127.55, 127.64, 127.72, 128.44, 128.49, 128.72, 130.44, 132.20, 134.34, 137.16, 137.35, 137.88, 141.28, 143.00, 190.48, 190.52. HRMS (ESI) calcd for C<sub>30</sub>H<sub>24</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup>: 439.1669; found: 439.1691.



(2Z,3Z)-1-(4-bromophenyl)-2-(hydroxy(phenyl)methylene)-3,4-diphenylbut-3-en -1-one (3b): Yellow solid, obtained in 1.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), 78.1 mg (54% yield); mp 136-137 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.66 (s, 1H), 7.06-7.26 (m, 15H), 7.37-7.42 (m, 4H), 17.85 (s,1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  110.65, 125.22, 126.86, 127.33, 127.50, 127.78, 128.64, 128.68, 129.08, 130.86, 130.94, 132.44, 136.01, 136.74, 136.97, 137.67, 142.68, 189.35, 190.80. HRMS (ESI) calcd for C<sub>29</sub>H<sub>21</sub>BrNaO<sub>2</sub> [M+Na]<sup>+</sup>: 503.0617; found: 503.0618.





### (2Z,3Z)-2-(hydroxy(phenyl)methylene)-1,3,4-triphenylbut-3-en-1-one

(3c) :Yellow solid, obtained in 3.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), 101.6 mg (84% yield); mp 156-157°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.64 (s, 1H), 7.05-7.24 (m, 14H), 7.34-7.42 (m, 6H), 17.95 (d, J = 1.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  110.66, 126.97, 127.17, 127.46, 127.56, 127.70, 128.49, 128.54, 128.70, 130.64, 132.28, 137.02, 137.20, 137.85, 142.98, 190.68. HRMS (ESI) calcd for C<sub>29</sub>H<sub>22</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup>: 425.1512; found: 425.1505.



(2Z,3Z)-2-(hydroxy(phenyl)methylene)-1,4-diphenyl-3-(p-tolyl)but-3-en-1-one (3d) :Yellow solid, obtained in 3.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), 92.4 mg (74% yield); mp 115-116°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.25 (s, 3H), 6.62 (s, 1H), 6.98 (d, *J* = 5.6 Hz, 2H), 7.05-7.24 (m, 11H), 7.26-7.32 (m, 2H), 7.35-7.44 (m, 4H), 17.99 (d, *J* = 7.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  20.78, 110.65, 126.81, 127.01, 127.50,,127.68, 128.50, 128.68, 129.25, 130.64, 131.47, 136.86, 137.23, 137.47, 137.95, 140.08, 190.56. HRMS (ESI) calcd for C<sub>30</sub>H<sub>24</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup>: 439.1669; found: 439.1670.



(2Z,3Z)-2-(hydroxy(phenyl)methylene)-1,4-diphenyl-3-(p-tolyl)but-3-en-1-one(3e) :Yellow solid, obtained in 3.0 h and purified by chromatography on silica gel

(petroleum ether/ethyl acetate = 10:1), 95.9 mg (74% yield); mp 172-173°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.75 (s, 3H), 6.56 (s, 1H), 6.72 (d, *J* = 7.2 Hz, 2H), 7.07-7.18 (m, 9H),7.20-7.25 (m, 2H), 7.34 (d, *J* = 6.4 Hz, 2H), 7.40 (d, *J* = 4.8 Hz, 4H), 17.97 (d, *J* = 6.4 Hz,1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  55.10, 110.66, 113.85, 126.90, 127.47, 127.70, 128.11, 128.51, 128.63, 130.63, 130.68, 135.50, 136.46, 137.23, 138.02, 159.38, 190.55. HRMS (ESI) calcd for C<sub>30</sub>H<sub>24</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup>: 455.1618; found: 455.1625.



(2Z,3Z)-3-(4-chlorophenyl)-2-(hydroxy(phenyl)methylene)-1,4-diphenylbut-3-en -1-one (3f) :Yellow solid, obtained in 1.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), 82.2 mg (63% yield); mp 153-154°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.62 (s, 1H), 7.05-7.18 (m, 11H), 7.23 (d, *J* = 7.2 Hz, 2H), 7.30-7.37 (m, 6H), 17.95 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  110.21, 127.37, 127.42, 127.81, 128.05, 128.61, 128.69, 128.73, 130.83, 132.68, 133.32, 135.92, 137.03, 137.53, 141.50, 190.67. HRMS (ESI) calcd for C<sub>29</sub>H<sub>21</sub>ClNaO<sub>2</sub> [M+Na]<sup>+</sup>: 459.1122; found: 459.1117.



3g

(2Z,3Z)-2-(hydroxy(p-tolyl)methylene)-3,4-diphenyl-1-(p-tolyl)but-3-en-1-one (3g) :Yellow solid, obtained in 3.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), 103.9 mg (80% yield); mp 163-164°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.23 (s, 6H), 6.68 (s, 1H), 6.82-6.90 (m, 4H), 7.06-7.21 (m, 8H), 7.32 (d, J = 6.0 Hz, 4H), 7.43 (d, J = 6.8 Hz, 2H), 18.12 (d, J = 5.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  21.14, 110.22, 126.96, 127.11, 127.53, 127.62, 128.37, 128.45, 128.74, 132.12, 134.50, 137.29, 137.92, 141.02, 143.03, 190.35. HRMS (ESI) calcd for C<sub>31</sub>H<sub>26</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup>: 453.1825; found: 458.1831.



3h

(2*Z*,3*Z*)-2-(hydroxy(4-methoxyphenyl)methylene)-3,4-diphenyl-1-(p-tolyl)but-3en-1-one (3h) :Yellow solid, obtained in 3.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), 88.7 mg (66% yield); mp 168-169°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.23 (s, 3H), 3.73 (s, 3H), 6.60 (d, *J* = 8.8 Hz, 2H), 6.70 (s, 1H), 6.87 (d, *J* = 8.0 Hz, 2H), 7.08-7.22 (m, 8H), 7.28 (d, *J* = 7.6 Hz, 2H), 7.40-7.50 (m, 4H), 18.19 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  21.13, 55.11, 109.92, 113.01, 126.93, 127.12, 127.54, 127.59, 128.34, 128.45, 128.53, 128.71, 129.75, 129.85, 132.12, 134.55, 137.47, 137.92, 140.84, 143.00, 161.87, 189.75, 189.92. HRMS (ESI) calcd for C<sub>31</sub>H<sub>26</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup>: 469.1774; found: 469.1782.



(2Z,3Z)-2-((4-bromophenyl)(hydroxy)methylene)-3,4-diphenyl-1-(p-tolyl)but-3-e n-1-one (3i) :Yellow solid, obtained in 1.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), 141.4 mg (95% yield); mp 169-170°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.23 (s, 3H), 6.68 (s, 1H), 6.90 (d, *J* = 7.6 Hz, 2H), 7.08-7.25 (m, 12H), 7.35-7.45 (m, 4H), 17.96 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 21.17, 110.39, 124.97, 126.85, 127.30, 127,78, 128.52, 128.59, 128.63, 128.71, 129.00, 130.86, 132.35, 134.12, 136.18, 136.89, 137.71, 141.57, 142.69, 189.21, 190.55 . HRMS (ESI) calcd for C<sub>30</sub>H<sub>23</sub>BrNaO<sub>2</sub> [M+Na]<sup>+</sup>: 517.0774; found: 517.0788.



3j

(2Z,3Z)-1-(2-bromophenyl)-2-(hydroxy(phenyl)methylene)-3,4-diphenylbut-3-en -1-one (3j): Yellow solid, obtained in 1.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), 125.2 mg (87% yield); mp 164-165°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.49 (s, 1H), 6.96-7.01 (m, 1H), 7.03--7.08 (m, 3H), 7.11-7.24 (m, 11H), 7.31 (d, *J* = 7.2 Hz, 2H), 7.38 (d, *J* = 7.6 Hz, 2H), 17.54 (s,1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  111.66, 120.33, 126.32, 126.97, 127.27, 127.51, 127.65, 127.73, 128.29, 128.42, 128.68, 128.73, 130.61, 131.09, 132.37, 133.18, 136.18, 136.38, 137.63, 138.10, 142.93, 189.80, 191.18. HRMS (ESI) calcd for C<sub>29</sub>H<sub>21</sub>BrNaO<sub>2</sub> [M+Na]<sup>+</sup>: 503.0617; found: 503.0615.



3k

(2Z,3Z)-1-(2-chlorophenyl)-2-(hydroxy(phenyl)methylene)-3,4-diphenylbut-3-en -1-one (3k): Yellow solid, obtained in 1.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1), 115.7 mg (88% yield); mp 158-159°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.50 (s, 1H), 6.93-7.07 (m, 5H), 7.10-7.24 (m, 10H), 7.30 (d, *J* = 6.8 Hz, 2H), 7.38 (d, *J* = 7.6 Hz, 2H), 17.55 (s,1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  111.97, 125.78, 126.90, 127.28, 127.52, 127.67, 127.73, 128.23, 128.40, 128.66, 128.75, 129.86, 130.51, 131.10, 131.56, 132.33, 136.28, 137.65, 143.02, 190.03, 190.37. HRMS (ESI) calcd for C<sub>29</sub>H<sub>21</sub>ClNaO<sub>2</sub> [M+Na]<sup>+</sup>: 459.1122; found: 459.1118.

### **5** Synthesis of Chromones **5**



In a Schlenk tube acetyenic ketone **1a** (0.30 mmol, 85.5 mg),  $Cs_2CO_3$  (0.6 mmol, 195.5 mg), DMF (3.0 mL) and **2a** (0.30 mmol, 58.9 mg) was stirred at room temperature under N<sub>2</sub>. After the reaction was completed as monitored by thin-layer chromatography, the reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (10 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 20/1) afforded desired compound **5a**.





(*Z*)-3-(1,2-diphenylvinyl)-2-phenyl-4H-chromen-4-one (5a): White solid, obtained in 1.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), 75.0 mg (94% yield, Z/E = 9:1); mp 187-188°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 6.92 (d, J = 4.0 Hz, 2H), 6.08-7.10 (m, 4H), 7.12-7.20 (m, 2H), 7.23-7.36 (m, 6H), 7.40-7.54 (m, 4H), 7.67-7.72 (m, 1H), 8.26 (d, J = 8.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  118.18, 121.25, 123.18, 125.31, 126.29, 126.65, 127.04, 127.85, 128.05 128.09, 128.23, 128.42, 128.80, 130.34, 132.62, 133.17, 133.97, 134.52, 137.55, 141.54, 156.56, 162.94, 178.18. HRMS (ESI) calcd for C<sub>29</sub>H<sub>20</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup>: 423.1356; found: 423.1352.



(Z)-3-(1-(naphthalen-1-yl)-2-phenylvinyl)-2-phenyl-4H-chromen-4-one (5b): White solid, obtained in 2.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), 120.7 mg (89% yield, Z/E = 9:1); mp 170-171°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.94 (d, J = 4.4 Hz, 2H), 7.01-7.10 (m, 3H), 7.12-7.17 (m, 3H), 7.24-7.31 (m, 1H), 7.35 (d, J = 7.6 Hz, 2H), 7.40-7.47 (m, 3H), 7.53 (d, J = 8.4 Hz, 1H), 7.70-7.84 (m, 5H), 7.90 (s, 1H), 8.28 (d, J = 7.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  118.25, 121.24, 123.24,124.56, 125.19, 125.37, 126.06. 126.28, 126.75, 127.10, 127.76, 128.09, 128.27, 128.49, 128.56, 130.41, 133.19, 133.32, 133.83, 134.04, 134.59, 137.60, 138.90, 156.65, 163.08, 178.30 HRMS (ESI) calcd for C<sub>33</sub>H<sub>22</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup>: 473.1512; found: 473.1497.



(*Z*)-2-phenyl-3-(2-phenyl-1-(p-tolyl)vinyl)-4H-chromen-4-one (5c): White solid, obtained in 2.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), 122.2 mg (98% yield, Z/E = 9:1); mp 182-183°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.34 (s, 3H), 6.87 (d, J = 5.2 Hz, 2H), 6.98 (s, 1H), 7.00-7.06 (m, 3H), 7.10-7.19 (m, 4H), 7.24-7.32 (m, 3H), 7.40-7.51 (m, 4H), 7.67-7.72 (m, 1H), 8.26 (d, J = 7.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  20.90, 118.17, 121.22, 123.19, 125.27, 126.14, 126.67, 126.84, 128.02, 128.09, 128.17, 128.41, 129.61, 130.28, 131.70, 133.20, 133.94, 134.51, 137.65, 137.76, 138.64, 156.56, 162.86, 178.34. HRMS (ESI) calcd for C<sub>30</sub>H<sub>22</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup>: 437.1512; found: 437.1495.



(Z)-3-(1-(4-methoxyphenyl)-2-phenylvinyl)-2-phenyl-4H-chromen-4-one (5d): White solid, obtained in 1.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), 110.7 mg (86% yield, Z/E = 12:1); mp 177-178°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.78 (s, 3H), 6.83-6.95 (m, 4H), 6.94 (d, J = 2.4 Hz, 1H), 7.00-7.05 (m, 3H), 7.15-7.20 (m, 2H), 7.27-7.33 (m, 3H), 7.39-7.50 (m, 4H), 7.66-7.71 (m, 1H), 8.27 (d, J = 7.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 55.07, 114.14, 118.13, 121.23, 123.11, 125.24, 126.58, 126.73, 127.40, 127.98, 128.02, 128.13, 128.31, 130.28, 130.78, 133.13, 133.92, 133.97, 137.67, 156.49, 159.59, 162.76, 178.24. HRMS (ESI) calcd for C<sub>30</sub>H<sub>22</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup>: 453.1461; found: 453.1466.



(Z)-3-(1-(4-chlorophenyl)-2-phenylvinyl)-2-phenyl-4H-chromen-4-one (5e): White solid, obtained in 1.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), 108.9 mg (83% yield, Z/E = 9:1); mp 186-187°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.85-7.10 (m, 6H), 7.13-7.36 (m, 7H), 7.38-7.57 (m, 4H), 7.64-7.75 (m, 1H), 8.26 (d, J = 7.2 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  118.18, 120.78, 123.05, 125.41, 126.54, 127.24, 127.51, 127.96, 128.09, 128.26, 128.37, 128.92, 130.47, 132.95, 133.01, 133.38, 133.55, 134.09, 137.19, 140.06, 156.50, 163.14, 178.04. HRMS (ESI) calcd for C<sub>29</sub>H<sub>19</sub>ClNaO<sub>2</sub> [M+Na]<sup>+</sup>: 457.0966;

found: 457.0976.



5f

(Z)-3-(1,2-diphenylvinyl)-2-phenyl-4H-pyrano[2,3-b]pyridin-4-one (5f): Yellow solid, obtained in 1.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), 100.1 mg (83% yield, Z/E = 14:1); mp 196-197°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.92 (d, J = 6.0 Hz, 2H), 7.01-7.10 (m, 4H), 7.17-7.22 (m, 2H), 7.25-7.36 (m, 4H), 7.42-7.52 (m, 5H), 8.62 (dd,  $J_1 = 7.6$ , 1.6 Hz, 1H), 8.72-8.75 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  117.83, 121.69, 122.36, 126.25, 127.27, 128.02, 128.12, 128.27, 128.34, 128.36, 128.88, 130.79, 132.43, 132.99, 133.91, 137.34, 137.42, 141.12, 153.78, 160.96, 163.56, 178.58. HRMS (ESI) calcd for C<sub>28</sub> H<sub>19</sub>NNaO<sub>2</sub> [M+Na]<sup>+</sup>: 424.1308; found: 424.1317.



(Z)-3-(1,2-diphenylvinyl)-6,7-dimethoxy-2-phenyl-4H-chromen-4-one (5g): White solid, obtained in 2.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 2:1), 106.6 mg (77% yield, Z/E = 8:1); mp 215-216°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.97 (s, 3H), 3.98 (s, 3H), 6.88-6.98 (m, 3H), 7.02 (s,1H), 7.05-7.11 (m, 3H), 7.14-7.19 (m, 2H), 7.24-7.36 (m, 6H), 7.52 (d, J = 7.6 Hz, 2H), 7.60 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  56.12, 56.30, 99.66, 105.05, 116.52, 120.62, 126.25, 126.95, 127.74, 127.96, 127.98, 128.18, 128.40, 128.72, 130.10, 132.41, 133.25, 134.63, 137.60, 141.61, 147.88, 152.58, 154.82, 162.20, 177.29. HRMS (ESI) calcd for C<sub>31</sub>H<sub>24</sub>NaO<sub>4</sub> [M+Na]<sup>+</sup>: 483.1576; found: 483.1569.



(*Z*)-3-(1,2-diphenylvinyl)-6-fluoro-2-phenyl-4H-chromen-4-one (5h): White solid, obtained in 4.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), 109.6 mg (87% yield, Z/E = 9:1); mp 181-182°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.89 (d, J = 6.0 Hz, 2H), 6.98-7.10 (m, 4H), 7.13-7.20 (m, 2H), 7.22-7.35 (m, 6H), 7.38-7.44 (m, 1H), 7.45-7.55 (m,3H), 7.88 (dd, J = 8.0, 2.4 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  111.25 ( $J_{C-F} = 23.6$  Hz ), 120.33 ( $J_{C-F} = 8.0$  Hz ), 120.58, 122.19 ( $J_{C-F} = 25.6$  Hz ), 124.23 ( $J_{C-F} = 7.3$  Hz ), 126.22, 127.10, 127.92, 128.05, 128.08, 128.23, 128.34, 128.82, 130.50, 132.76, 132.87, 134.22, 137.43, 141.30, 152.72, 159.86 ( $J_{C-F} = 246.6$  Hz ), 163.25, 177.45. HRMS (ESI) calcd for C<sub>29</sub>H<sub>19</sub>FNaO<sub>2</sub> [M+Na]<sup>+</sup>: 441.1261; found: 441.1264.



(*Z*)-3-(1,2-diphenylvinyl)-7-fluoro-2-phenyl-4H-chromen-4-one (5i): White solid, obtained in 2.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), 118.1 mg (94% yield, Z/E = 6:1); mp 152-153°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.90 (d, J = 5.2 Hz, 2H), 6.98--7.08 (m, 4H), 7.13-7.20 (m, 4H), 7.22-7.35 (m, 6H), 7.51 (d, J = 6.8 Hz, 2H), 8.24-8.29 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  104.71 ( $J_{C-F} = 25.2$  Hz ), 114.11 ( $J_{C-F} = 22.8$  Hz ), 120.00, 121.33, 126.24, 127.12, 127.93, 128.03, 128.10, 128.26, 128.37, 128.84, 129.25 ( $J_{C-F} = 10.6$  Hz ), 130.50, 132.74, 132.79, 134.21, 137.46, 141.35, 157.50 ( $J_{C-F} = 13.4$  Hz ), 163.15, 166.11 ( $J_{C-F} = 254.8$  Hz ), 177.27. HRMS (ESI) calcd for C<sub>29</sub>H<sub>19</sub>FNaO<sub>2</sub> [M+Na]<sup>+</sup>: 441.1261; found: 441.1271.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) major isomers: δ 6.90 (d, J = 5.6 Hz, 2H), 7.02--7.07 (m, 4H), 7.12-7.17 (m, 4H), 7.22-7.32 (m, 6H), 7.51 (d, J = 7.6 Hz, 2H), 8.21-8.29 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) major isomers: δ 104.69 ( $J_{C-F} = 25.2$  Hz ), 114.08 ( $J_{C-F} = 22.8$  Hz ), 119.97, 121.30, 126.22, 127.10, 127.91, 128.01, 128.08, 128.23, 128.34, 128.81, 129.22 ( $J_{C-F} = 10.7$  Hz ), 130.48, 132.71, 132.76, 134.19, 137.44, 141.32, 157.48 ( $J_{C-F} = 13.5$  Hz ), 163.13, 166.08 ( $J_{C-F} = 254.9$  Hz ), 177.25; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) minor isomer: δ 6.61 (s, 1H), 7.81 (s, 2 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) minor isomers: δ 104.59 ( $J_{C-F} = 25.2$  Hz ), 113.97 ( $J_{C-F} = 22.9$  Hz ), 127.23, 127.45, 128.15, 128.46, 129.06, 129.33, 129.37, 130.67, 133.23, 133.56, 134.56, 137.09, 139.32, 163.13, 176.94; other peaks are overlapped with the signals of the major isomer; HRMS (ESI) calcd for C<sub>29</sub>H<sub>19</sub>FNaO<sub>2</sub> [M+Na]<sup>+</sup>: 441.1261; found: 441.1271.



(Z)-3-(1,2-diphenylvinyl)-2-(p-tolyl)-4H-chromen-4-one (5j): White solid, obtained in 2.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), 114.8 mg (92% yield, Z/E = 14:1); mp 187-188 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.30 (s, 3H), 6.93-7.01 (m, 4H), 7.02-7.10 (m, 4H), 7.22-7.34 (m, 5H), 7.38-7.43 (m, 1H), 7.44-7.53 (m, 3H), 7.66-7.70 (m, 1H), 8.25 (m, J = 8.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  21.12, 118.13, 120.90, 123.13, 125.20, 126.30, 126.61, 127.04, 127.78, 128.05, 128.21, 128.41, 128.75, 128.77, 130.28, 132.46, 133.88,

134.53, 137.58, 140.77, 141.55, 156.50, 163.00, 178.09. HRMS (ESI) calcd for  $C_{30}H_{22}NaO_2$  [M+Na]<sup>+</sup>: 437.1512; found: 437.1519.



(*Z*)-3-(1,2-diphenylvinyl)-2-(naphthalen-1-yl)-4H-chromen-4-one (5k): White solid, obtained in 2.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 5:1), 115.8 mg (86% yield, Z/E = 7:1); mp: 182-183 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.84 (d, J = 7.2 Hz, 2H), 6.94-7.07 (m, 4H), 7.25-7.36 (m, 3H), 7.43-7.79 (m, 12H), 8.29 (d, J = 8.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  118.23, 121.50, 123.24, 124.76, 125.36, 126.36, 126.49, 126.72, 127.06, 127.61, 127.76, 127.93, 128.22, 128.36, 128.74, 128.85, 128.98, 130.63, 132.65, 132.89, 133.94, 134.03, 134.66, 137.62, 141.53, 156.67, 162.93, 178.33. HRMS (ESI) calcd for C<sub>33</sub>H<sub>22</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup>: 473.1512; found: 473.1516.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) major isomer: δ 6.84 (d, J = 7.2 Hz, 2H), 6.93-7.12 (m, 4H), 7.20-7.31 (m, 3H), 7.40-7.82 (m, 12H), 8.29 (d, J = 7.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) major isomer δ 118.16, 121.45, 123.16, 124.89, 125.30, 126.30, 126.44, 126.61, 127.01, 127.55, 127.69, 127.86, 128.15, 128.29, 128.69, 128.78, 128.90, 130.55, 132.57, 132.81, 133.87, 133.97, 134.60, 137.55, 141.46, 156.59, 162.86, 178.26; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) minor isomer: δ 6.66 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) minor isomer: δ 118.08, 125.21, 125.65, 126.82, 127.13, 127.25,

127.43, 127.98, 128.04, 129.06, 129.34, 129.46, 129.65, 129.82, 130.85, 134.50; other peaks are overlapped with the signals of the major isomer; HRMS (ESI) calcd for  $C_{33}H_{22}NaO_2 [M+Na]^+$ : 473.1512; found: 473.1516.



### (Z)-3-(1-(4-chlorophenyl)-2-phenylvinyl)-6-fluoro-2-phenyl-4H-chromen-4-one

(51): White solid, obtained in 4.0 h and purified by chromatography on silica gel (petroleum ether/ethyl acetate = 10:1), 104.8 mg (77% yield, Z/E = 9:1); mp 182-183°C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.89 (d, J = 6.8 Hz, 2H), 7.00 (s, 1H), 7.02--7.11 (m, 3H), 7.17-7.35 (m, 7H), 7.41-7.54 (m, 4H), 7.88 (dd, J = 8.0, 2.4 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  111.32 ( $J_{C-F} = 23.7$  Hz ), 120.26, 120.39 ( $J_{C-F} = 7.9$  Hz ), 122.36 ( $J_{C-F} = 25.7$  Hz ), 124.25 ( $J_{C-F} = 7.4$  Hz ), 127.38, 127.54, 128.03, 128.20, 128.35, 128.39, 129.03, 130.69, 132.79, 133.18, 133.26, 133.74, 137.19, 139.94, 152.77, 159.98 ( $J_{C-F} = 246.9$  Hz ), 163.49, 177.38. HRMS (ESI) calcd for  $C_{29}H_{18}CIFNaO_2$  [M+Na]<sup>+</sup>: 475.0872; found: 475.0874.

|       | Br<br>Ph                                  |            | <sup>2</sup> h Cs <sub>2</sub> CO <sub>3</sub> (2.0<br>DMF, N <sub>2</sub> , 80 | equiv)   | O Ph<br>O Ph<br>Ph<br>5a                     |  |
|-------|-------------------------------------------|------------|---------------------------------------------------------------------------------|----------|----------------------------------------------|--|
| Entry | Solvent                                   | Base       | Temp. (°C)                                                                      | Time (h) | Yileld <sup><i>b</i></sup> (%)( <i>Z/E</i> ) |  |
| 1     | DMF                                       | $Cs_2CO_3$ | 100                                                                             | 1        | 94(10:1)                                     |  |
| 2     | DMF                                       | $Cs_2CO_3$ | 100                                                                             | 1        | 80(10:1) <sup><i>c</i></sup>                 |  |
| 3     | DMAc                                      | $Cs_2CO_3$ | 100                                                                             | 1        | 95(7:1)                                      |  |
| 4     | DMSO                                      | $Cs_2CO_3$ | 100                                                                             | 1        | 86(5:1)                                      |  |
| 5     | CH <sub>3</sub> N <b>t</b> O <sub>2</sub> | $Cs_2CO_3$ | 100                                                                             | 24       | trace                                        |  |
| 6     | Tol                                       | $Cs_2CO_3$ | 100                                                                             | 24       | trace                                        |  |
| 7     | DMF                                       | $Cs_2CO_3$ | 100                                                                             | 1        | 84(8:1) <sup>d</sup>                         |  |
| 8     | DMF                                       | $Cs_2CO_3$ | 100                                                                             | 2        | 77(14:1) <sup>e</sup>                        |  |
| 9     | DMF                                       | $Cs_2CO_3$ | 120                                                                             | 1        | 91(7:1)                                      |  |
| 10    | DMF                                       | $Cs_2CO_3$ | 80                                                                              | 1        | 94(9:1)                                      |  |
| 11    | DMF                                       | $Cs_2CO_3$ | 50                                                                              | 20       | 80(9:1)                                      |  |

Table S1 Screening of reation conditions for the formation of 5a <sup>a</sup>

<sup>*a*</sup> Unless otherwise noted, reations were conducted on a 0.2 mmol scale with the ratio of 4a:2a = 1:1 in 2.0 mL of solvent at 100 °C under N<sub>2</sub>. <sup>*b*</sup> Isolated yields of two isomers. <sup>*c*</sup> Under air. <sup>*d*</sup> Using 3.0 equiv of Cs<sub>2</sub>CO<sub>3</sub>. <sup>*e*</sup> Using 1.0 equiv of Cs<sub>2</sub>CO<sub>3</sub>.

# **6** References

- [1] H. Tan; H. Li; W. Ji; L. Wang. Angew. Chem. Int. Ed. 2015, 54, 8374.
- [2] X. Cheng; Y. Zhou; F. Zhang; K. Zhu; Y. Liu; Y. Li. Chem. Eur. J. 2016, 22, 12655.
- [3] X. Wang, X. Wang; M. Liu; J. Ding; J. Chen; H. Wu. Synthesis. 2013, 45, 2241.
- [4] Y. Wong; K. Parthasarathy; C. Cheng. Org. Lett. 2012, 12, 1736.

# 7 Copies of Spectra of New Products









3c





























3k



















S35







5f













5j















# 8 X-ray Crystallography of Compounds 3j and 5a

# (2Z,3Z)-1-(2-bromophenyl)-2-(hydroxy(phenyl)methylene)-3,4-diphenylbut-3-en-1-one (3j, CCDC 1521120)

(Ortep ellipsoids are depicted at the 50% level)

Table 1. Crystal data and structure refinement for 3j

| Identification code             | 3j                                                  |  |  |
|---------------------------------|-----------------------------------------------------|--|--|
| Empirical formula               | C <sub>29</sub> H <sub>21</sub> BrO <sub>2</sub>    |  |  |
| Formula weight                  | 481.37                                              |  |  |
| Temperature                     | 293(2) K                                            |  |  |
| Wavelength                      | 0.71073 Å                                           |  |  |
| Crystal system, space group     | Triclinic, P -1                                     |  |  |
| Unit cell dimensions            | $a = 8.1053(11) \text{ Å}$ $a = 74.381(3)^{\circ}$  |  |  |
|                                 | $b = 10.2013(13) \text{ Å}$ $b = 81.572(3)^{\circ}$ |  |  |
|                                 | $c = 14.6738(19) \text{ Å}$ $g = 79.622(3)^\circ$ . |  |  |
| Volume                          | 1143.2(3) Å <sup>3</sup>                            |  |  |
| Z, Calculated density           | 2, 1.398 Mg/m <sup>3</sup>                          |  |  |
| Absorption coefficient          | 1.821 mm <sup>-1</sup>                              |  |  |
| F(000)                          | 492                                                 |  |  |
| Crystal size                    | 0.200 x 0.160 x 0.130 mm <sup>3</sup>               |  |  |
| Theta range for data collection | 1.449 to 25.494 °.                                  |  |  |
| Limiting indices                | -8<=h<=9, -11<=k<=12, -17<=l<=17                    |  |  |
| Reflections collected / unique  | 6653/4253 [R(int) = 0.0219]                         |  |  |
| Completeness to theta $= 25.99$ | 99.9 %                                              |  |  |
| Absorption correction           | Semi-empirical from equivalents                     |  |  |
| Max. and min. transmission      | 0.7456 and 0.6453                                   |  |  |
| Refinement method               | Full-matrix least-squares on F <sup>2</sup>         |  |  |
| Data / restraints / parameters  | 4253 / 1 / 290                                      |  |  |
| Goodness-of-fit on F^2          | 1.025                                               |  |  |
| Final R indices [I>2sigma(I)]   | R1 = 0.0517, $wR2 = 0.1353$                         |  |  |
| R indices (all data)            | R1 = 0.0812, $wR2 = 0.1500$                         |  |  |
| Largest diff. peak and hole     | 0.902 and -0.300 e.Å <sup>-3</sup>                  |  |  |







# (Z)-3-(1,2-diphenylvinyl)-2-phenyl-4H-chromen-4-one (5a, CCDC 1521121)

(Ortep ellipsoids are depicted at the 50% level)



5a

Table 2. Crystal data and structure refinement for 5a

| Identification code                      | 5a                                            |  |  |
|------------------------------------------|-----------------------------------------------|--|--|
| Empirical formula                        | $C_{29}H_{20}O_2$                             |  |  |
| Formula weight                           | 400.45                                        |  |  |
| Temperature                              | 293(2) K                                      |  |  |
| Wavelength                               | 0.71073 Å                                     |  |  |
| Crystal system, space group              | Monoclinic P 21/c                             |  |  |
| Unit cell dimensions                     | $a = 10.1572(14)$ $a = 90^{\circ}$ .          |  |  |
|                                          | $b = 9.7577(14)$ $b = 98.391(3)^{\circ}$ .    |  |  |
|                                          | $c = 21.796(3) \text{ Å}$ $g = 90 ^{\circ}$ . |  |  |
| Volume                                   | 2137.1(5) Å <sup>3</sup>                      |  |  |
| Z, Calculated density                    | 4, 1.245 Mg/m <sup>3</sup>                    |  |  |
| Absorption coefficient                   | 0.077 mm <sup>-1</sup>                        |  |  |
| F(000)                                   | 840                                           |  |  |
| Crystal size                             | 0.200 x 0.170 x 0.130 mm <sup>3</sup>         |  |  |
| Theta range for data collection          | 1.889 to 25.999 °.                            |  |  |
| Limiting indices                         | -12<=h<=12, -12<=k<=11, -26<=l<=20            |  |  |
| Reflections collected / unique           | 12450/4198 [R(int) = 0.0409]                  |  |  |
| Completeness to theta = $25.242^{\circ}$ | 100.0 %                                       |  |  |
| Absorption correction                    | Semi-empirical from equivalents               |  |  |
| Max. and min. transmission               | 0.7456 and 0.6504                             |  |  |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>   |  |  |
| Data / restraints / parameters           | 4198 / 0 / 280                                |  |  |
| Goodness-of-fit on F <sup>2</sup>        | 1.033                                         |  |  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0437, wR2 = 0.1035                     |  |  |
| R indices (all data)                     | R1 = 0.0713, wR2 = 0.1149                     |  |  |
| Largest diff. peak and hole              | 0.175 and -0.138 e.Å <sup>-3</sup>            |  |  |





