Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

PhI(OAc)₂-Mediated 1,2-Haloamination of Alkynes: A General Access to (*E*)-4-(Halomethylene)oxazolidin-2-ones

RuiJia Wang,^a Huanu Zou,^a Yi Xiong,^a Niannian Yi,^a Wei Deng^{*a} and Jiannan Xiang^{*a}

^a State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China

E-mail: jnxiang@hnu.edu.cn weideng@hnu.edu.cn

List of Contents

- 1 General
- 2 Experimental Section
- 3 Spectra data
- 4 Spectra
- 5 Crystallographic spectrum for **3a**

1. General

All the reactions were carried out under an air atmosphere using 10 ml round-bottom flask under reflux. For thin layer chromatography (TLC) analyses throughout this work, Flash column chromatography was performed using Qingdao Haiyang silica gel (300-400) with distilled solvents. ¹H NMR (400MHz) spectra were recorded on Bruker Avance 400/300 spectrometers in CDCl₃/DMSO-d6. ¹³C NMR (100/75 MHz) spectra on Bruker Avance 400/300 spectrometers in CDCl₃/DMSO-d6. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, dd = doublet of doublet, t = triplet, m = multiple. Chemical shifts (δ) are in parts per million relative to CDCl₃ at 7.26 ppm for ¹H and at 77.03 ppm for ¹³C{¹H}, and relative to DMSO-d6 at 3.39 ppm for ¹H and at 39.5 ppm for ¹³C{¹H}, respectively. The NMR yields were determined by ¹H NMR spectra with methyl tert-butyl ether as an internal standard.

2. Experimental Section

2.1 Synthesis of products via copper halides promoted

CuI (DMSO, 1 ml)/CuBr₂, CuCl₂ (DMF, 1 ml) (0.4 mmol) were added to a round-bottom flask (10 ml) and stirred at room temperature for 5 min. Then, DIB (0.4 mmol) and *O*-propargyl carbamates 1 (0.2 mmol) were separately dissolved in DMSO/DMF (1 ml) for sequential addition to the system at room temperature. The reaction mixture was heated with stirring at 80°C for 10 min. Upon completion, the mixture was cooled to room temperature and quenched with an aqueous solution of saturated Na₂S₂O₃ (5 ml). After extraction with CH₂Cl₂ (3 × 10 ml), the organic phases were washed with water (2 × 10 ml) and brine, dried over anhydrous Na₂SO₄, and then evaporated in vacuo to give the residual crude product. The residual crude product was purified by flash column chromatography with a mixture of n-hexane and ethyl acetate to give the desired product in the noted yields.

2.2 Synthesis of products under metal free-conditions

 CBr_4/I_2 (0.4 mmol), *O*-propargyl carbamates 1 (0.2 mmol), DMF (2 ml) were sequentially added to a round-bottom flask (10 ml) and stirred at room temperature. Then, DIB (0.4 mmol) was dissolved in DMF (1 ml) for addition to the system. The reaction mixture was heated with stirring at 100°C for 15 min. Upon completion, the mixture was cooled to room temperature and quenched with an aqueous solution of saturated Na₂S₂O₃ (5 ml). After extraction with CH₂Cl₂ (3 × 10 ml), the organic phases were washed with water (2 × 10 ml) and brine, dried over anhydrous Na₂SO₄, and then evaporated in vacuo to give the residual crude product. The residual crude product was purified by flash column chromatography with a mixture of n-hexane and ethyl acetate to give the desired product in the noted yields.

2.3 Optimization of the Reaction Conditions^a

4	$NH_4Br(2)$	1 a	60°C/1h	21% (3a)
5	$\operatorname{CBr}_4(2)$	1a	60°C/1h	54% (3a)
6	CBr ₄ (2)	1a	80°C/1h	65% (3a)
7	CBr ₄ (2)	1a	100°C/15min	75% (3a)
8	$\operatorname{CBr}_4(3)$	1a	100°C/1h	71% (3a)
9	$\operatorname{CBr}_4(1)$	1a	100°C/1h	58% (3a)
10	I ₂ (2)	1b	100°C/15min	48% (4b)
11	KI (2)	1b	100°C/1h	20% (4a)
12	NIS (2)	1b	100°C/1h	13% (4a)
13	NaCl (2)	1a	100°C/1h	trace (2a)
14	MgCl ₂ (2)	1a	100°C/1h	trace (2a)
15	CCl ₄ (2)	1a	100°C/1h	trace (2a)
16	Py-HCl (2)	1a	100°C/1h	trace (2a)
17	LiCl(2)	1a	100°C/1h	trace (2a)
18	NCS (2)	1a	100°C/1h	trace (2a)

^a Reaction conditions: 1 (0.2 mmol), halogen sources, DIB (0.4 mmol) in DMF (3 mL) under air.

3. Spectra data (E)-4-(chloromethylene)-3-tosyloxazolidin-2-one (2a)

Follow the general procedure **2.1**, **2a** was obtained 52.2 mg (91%) or as white solid with *n*-hexane/ethyl acetate (5/1) used as eluent.

Melting point: 142~144 °C.

¹H NMR (400 MHz, DMSO) δ 7.96 (d, *J* = 8.0 Hz, 2H), 7.53 (d, *J* = 8.0 Hz, 2H), 6.64 (s, 1H), 5.03 (s, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 151.0, 146.7, 133.1, 132.2, 130.2, 128.0, 97.3, 66.3, 21.2.

HRMS (ESI): $[C_{11}H_{10}CINO_4S+H^+]$ calcd. For 288.0092; found 288.0083.

(E)-4-(1-chloroethylidene)-3-tosyloxazolidin-2-one (2b)

Follow the general procedure **2.1**, **2b** was obtained 10.8 mg (18%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 4.75 (s, 2H), 2.46 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 146.3, 134.5, 130.0, 128.4, 125.2, 122.8, 68.6, 24.3, 21.7. HRMS (ESI): [C₁₂H₁₂ClNO₄S+H⁺] calcd. For 302.0248; found 302.0250.

(E)-4-(chloromethylene)-5-phenyl-3-tosyloxazolidin-2-one (2c)

Follow the general procedure **2.1**, **2c** was obtained 58.0 mg (80%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.32 (t, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.81 (s, 1H), 5.96 (s, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 146.8, 134.0, 133.8, 133.7, 130.1, 130.0, 128.9, 128.4, 127.3, 102.3, 79.2, 21.8.

HRMS (ESI): [C₁₇H₁₄ClNO₄S+H⁺] calcd. For 364.0405; found 364.0366.

(E)-4-(chloromethylene)-5-(p-tolyl)-3-tosyloxazolidin-2-one (2d)

Follow the general procedure **2.1**, **2d** was obtained 67.8 mg (90%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 4.0 Hz, 2H), 6.79 (s, 1H), 5.93 (s, 1H), 2.50 (s, 3H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 146.7, 140.1, 134.1, 133.7, 130.8, 130.1, 129.6, 128.3, 127.3, 102.0, 79.1, 21.8, 21.2.

HRMS (ESI): [C₁₈H₁₆ClNO₄S+H⁺] calcd. For 378.0561; found 378.0570.

(E)-4-(chloromethylene)-5-(o-tolyl)-3-tosyloxazolidin-2-one (2e)

Follow the general procedure 2.1, 2e was obtained 65.6 mg (87%) as white solid with *n*-hexane/ethyl acetate (5/1) used as eluent.

Melting point: 106~108 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.07 (t, *J* = 8.0 Hz, 1H), 6.91 (d, *J* = 4.0 Hz, 1H), 6.81 (s, 1H), 6.17 (s, 1H), 2.46 (s, 3H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.3, 146.8, 137.6, 133.8, 133.7, 131.4, 131.0, 130.1, 128.4, 126.5, 126.4, 101.8, 76.8, 21.8, 18.9. HRMS (ESI): [C₁₈H₁₆CINO₄S+H⁺] calcd. For 378.0561; found 378.0559.

(E)-4-(chloromethylene)-5-(4-chlorophenyl)-3-tosyloxazolidin-2-one (2f)

Follow the general procedure **2.1**, **2f** was obtained 70.6 mg (89%) as white viscous oil with *n*-hexane/ethyl acetate (10/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.81 (s, 1H), 5.94 (s, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 146.9, 136.0, 133.6, 133.5, 132.3, 130.1, 129.2, 128.7, 128.3, 102.5, 78.2, 21.8. HRMS (ESI): [C₁₇H₁₃Cl₂NO₄S+H⁺] calcd. For 398.0015; found 398.0009.

(E)-5-(4-bromophenyl)-4-(chloromethylene)-3-tosyloxazolidin-2-one (2g)

Follow the general procedure **2.1**, **2g** was obtained 74.9 mg (85%) as white viscous oil with *n*-hexane/ethyl acetate (10/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.81 (s, 1H), 5.92 (s, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 146.9, 133.5, 132.8, 132.2, 130.1, 128.9, 128.3, 124.2, 102.5, 78.3, 21.85. HRMS (ESI): [C₁₇H₁₃BrClNO₄S+H⁺] calcd. For 441.9510; found 441.9510.

(E)-4-(chloromethylene)-3-tosyl-5-(4-(trifluoromethyl)phenyl)oxazolidin-2-one (2h)

Follow the general procedure **2.1**, **2h** was obtained 75.8 mg (88%) as white viscous oil with *n*-hexane/ethyl acetate (10/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 4.0 Hz, 2H), 6.84 (s, 1H), 6.02 (s, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 147.0, 137.5, 133.5, 133.4, 130.2, 128.4, 127.7, 126.0, 125.9, 102.8, 78.0, 21.8. HRMS (ESI): [C₁₈H₁₃ClF₃NO₄S+Na⁺] calcd. For 454.0098; found 454.0092.

(E)-4-(chloromethylene)-5-(naphthalen-2-yl)-3-tosyloxazolidin-2-one (2i)

Follow the general procedure **2.1**, **2i** was obtained 72.6 mg (88%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.0 Hz, 2H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 2H), 7.56 – 7.54 (m, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 6.98 (s, 1H), 6.77 (s, 1H), 2.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 146.8, 134.0, 133.8, 133.2, 131.2, 131.0, 130.1, 129.0, 128.4, 128.0, 127.2, 126.3, 124.9, 124.7, 122.7, 102.9, 76.5, 21.8.

HRMS (ESI): [C₂₁H₁₆ClNO₄S+H⁺] calcd. For 414.0561; found 414.0570.

(E)-4-(chloromethylene)-5-(pyridin-3-yl)-3-tosyloxazolidin-2-one (2j)

Follow the general procedure **2.1**, **2j** was obtained 50.9 mg (70%) as white viscous oil with *n*-hexane/ethyl acetate (1/1) used as eluent.

¹H NMR (300 MHz, CDCl₃) δ 8.65 (s, 1H), 8.52 (s, 1H), 7.98 (d, *J* = 12.0 Hz, 2H), 7.44 (dd, *J* = 16.0, 8.0 Hz, 3H), 7.30 (s, 1H), 6.85 (s, 1H), 6.01 (s, 1H), 2.49 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 151.1, 150.0, 149.0, 147.1, 134.6, 133.5, 133.1, 130.2, 128.4, 102.6, 76.9, 21.8. HRMS (ESI): [C₁₆H₁₃ClN₂O₄S+H⁺] calcd. For 365.0357; found 365.0360.

(E)-4-(chloromethylene)-5-cyclohexyl-3-tosyloxazolidin-2-one (2k)

Follow the general procedure **2.1**, **2k** was obtained 60.5 mg (82%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 6.70 (s, 1H), 4.97 (s, 1H), 2.46 (s, 3H), 2.03 (t, *J* = 12.0 Hz, 1H), 1.75 (d, *J* = 12.0 Hz, 1H), 1.61 (s, 3H), 1.33 – 1.01 (m, 5H), 0.87 – 0.77 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 146.5, 133.99, 133.92, 129.9, 128.3, 100.4, 81.8, 39.6, 28.7, 26.0, 25.6, 25.4, 23.8, 21.7. HRMS (ESI): [C₁₇H₂₀CINO₄S+H⁺] calcd. For 370.0874; found 370.0873.

(4E,4'E)-5,5'-(1,4-phenylene)bis(4-(chloromethylene)-3-tosyloxazolidin-2-one) (20)

Follow the general procedure **2.1**, **20** was obtained 106.2 mg (82%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.0 Hz, 4H), 7.41 (d, J = 8.0 Hz, 4H), 7.13 (s, 4H), 6.81 (s, 2H), 5.96 (s, 2H), 2.50 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 147.08, 147.04, 135.5, 133.5, 130.2, 128.4, 127.9, 102.6, 78.2, 21.8. HRMS (ESI): [C₂₈H₂₂Cl₂N₂O₈S₂+Na⁺] calcd. For 671.0087; found 671.0062.

(E)-4-(bromomethylene)-3-tosyloxazolidin-2-one (3a)

Follow the general procedure **2.1 or 2.2**, **3a** was obtained 60.8 mg (92%) or 49.6 mg (75%) as white solid with *n*-hexane/ethyl acetate (10/1) used as eluent.

Melting point: 130 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 4.0 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 6.66 (s, 1H), 4.78 (s, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 151.4, 146.8, 133.6, 131.7, 130.0, 128.4, 86.3, 67.9, 21.8.

HRMS (ESI): $[C_{11}H_{10}BrNO_4S+H^+]$ calcd. For 331.9587; found 331.9565.

(E)-4-(1-bromoethylidene)-3-tosyloxazolidin-2-one (3b)

Follow the general procedure **2.1**, **3b** was obtained 61.4 mg (89%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 4.70 (s, 2H), 2.53 (s, 3H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.5, 146.3, 134.5, 130.0, 128.4, 126.3, 113.1, 70.5, 26.7, 21.7.

HRMS (ESI): [C₁₂H₁₂BrNO₄S+H⁺] calcd. For 345.9743; found 345.9743.

(E)-4-(bromomethylene)-5-phenyl-3-tosyloxazolidin-2-one (3c)

Follow the general procedure **2.1**, **3c** was obtained 59.4 mg (73%) as white viscous oil with *n*-hexane/ethyl acetate (10/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.0 Hz, 2H), 7.40 (dd, *J* = 12.0, 8.0 Hz, 3H), 7.32 (t, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.88 (s, 1H), 5.88 (s, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 146.8, 134.6, 133.8, 133.6, 130.1, 130.0, 129.0, 128.4, 127.7, 89.8, 80.6, 21.8.

HRMS (ESI): [C₁₇H₁₄BrNO₄S+H⁺] calcd. For 407.9900; found 407.9893.

(E)-4-(bromomethylene)-5-(p-tolyl)-3-tosyloxazolidin-2-one (3d)

Follow the general procedure **2.1** or **2.2**, **3d** was obtained 64.8 mg (77%) or 61.4 mg (73%) as white solid with *n*-hexane/ethyl acetate (5/1) used as eluent.

Melting point: 122~124 °C.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.86 (s, 1H), 5.84 (s, 1H), 2.50 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 146.7, 140.1, 134.7, 133.8, 130.7, 130.1, 129.6, 128.4, 127.6, 89.6, 80.5, 21.8, 21.3.

HRMS (ESI): [C₁₈H₁₆BrNO₄S+H⁺] calcd. For 422.0056; found 422.0043.

(E)-4-(bromomethylene)-5-(o-tolyl)-3-tosyloxazolidin-2-one (3e)

Follow the general procedure **2.1**, **3e** was obtained 59.7 mg (71%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.20 (d, *J* = 8.0 Hz, 1H), 7.10 (t, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.91 (s, 1H), 6.12 (s, 1H), 2.49 (s, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.4, 146.8, 137.7, 134.6, 133.8, 131.3, 131.0, 130.1, 128.4, 126.6, 126.4, 89.4, 78.1, 21.8, 19.0. HRMS (ESI): [C₁₈H₁₆BrNO₄S+H⁺] calcd. For 422.0056; found 422.0053.

(E)-4-(bromomethylene)-5-(4-chlorophenyl)-3-tosyloxazolidin-2-one (3f)

Follow the general procedure **2.1**, **3f** was obtained 71.4 mg (81%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 4.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 6.88 (s, 1H), 5.85 (s, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 146.9, 136.0, 134.2, 133.6, 132.1, 130.1, 129.2, 129.0, 128.4, 90.1, 79.6, 21.8. HRMS (ESI): [C₁₇H₁₃BrClNO₄S+H⁺] calcd. For 441.9510; found 441.9510.

(E)-4-(bromomethylene)-5-(4-bromophenyl)-3-tosyloxazolidin-2-one (3g)

Follow the general procedure **2.1**, **3g** was obtained 69.8 mg (72%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.88 (s, 1H), 5.84 (s, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 146.9, 134.2, 133.6, 132.6, 132.2, 130.1, 129.2, 128.4, 124.3, 90.1, 79.7, 21.8. HRMS (ESI): [C₁₇H₁₃Br₂NO₄S+H⁺] calcd. For 485.9005; found 485.9001.

(E)-4-(bromomethylene)-3-tosyl-5-(4-(trifluoromethyl)phenyl)oxazolidin-2-one (3h)

Follow the general procedure **2.1**, **3h** was obtained 75.9 mg (80%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 6.91 (s, 1H), 5.93 (s, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 147.0, 137.3, 134.0, 133.5, 130.2, 128.4, 128.0, 126.05, 126.01, 90.4, 79.4, 21.8. HRMS (ESI): [C₁₈H₁₃BrF₃NO₄S+Na⁺] calcd. For 497.9593; found 497.9577.

(E)-4-(bromomethylene)-5-(naphthalen-2-yl)-3-tosyloxazolidin-2-one (3i)

Follow the general procedure **2.1** or **2.2**, **3i** was obtained 74.0 mg (81%) or 57.5 mg (63%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.03 (t, *J* = 12.0 Hz, 3H), 7.91 (d, *J* = 8.0 Hz, 2H), 7.59 – 7.53 (m, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.05 (s, 1H), 6.69 (s, 1H), 2.49 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 146.8, 134.0, 133.8, 131.2, 131.0, 130.1, 129.0, 128.4, 127.9, 127.2, 126.3, 124.9, 124.8, 122.7, 90.6, 77.8, 21.8. HRMS (ESI): [C₂₁H₁₆BrNO₄S+H⁺] calcd. For 458.0056; found 458.0043.

(E)-4-(bromomethylene)-5-(pyridin-3-yl)-3-tosyloxazolidin-2-one (3j)

Follow the general procedure **2.1**, **3j** was obtained 55.4 mg (68%) as white viscous oil with *n*-hexane/ethyl acetate (1/1) used as eluent.

¹H NMR (300 MHz, CDCl₃) δ 8.65 (s, 1H), 8.54 (s, 1H), 7.99 (d, *J* = 12.0 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 12.0 Hz, 2H), 7.32 – 7.28 (m, 1H), 6.91 (s, 1H), 5.93 (s, 1H), 2.50 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 151.0, 150.0, 149.2, 147.1, 134.9, 133.7, 133.5, 130.2, 129.7, 128.4, 123.9, 90.1, 78.2, 21.8.

HRMS (ESI): $[C_{16}H_{13}BrN_2O_4S+H^+]$ calcd. For 408.9852; found 408.9844.

(E)-4-(bromomethylene)-5-cyclohexyl-3-tosyloxazolidin-2-one (3k)

Follow the general procedure **2.1**, **3k** was obtained 60.3 mg (73%) or 52.0 mg (63%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 6.72 (s, 1H), 4.88 (s, 1H), 2.46 (s, 3H), 2.12 (t, *J* = 12.0 Hz, 1H), 1.76 (d, *J* = 12.0 Hz, 1H), 1.61 (s, 3H), 1.35 – 1.02 (m, 5H), 0.83 – 0.77 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.9, 146.5, 134.7, 133.9, 129.9, 128.3, 87.5, 83.0, 39.5, 28.7, 26.0, 25.5, 25.4, 23.7, 21.7. HRMS (ESI): [C₁₇H₂₀BrNO₄S+H⁺] calcd. For 414.0369; found 414.0363.

(E)-3-benzoyl-4-(bromomethylene)oxazolidin-2-one (3l)

Follow the general procedure **2.1**, **3I** was obtained 39.3 mg (70%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 2H), 7.67 (t, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 8.0 Hz, 2H), 5.73 (s, 1H), 4.98 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 165.8, 153.7, 134.6, 134.3, 132.2, 130.9, 128.6, 83.7, 68.4. HRMS (ESI): [C₁₁H₈BrNO₃+Na⁺] calcd. For 303.9580; found 303.9571.

(E)-(4-(1-bromoethylidene)-2-thioxooxazolidin-3-yl)(phenyl)methanone (3m)

Follow the general procedure **2.1** or **2.2**, **3m** was obtained 48.5 mg (78%) or 42.2 mg (68%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.0 Hz, 2H), 7.57 (t, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 2H), 5.05 (s, 2H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.6, 176.8, 134.5, 133.4, 130.1, 128.6, 128.4, 108.5, 73.3, 26.7.

HRMS (ESI): $[C_{12}H_{10}BrNO_2S+Na^+]$ calcd. For 333.9508; found 333.9499.

(E)-3-benzoyl-4-(bromo(phenyl)methylene)oxazolidin-2-one (3n)

Follow the general procedure **2.1** or **2.2**, **3n** was obtained 48.5 mg (68%) or 42.8 mg (60%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.0 Hz, 2H), 7.38 (t, *J* = 8.0 Hz, 3H), 7.16 (s, 2H), 7.12 (s, 3H), 5.12 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.0, 154.1, 137.1, 134.1, 131.9, 130.0, 129.0, 128.6, 128.4, 128.1, 102.3, 69.6. HPMS (FSI): [C, H, PrNO +H[±]] aslad. For 358 0073: found 358 0064

(4E,4'E)-5,5'-(1,4-phenylene)bis(4-(bromomethylene)-3-tosyloxazolidin-2-one) (30)

Follow the general procedure **2.1**, **30** was obtained 105.9 mg (72%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.0 Hz, 4H), 7.42 (d, J = 8.0 Hz, 4H), 7.17 (s, 4H), 6.88 (s, 2H), 5.87 (s, 2H), 2.50 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 147.0, 135.4, 134.1, 133.6, 130.2, 128.4, 128.3, 90.2, 79.6, 21.8. HRMS (ESI): [C₂₈H₂₂Br₂N₂O₈S₂+Na⁺] calcd. For 758.9077; found 758.9052.

(E)-4-(1-iodoethylidene)-3-tosyloxazolidin-2-one (4b)

Follow the general procedure **2.1** or **2.2**, **4b** was obtained 43.2 mg (55%) or as 37.7 mg (48%) white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.0 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 4.64 (s, 2H), 2.70 (s, 3H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 146.2, 134.6, 130.0, 128.9, 128.4, 87.6, 74.3, 31.0, 21.7.

HRMS (ESI): [C₁₂H₁₂INO₄S+H⁺] calcd. For 393.9604; found 393.9601.

(E)-3-benzoyl-4-(iodo(phenyl)methylene)oxazolidin-2-one (4n)

Follow the general procedure **2.1** or **2.2**, **4n** was obtained 56.6 mg (70%) or 52.6 mg (65%) as white viscous oil with *n*-hexane/ethyl acetate (5/1) used as eluent.

¹H NMR (400 MHz, CDCl₃) δ 7.55 (t, *J* = 8.0 Hz, 3H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 16.0 Hz, 5H), 5.03 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 154.6, 140.0, 134.1, 132.3, 131.7, 129.9, 128.5, 128.4, 128.2, 75.0, 73.3.

HRMS (ESI): [C₁₇H₁₂INO₃+H⁺] calcd. For 405.9935; found 405.9921.

4 Spectra

20 /51

22 /51

24 /51

26 /51

27 /51

28 /51

30 /51

37 /51

100 90 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

42 /51

155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 f1 (ppm)

44 /51

5. Crystallographic spectrum for 3a

Table 1. Crystal data and structure refinement for	mo_dm16821_0m.		
Identification code	mo_dm16821_0m		
Empirical formula	C11 H10 Br N O4 S		
Formula weight	332.17		
Temperature	296.15 K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P 1 21/n 1		
Unit cell dimensions	a = 8.1512(10) Å	α= 90°.	
	b = 16.7902(19) Å	β= 97.105(2)°.	
	c = 9.2892(11) Å	$\gamma = 90^{\circ}$.	
Volume	1261.6(3) Å ³		
Z	4		
Density (calculated)	1.749 Mg/m ³		
Absorption coefficient	3.429 mm ⁻¹		
F(000)	664		
Crystal size	0.22 x 0.2 x 0.15 mm ³		
Theta range for data collection	2.426 to 30.616°.		
Index ranges	-11<=h<=10, -20<=k<=24, -12	<=1<=13	

Reflections collected 12685 Independent reflections 3898 [R(int) = 0.0311] Completeness to theta = 25.242° 100.0 % Absorption correction Semi-empirical from equivalents 0.7461 and 0.5063 Max. and min. transmission Refinement method Full-matrix least-squares on F² Data / restraints / parameters 3898 / 0 / 164 Goodness-of-fit on F² 1.044 Final R indices [I>2sigma(I)] R1 = 0.0426, wR2 = 0.0979R1 = 0.0719, wR2 = 0.1101R indices (all data) Extinction coefficient n/a Largest diff. peak and hole 0.443 and -1.175 e.Å-3

	Х	у	Z	U(eq)
Br(1)	8094(1)	2379(1)	6832(1)	55(1)
S(1)	2045(1)	3398(1)	6027(1)	41(1)
O(1)	2764(2)	4655(1)	3817(2)	55(1)
O(2)	5355(2)	4215(1)	3827(2)	48(1)
O(3)	704(2)	3510(1)	4912(2)	56(1)
O(4)	2333(3)	2641(1)	6694(2)	52(1)
N(1)	3789(2)	3590(1)	5270(2)	36(1)
C(1)	3858(3)	4204(1)	4254(3)	40(1)
C(2)	6424(3)	3628(2)	4606(3)	45(1)
C(3)	5369(3)	3239(1)	5618(2)	35(1)
C(4)	5862(3)	2700(2)	6621(3)	44(1)
C(5)	2031(3)	4130(2)	7354(3)	39(1)
C(6)	1118(3)	4822(2)	7063(3)	50(1)
C(7)	1139(4)	5396(2)	8111(3)	57(1)
C(8)	2043(4)	5305(2)	9460(3)	51(1)
C(9)	2939(5)	4602(2)	9741(3)	63(1)
C(10)	2942(4)	4016(2)	8700(3)	55(1)
C(11)	2069(5)	5944(2)	10601(4)	72(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for mo_dm16821_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

1.884(3)
1.422(2)
1.420(2)
1.693(2)
1.742(3)
1.203(3)
1.328(3)
1.448(3)
1.403(3)
1.417(3)
0.9700
0.9700
1.501(3)
1.325(3)
0.9300
1.388(4)
1.386(4)
0.9300
1.369(4)
0.9300
1.382(4)
1.395(4)
1.507(4)
0.9300
1.379(4)
0.9300
0.9600
0.9600
0.9600
106.34(11)
110.47(12)
120.52(13)
104.45(11)
109.73(12)
103.79(11)

Table 3. Bond lengths [Å] and angles [°] for mo_dm16821_0m.

C(1)-O(2)-C(2)	111.04(19)
C(1)-N(1)-S(1)	121.66(17)
C(1)-N(1)-C(3)	110.35(19)
C(3)-N(1)-S(1)	127.76(16)
O(1)-C(1)-O(2)	124.1(2)
O(1)-C(1)-N(1)	126.9(2)
O(2)-C(1)-N(1)	109.1(2)
O(2)-C(2)-H(2A)	110.8
O(2)-C(2)-H(2B)	110.8
O(2)-C(2)-C(3)	104.7(2)
H(2A)-C(2)-H(2B)	108.9
C(3)-C(2)-H(2A)	110.8
C(3)-C(2)-H(2B)	110.8
N(1)-C(3)-C(2)	104.52(19)
C(4)-C(3)-N(1)	129.2(2)
C(4)-C(3)-C(2)	126.2(2)
Br(1)-C(4)-H(4)	120.9
C(3)-C(4)-Br(1)	118.2(2)
C(3)-C(4)-H(4)	120.9
C(6)-C(5)-S(1)	120.2(2)
C(10)-C(5)-S(1)	119.4(2)
C(10)-C(5)-C(6)	120.4(2)
C(5)-C(6)-H(6)	120.3
C(7)-C(6)-C(5)	119.5(3)
C(7)-C(6)-H(6)	120.3
C(6)-C(7)-H(7)	119.2
C(6)-C(7)-C(8)	121.6(3)
C(8)-C(7)-H(7)	119.2
C(7)-C(8)-C(9)	118.2(3)
C(7)-C(8)-C(11)	121.2(3)
C(9)-C(8)-C(11)	120.6(3)
C(8)-C(9)-H(9)	119.4
C(10)-C(9)-C(8)	121.2(3)
C(10)-C(9)-H(9)	119.4
C(5)-C(10)-H(10)	120.4
C(9)-C(10)-C(5)	119.1(3)
C(9)-C(10)-H(10)	120.4
C(8)-C(11)-H(11A)	109.5

C(8)-C(11)-H(11B)	109.5
C(8)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for mo_dm16821_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(1)	54(1)	54(1)	56(1)	6(1)	4(1)	16(1)
S(1)	37(1)	47(1)	39(1)	-2(1)	10(1)	-4(1)
O(1)	56(1)	57(1)	53(1)	11(1)	2(1)	13(1)
O(2)	46(1)	52(1)	48(1)	14(1)	10(1)	-2(1)
O(3)	38(1)	80(1)	49(1)	-7(1)	1(1)	-5(1)
O(4)	53(1)	45(1)	63(1)	2(1)	21(1)	-9(1)
N(1)	35(1)	40(1)	34(1)	2(1)	8(1)	1(1)
C(1)	46(1)	38(1)	35(1)	0(1)	7(1)	-2(1)
C(2)	42(1)	46(1)	48(1)	6(1)	11(1)	2(1)
C(3)	38(1)	32(1)	34(1)	-4(1)	6(1)	-1(1)
C(4)	46(1)	45(1)	41(1)	5(1)	9(1)	0(1)
C(5)	40(1)	49(1)	32(1)	3(1)	12(1)	4(1)
C(6)	56(2)	57(2)	38(1)	6(1)	5(1)	13(1)
C(7)	73(2)	51(2)	48(2)	5(1)	14(1)	18(1)
C(8)	68(2)	47(2)	40(1)	-1(1)	18(1)	-3(1)
C(9)	88(2)	65(2)	35(1)	1(1)	-2(1)	7(2)
C(10)	72(2)	52(2)	39(1)	3(1)	2(1)	16(1)
C(11)	106(3)	56(2)	57(2)	-10(2)	23(2)	-6(2)

	Х	У	Z	U(eq)
H(2A)	7381	3881	5142	53
H(2B)	6798	3242	3942	53
H(4)	5125	2485	7205	52
H(6)	497	4894	6164	60
H(7)	529	5860	7909	68
H(9)	3546	4528	10646	76
H(10)	3547	3551	8899	66
H(11A)	2854	6348	10423	108
H(11B)	2381	5715	11542	108
H(11C)	990	6178	10566	108

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for mo_dm16821_0m.