Supporting Information for

Asymmetric phase-transfer catalyst catalyzed [4+1] cycloaddition of ortho-quinone methides and bromomalonate

Xiao-Lei Lian, Alafate Adili, Zhong-Lin Tao, Zhi-Yong Han*
Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China E-mail: hanzy2014@ustc.edu.cn
General Information: NMR spectra were recorded on a Brucker- 400 MHz spectrometer. Mass spectra were recorded on a Thermo LTQ Orbitrap XL (ESI +) or a P-SIMS-Gly of Bruker Daltonics Inc (EI +). Infrared spectra were recorded on a Nicolet MX-1E FT-IR spectrometer. HPLC analysis was performed on Waters-Breeze (2487 Dual Absorbance Detector and 1525 Binary HPLC Pump, UV detection monitored at 254 nm). All chiral columns were purchased from Daicel Chemical Industries, LTD. Optical rotations were measured on Perkin Elmer Model 343 Polarimeter. Toluene, diethyl ether and tetrahydrofuran were dried over Na and distilled prior to use. Dichloromethane and dichloroethane were dried over CaH_{2} and distilled prior to use.

Materials: Analytical grade solvents for the column chromatography were used as received. Dimethyl bromomalonate $\mathbf{2}$ was purchased from TCI. All commercially available reagents were used directly unless indicated otherwise. Vinyl ortho-quinone methides $\mathbf{1}$ were prepared following the known procedures ${ }^{[1]}$ and PTC 3 were synthesized according to the literatures ${ }^{[2]}$.

General Procedure for Cycloaddition reaction:

The reaction of $1(0.1 \mathrm{mmol})$ and $2(0.12 \mathrm{mmol})$ was carried out in 2 mL toluene at $-40{ }^{\circ} \mathrm{C}$ in the presence of catalyst $\mathbf{3 a}(10 \mathrm{~mol} \%)$ and $1.5 \mathrm{eq} \mathrm{Cs}_{2} \mathrm{CO}_{3}(40 \mathrm{mg})$ for 5-6 days. After completion of reaction the mixture is objected to flash column chromatography washed with PE : $\mathrm{EtOAc}=4: 1$, by evaporation of solvent the product is collected.

Gram-Scale experiment:

A gram-scale experiment was performed at the standard reaction condition. A significant drop of enantioselectivity was observed.

Characterization of the Cycloaddition Products 4:

Dimethyl (S,E)-7-styryl-[1,3]dioxolo[4,5-f]benzofuran-6,6(7H)-dicarboxylate (4a)
Colorless oil. $37.5 \mathrm{mg}, 98 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.20$ (m, 6 H), 6.60 (dd, $J=$ $23.2,12.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.06(\mathrm{dd}, J=15.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.86,166.49,152.16,148.31,143.03$, $136.25,134.22,128.65,128.06,126.52,125.14,117.94,104.90,101.57,93.73,93.31,53.72,53.02$, 51.69. IR (KBr): $\gamma 3437,1745,1630,1552,1474,1265,1089,1036 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{7}\right]^{+}$requires 383.11253 , found 383.11368. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+24.1\left(\mathrm{c}=0.64, \mathrm{CHCl}_{3}\right)$.

Enantiomeric excess: 93\%, determined by HPLC (Daicel Chirapak IC-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{tR}=7.690 \mathrm{~min}$ (minor), $\mathrm{tR}=10.797 \mathrm{~min}$ (major).

Dimethyl (S,E)-7-(4-methylstyryl)-[1,3]dioxolo[4,5-f]benzofuran-6,6(7H)-dicarboxylate (4b)

Colorless oil. $39.5 \mathrm{mg}, 98 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-6.51(\mathrm{~m}, 3 \mathrm{H}), 6.00(\mathrm{dd}, J=15.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=3.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.91$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.90$, $166.51,152.14,148.26,143.00,137.97,134.09,133.48,129.34,126.43,124.05,104.93,101.55,93.70$, 93.36, 53.69, 52.99, 51.72, 21.23. IR (KBr): $\gamma 3439,1746,1631,1547,1475,1265,1149,1036 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z [M + H] ${ }^{+}$calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{11} \mathrm{O}_{7}\right]^{+}$requires 397.12818, found 397.12933. [a] ${ }_{\mathrm{D}}{ }^{20}=$ +108.2 ($\mathrm{c}=0.72, \mathrm{CHCl}_{3}$). Enantiomeric excess: 94%, determined by HPLC (Daicel Chirapak IC-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{tR}=7.512 \mathrm{~min}$ (minor), $\mathrm{tR}=$ 11.549 min (major).

Dimethyl (S,E)-7-(2-methoxystyryl)-[1,3]dioxolo[4,5-f]benzofuran-6,6(7H)-dicarboxylate (4c)

Colorless oil. $40.9 \mathrm{mg}, 98 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$ (dd, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.25-$ $7.19(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=13.2,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.06$ (dd, $J=15.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.90,166.56,156.90,152.05,148.19,142.98,129.24$, 129.06, 127.14, 125.72, 125.26, 120.61, 118.42, 110.84, 105.00, 101.51, 93.67, 93.36, 55.38, 53.66, 52.94, 52.35. IR (KBr): $\gamma 3436,1748,1641,1487,1456,1286,1247,1147 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z [M $+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{8}\right]^{+}$requires 413.12309, found 413.12424. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+126.2\left(\mathrm{c}=0.99, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 91%, determined by HPLC (Daicel Chirapak IC-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{tR}=9.733 \mathrm{~min}$ (minor), $\mathrm{tR}=16.673 \mathrm{~min}$ (major).

Dimethyl (S,E)-7-(4-methoxystyryl)-[1,3]dioxolo[4,5-f]benzofuran-6,6(7H)-dicarboxylate (4d)

Colorless oil. $40.5 \mathrm{mg}, 98 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.64-6.49(\mathrm{~m}, 3 \mathrm{H}), 5.98-5.85(\mathrm{~m}, 3 \mathrm{H}), 4.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.92,166.54,159.53,152.12,148.23,142.99$, 133.65, 129.03, 127.74, 122.83, 118.19, 114.03, 104.93, 101.54, 93.69, 93.39, 55.31, 53.68, 52.98, 51.75. IR (KBr): $\gamma 3437,1747,1607,1512,1474,1456,1251,1149,1036 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z [M $+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{8}\right]^{+}$requires 413.12309, found 413.12418. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+91.3\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 97\%, determined by HPLC (Daicel Chirapak IC-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{tR}=11.505 \mathrm{~min}$ (minor), $\mathrm{tR}=21.944 \mathrm{~min}$ (major).

Dimethyl(S,E)-7-(4-bromostyryl)-[1,3]dioxolo[4,5-f]benzofuran-6,6(7H)-dicarboxylate (4e)

Colorless oil. $45.6 \mathrm{mg}, 98 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 3 \mathrm{H}), 6.07(\mathrm{dd}, J=15.8,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=3.6,1.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.79,166.44$, $152.20,148.40,143.08,135.16,132.98,131.80,128.00,126.04,122.88,117.60,104.83,101.61,93.78$,
93.23, 53.76, 53.03, 51.58. IR (KBr): $\gamma 3436,1746,1631,1627,1474,1455,1285,1150,1036 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{Br}\right]^{+}$requires 461.02304, found 461.02448. [a] ${ }_{\mathrm{D}}{ }^{20}=$ $+75.9\left(\mathrm{c}=0.90, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 94%, determined by HPLC (Daicel Chirapak IC-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{tR}=8.211 \mathrm{~min}$ (minor), $\mathrm{tR}=$ 13.437 min (major).

Dimethyl (S,E)-7-(4-chlorostyryl)-[1,3]dioxolo[4,5-f]benzofuran-6,6(7H)-dicarboxylate (4f)

Colorless oil. $41.3 \mathrm{mg}, 98 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.57(\mathrm{dd}, J=$ $10.2,5.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.05(\mathrm{dd}, J=15.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.80,166.45,152.19,148.39,143.07$, $134.72,133.75,132.93,128.85,127.69,125.90,117.65,104.84,101.60,93.78,93.26,53.75,53.03$, 51.58. IR (KBr): $\gamma 3433,1747,1630,1474,1456,1287,1150,1094,1036 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z [M $+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{Cl}\right]^{+}$requires 417.07356, found 417.07471. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+33.3\left(\mathrm{c}=0.91, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 97%, determined by HPLC (Daicel Chirapak IC-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{tR}=7.846 \mathrm{~min}$ (minor), $\mathrm{tR}=12.724 \mathrm{~min}$ (major).

Dimethyl (S,E)-7-(4-fluorostyryl)-[1,3]dioxolo[4,5-f]benzofuran-6,6(7H)-dicarboxylate (4g)

Colorless oil. $39.7 \mathrm{mg}, 98 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.99$ (dd, $J=$ $12.0,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.58$ (dd, $J=11.2,6.9 \mathrm{~Hz}, 3 \mathrm{H}), 5.98(\mathrm{dd}, J=15.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=3.5,1.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.83$, $166.48,163.78,161.32,152.16,148.35,143.05,132.42(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 128.06$ (d, $J=8.1 \mathrm{~Hz}$), 124.93 (d, $J=2.3 \mathrm{~Hz}$), 117.81, $115.61(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 104.85,101.59,93.76,93.29,53.73,53.01,51.61$. IR (KBr): $\gamma 3434,1747,1631,1508,1474,1226,1149,1036 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{7} \mathrm{~F}\right]^{+}$requires 401.10311, found 401.10408. [a] ${ }_{\mathrm{D}}{ }^{20}=+76.3\left(\mathrm{c}=0.88, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 95%, determined by HPLC (Daicel Chirapak IC-H, hexane/ isopropanol $=70 / 30$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{tR}=7.609 \mathrm{~min}$ (minor), $\mathrm{tR}=12.803 \mathrm{~min}$ (major).

Dimethyl (S,E)-7-(2-(naphthalen-1-yl)vinyl)-[1,3]dioxolo[4,5-f]benzofuran-6,6(7H)-dicarboxylate

 (4h)Colorless oil. $42.9 \mathrm{mg}, 98 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{dd}, J=15.4,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$, $6.59(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{dd}, J=15.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}$, $3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.91,166.59,152.27,148.37,143.11,134.09$, $133.55,131.84,131.08,128.57,128.48,128.40,126.27,125.93,125.59,124.10,123.70,117.99$, $104.88,101.61,93.82,93.42,53.76,53.10,51.93$. IR (KBr): $\gamma 3435,1746,1632,1474,1455,1286$, $1149,1036 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{7}\right]^{+}$requires 433.12818, found 433.12924. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+73.3\left(\mathrm{c}=0.94, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 92%, determined by HPLC (Daicel Chirapak IC-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{tR}=8.437$ \min (minor), $\mathrm{tR}=13.695 \min$ (major).

Dimethyl (S,E)-7-(2-(thiophen-2-yl)vinyl)-[1,3]dioxolo[4,5-f]benzofuran-6,6(7H)-dicarboxylate(4i)

Colorless oil. $38.5 \mathrm{mg}, 98 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 5.97-5.83(\mathrm{~m}, 3 \mathrm{H}), 4.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.78$, 166.46, 152.23, 148.37, 143.04, $141.25,127.46,127.40,126.53,124.80,124.55,117.59,104.89,101.59,93.72,93.26,53.73,53.07$, 51.52. IR (KBr): $\gamma 3435,1746,1632,1474,1455,1286,1150,1035 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z [M + H] ${ }^{+}$ calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{7} \mathrm{~S}\right]^{+}$requires 389.06895, found 389.07001. [a] ${ }_{\mathrm{D}}{ }^{20}=+81.2\left(\mathrm{c}=0.68, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 93%, determined by HPLC (Daicel Chirapak OD-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{tR}=10.710 \mathrm{~min}$ (minor), $\mathrm{tR}=11.783 \mathrm{~min}$ (major).

Dimethyl (S)-7-(4-methoxyphenyl)-[1,3]dioxolo[4,5-f]benzofuran-6,6(7H)-dicarboxylate (4j)

Colorless oil. $38.3 \mathrm{mg}, 98 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.80(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=7.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}$, 3H), 3.27 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.09,166.24,159.23,152.50,148.22,143.13$, $130.39,129.80,119.12,113.63,104.93,101.55,94.31,93.50,55.24,53.71,53.56,52.50$. IR (KBr): γ 3435, 1746, 1612, 1512, 1249, 1177, 1147, $1036 \mathrm{~cm}^{-1}$. HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{8}\right]^{+}$requires 387.10744, found 387.10837. [a] ${ }_{\mathrm{D}}{ }^{20}=+58.7\left(\mathrm{c}=0.72, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 73%, determined by HPLC (Daicel Chirapak IC-H, hexane/ isopropanol $=70 / 30$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{tR}=9.877 \mathrm{~min}$ (minor), $\mathrm{tR}=14.521 \mathrm{~min}$ (major).

Dimethyl (S,E)-7-(2-methylprop-1-en-1-yl)-[1,3]dioxolo[4,5-f]benzofuran-6,6(7H)-dicarboxylate

(4k)

Colorless oil. $33.1 \mathrm{mg}, 98 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.50(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H})$, 5.05 (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 ($\mathrm{s}, 3 \mathrm{H}$), 3.74 ($\mathrm{s}, 3 \mathrm{H}$), 1.83 ($\mathrm{s}, 3 \mathrm{H}$), 1.73 (s , $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.12,166.79,151.75,147.84,142.88,137.69,120.91,119.64$, $104.51,101.43,93.53,93.41,53.57,52.63,47.41,25.89,18.24$. IR (KBr): $\gamma 3435,1747,1632,1474$, 1284, 1182, 1150, $1036 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{7}\right]^{+}$requires 335.11253, found 335.11365. $[\mathrm{a}]_{\mathrm{D}}{ }^{20}=+61.5\left(\mathrm{c}=0.75, \mathrm{CHCl}_{3}\right)$. Enantiomeric excess: 44%, determined by HPLC (Daicel Chirapak IC-H, hexane/ isopropanol $=70 / 30$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{T}=30^{\circ} \mathrm{C}, 254 \mathrm{~nm}$): $\mathrm{tR}=$ 7.029 min (minor), $\mathrm{tR}=10.489 \mathrm{~min}$ (major).

Synthesis of 5b for X-ray analysis:

A solution of lithium aluminium tetrahydride in ether ($2 \mathrm{~mL}, 0.4 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{4 b}(23 \mathrm{mg}, 0.06 \mathrm{mmol})$ in ether $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen. The reaction was allowed to warm to ambient temperature and was stirred for 16 h . The reaction mixture was quenched with water
(5 mL), and extracted with DCM ($3 \times 5 \mathrm{~mL}$). The organic phases were combined and evaporated to dryness. The residue was purified by flash silica gel chromatography to afford $\mathbf{5 b}$ as a colourless oil($95 \%, 19 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.57$ $(\mathrm{d}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=15.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{t}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.48,147.88,142.07,133.78,133.62,129.38,126.38,124.74,120.55,105.41$, 101.32, 93.34, 93.11, 64.95, 63.10, 50.09, 21.24. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{5}\right]^{+}$ requires 341.1384 , found 341.1387 .

X-ray Single Crystal Data for 5b

Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}$
Formula weight	340.36
Space group	$\mathrm{P} 2_{1} 2_{1} 2_{1}$
Z	8
a / \AA	$5.6783(2)$
b / \AA	$18.1808(7)$
c / \AA	$34.1983(14)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$3530.5(2)$
Temperature $/ \mathrm{K}$	300 K
$\rho, \mathrm{~g} / \mathrm{cm}^{3}$	1.281

References

[1] Alafate Adili, Zhong-Lin Tao, Dian-Feng Chen and Zhi-Yong Han*, Org. Bio mol. Chem., 2015, 13, 2247-2250.
[2] Zhong-Lin Tao, Arafate Adili, Xiang Wu, and Prof. Liu-Zhu Gong*, Chin. J. Chem., 2014, 32, 969 - 973 .

${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Spectra

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(4g)

(4h)

(4i)

(4j)
(

(4k)

(
(5b)

HPLC

(4a)

	RT (min)	Area $(\mathrm{V}$ *ec $)$	\% Area	Height (V)	\% Height
1	7.652	5054454	50.92	229816	53.90
2	10.502	4871300	49.08	196580	46.10

	RT (min)	Area $(\mathrm{V}$ *sec $)$	\% Area	Height (V)	$\%$ Height
1	7.690	892111	3.59	61382	4.80
2	10.797	23977483	96.41	1216131	95.20

(4b)

	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	7.447	3803831	50.14	311236	60.51
2	11.333	3783185	49.86	203160	39.49

	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	7.512	550419	2.86	41839	4.13
2	11.549	18683095	97.14	971584	95.87

(4c)

	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	9.733	1146283	4.51	61539	7.38
2	16.673	24275031	95.49	771872	92.62

(4d)

	RT (min)	Area $(\mathrm{V}$ *sec $)$	\% Area	Height (V)	\% Height
1	11.505	537599	1.57	21244	2.82
2	21.944	33680423	98.43	732648	97.18

(4e)

	RT (min)	Area $(\mathrm{V}$ *sec $)$	\% Area	Height (V)	\% Height
1	8.008	29728462	49.79	2030473	63.44
2	13.171	29982394	50.21	1170148	36.56

	RT (min)	Area $(\mathrm{V}$ sec $)$	$\%$ Area	Height (V)	\% Height
1	8.211	2041567	3.25	111912	4.70
2	13.437	60841299	96.75	2269637	95.30

(4f)

	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	\% Height
1	7.846	733209	1.71	50542	2.83
2	12.724	42213352	98.29	1737334	97.17

(4g)

	RT (min)	Area $\left(\mathrm{V}^{*} \mathrm{sec}\right)$	\% Area	Height (V)	$\%$ Height
1	7.609	693722	2.60	48517	4.00
2	12.803	25944459	97.40	1164859	96.00

(4h)

	RT (min)	Area $\left(\mathrm{V}^{*}\right.$ sec $)$	\% Area	Height (V)	\% Height
1	8.505	3629849	50.31	227902	65.25
2	14.947	3585606	49.69	121377	34.75

	RT (min)	Area $(\mathrm{V}$ sec $)$	\% Area	Height (V)	\% Height
1	8.437	965072	4.27	40790	7.76
2	13.695	21625482	95.73	484724	92.24

(4i)

	RT (min)	Area $(\mathrm{V}$ *sec $)$	\% Area	Height (V)	\% Height
1	10.710	322931	3.41	13088	3.65
2	11.783	9144967	96.59	345351	96.35

(4j)

	$R T$ $(\mathrm{~min})$	Area $(\mathrm{V}$ *sec $)$	\% Area	Height (V)	\% Height
1	9.877	257133	13.47	14425	19.12
2	14.521	1651438	86.53	61010	80.88

(4k)

	RT (min)	Area $(\mathrm{V}$ *sec $)$	\% Area	Height (V)	\% Height
1	7.157	2812431	50.14	246845	61.81
2	10.868	2796817	49.86	152540	38.19

	RT (min)	Area $(\mathrm{V}$ *sec $)$	\% Area	Height (V)	\% Height
1	7.029	531987	28.12	46614	37.03
2	10.489	1359900	71.88	79256	62.97

