Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information for

Circularly polarised luminescence of pyrenyl di- and tri-peptides with mixed D- and L-amino acid residues

Yuki Mimura,^a Tomoki Nishikawa,^a Ryo Fuchino,^a Shiho Nakai,^a Nobuo Tajima,^b Mizuki Kitamatsu,^{a*} Michiya Fujiki^{c*} and Yoshitane Imai^{a*}

^a Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.; E-mail: (M.K.) kitamatu@apch.kindai.ac.jp.

(Y.I.) <u>y-imai@apch.kindai.ac.jp</u>.

^b Computational Materials Science Center, National Institute for Materials Science 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.

^c Graduate School of Materials Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192, Japan. (M.F.) fujikim@ms.naist.jp.

Table of contents

Fig. S1 (CPL and PL spectra of N-LD-C in CHCl ₃ at 1.0 × 10 ⁻⁴ M (black lines) and
-	1.0×10^{-5} M (blue lines). Black arrows indicate corresponding axesS3
Fig. S2 (CPL and PL spectra of N-LLD-C in CHCl ₃ at 1.0×10^{-4} M (black lines) and
-	1.0×10^{-5} M (blue lines). Black arrows indicate corresponding axesS3
Fig. S3 (CPL and PL spectra of N-LDL-C in CHCl ₃ at 1.0×10^{-4} M (black lines) and
	1.0×10^{-5} M (blue lines). Black arrows indicate corresponding axesS3
Fig. S4 N	MALDI-TOF mass spectra of N-DL-C and N-LD-C
Fig. S5	MALDI-TOF mass spectra of N-DLL-C , N-LDL-C and N-DDL-C
Fig. S6 N	MALDI-TOF mass spectra of N-LDD-C , N-DLD-C and N-LLD-C .
Fig. S7 F	RP-HPLC chart of N-DL-C S5
Fig. S8 F	RP-HPLC chart of N-LD-C S6
Fig. S9 F	RP-HPLC chart of N-DLL-C
Fig. S10	RP-HPLC chart of N-DDL-C
Fig. S11	RP-HPLC chart of N-LDL-C S7
Fig. S12	RP-HPLC chart of N-LDD-C
Fig. S13	RP-HPLC chart of N-LLD-C
Fig. S14	RP-HPLC chart of N-DLD-C

Fig. S1 CPL and PL spectra of **N-LD-C** in CHCl₃ at 1.0×10^{-4} M (black lines) and 1.0×10^{-5} M (blue lines). Black arrows indicate corresponding axes.

Fig. S2 CPL and PL spectra of **N-LLD-C** in CHCl₃ at 1.0×10^{-4} M (black lines) and 1.0×10^{-5} M (blue lines). Black arrows indicate corresponding axes.

Fig. S3 CPL and PL spectra of **N-LDL-C** in CHCl₃ at 1.0×10^{-4} M (black lines) and 1.0×10^{-5} M (blue lines). Black arrows indicate corresponding axes.

Fig. S4 MALDI-TOF mass spectra of **N-DL-C** and **N-LD-C**. An α -CHCA was used as a matrix. calcd. $[M+H]^+$ = 1230.61, **N-DL-C**; obsd. $[M+H]^+$ = 1231.22, **N-LD-C**; obsd. $[M+H]^+$ = 1231.06.

Fig. S5 MALDI-TOF mass spectra of **N-DLL-C**, **N-LDL-C** and **N-DDL-C**. An α -CHCA was used as a matrix. calcd. $[M+Na]^+ = 1523.71$, **N-DLL-C**; obsd. $[M+Na]^+ = 1524.99$, **N-LDL-C**; obsd. $[M+Na]^+ = 1525.44$, **N-DDL-C**; obsd. $[M+Na]^+ = 1525.18$.

Fig. S6 MALDI-TOF mass spectra of **N-LDD-C**, **N-DLD-C** and **N-LLD-C**. An α -CHCA was used as a matrix. calcd. $[M+Na]^+ = 1523.71$, **N-LDD-C**; obsd. $[M+Na]^+ = 1525.31$, **N-DLD-C**; obsd. $[M+Na]^+ = 1525.52$, **N-LLD-C**; obsd. $[M+Na]^+ = 1524.49$.

Fig. S7 RP-HPLC chart of **N-DL-C**. Buffer A. 0.1% TFA in water; buffer B, acetonitrile and monitoring at 340 nm with a gradient of 0-100% for 20 min.

Fig. S8 RP-HPLC chart of **N-LD-C**. Buffer A. 0.1% TFA in water; buffer B, acetonitrile and monitoring at 340 nm with a gradient of 0-100% for 20 min.

Fig. S9 RP-HPLC chart of **N-DLL-C**. Buffer A. 0.1% TFA in water; buffer B, acetonitrile and monitoring at 340 nm with a gradient of 0-100% for 20 min.

Fig. S10 RP-HPLC chart of **N-DDL-C**. Buffer A. 0.1% TFA in water; buffer B, acetonitrile and monitoring at 340 nm with a gradient of 0-100% for 20 min.

Fig. S11 RP-HPLC chart of **N-LDL-C**. Buffer A. 0.1% TFA in water; buffer B, acetonitrile and monitoring at 340 nm with a gradient of 0-100% for 20 min.

Fig. S12 RP-HPLC chart of **N-LDD-C**. Buffer A. 0.1% TFA in water; buffer B, acetonitrile and monitoring at 340 nm with a gradient of 0-100% for 20 min.

Fig. S13 RP-HPLC chart of **N-LLD-C**. Buffer A. 0.1% TFA in water; buffer B, acetonitrile and monitoring at 340 nm with a gradient of 0-100% for 20 min.

Fig. S14 RP-HPLC chart of **N-DLD-C**. Buffer A. 0.1% TFA in water; buffer B, acetonitrile and monitoring at 340 nm with a gradient of 0-100% for 20 min.