Rational design, synthesis, and biological evaluation of Pan-Raf inhibitors to overcome resistance

Lu Wang ${ }^{a}$, Gaoyuan Zhu ${ }^{a}$, Qing Zhang ${ }^{b}$, Chunqi Duan, Yanmin Zhang ${ }^{a}$, Zhimin Zhang ${ }^{a}$, Yujun Zhou ${ }^{a}$, Tao Lu ${ }^{\text {a,c* }, ~ W e i f a n g ~ T a n g ~}{ }^{\text {a,* }}$
${ }^{\text {a }}$ School of Basic Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
${ }^{\mathrm{b}}$ School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
${ }^{\text {c }}$ State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China.

4. Experimental section

4.2. Enzymatic activity test against BRaf ${ }^{V 600 E}$

Activity of full length BRaf ${ }^{V 600 E}$ was determined using Hot-Spot ${ }^{\text {SM }}$ kinase assay which was performed by Reaction Biology Corp. (Malvern PA). 5 nM of human GST-tagged BRaf ${ }^{\mathrm{V} 600 \mathrm{E}}$ protein (AA416-766) (Invitrogen, Cat\# PV3894) was mixed with $20 \mu \mathrm{M}$ of the substrate His 6-Tagged Full-length Human MEK1(K97R) (Reaction Biology Corp.) in reaction buffer (20 mM Hepes $\mathrm{pH} 7.5,10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$, 1 mM EGTA, 0.02% Brij35, $0.02 \mathrm{mg} / \mathrm{mL}$ BSA, $0.1 \mathrm{mM} \mathrm{Na}_{3} \mathrm{VO}_{4}, 2 \mathrm{mM}$ DTT, 1% DMSO) at room temperature, the compounds dissolved in 100% DMSO at indicated doses (starting at $30 \mu \mathrm{M}$ with 3 -fold dilution) was delivered into the kinase reaction mixture by Acoustic technology (Echo550; nanoliter range), incubate for 20 min at room temperature. After $10 \mathrm{uM}{ }^{33} \mathrm{P}-\gamma$-ATP (specific activity $10 \mu \mathrm{Ci} / \mu \mathrm{L}$) (P-ERKin Elmer, NEG302H001 MC) was added to initiate the reaction, the reactions were carried out at $25^{\circ} \mathrm{C}$ for 120 min . The kinase activities were detected by filter-binding method. IC_{50} values and curve fits were obtained by Prism (GraphPad Software).

All Raf protomer inhibitory assay was in a manner same as BRaf ${ }^{V 600 E}$.

4.3. Antiproliferative activity against different cell lines

Cell planking: Vi-Cell XR cell counter was used to count living cells, which collected in exponential phases. After diluting to $3 \times 10^{3}-1.5 \times 10^{4}$ cells $/ \mathrm{mL}$ with the complete medium, $90 \mu \mathrm{~L}$ of cells suspension was added to each well of 96 -well culture plates and cultured in DMEM (Dulbecco minimum essential medium) or McCoy's $5 \mathrm{a} / 10 \%$ fetal bovine serum (Crown Bioscience Corporation) for 24 h , with 5% CO_{2} water saturated atmosphere at $37^{\circ} \mathrm{C}$.

Compound dispensation: Each selected compounds dissolved in DMSO as the 10 mM storage solution. Then with medium diluted to 10 times solution, each 2 holes (inhibition ratio) or 3 holes (IC_{50} value). The final drug concentration (inhibition ratio) or initial drug concentration was $10 \mu \mathrm{M}$. The compound dispensation, which volume was $10 \mu \mathrm{~L}$, was futher incubated at $37^{\circ} \mathrm{C}$ for another 72 h in a humidified atmosphere with $5 \% \mathrm{CO}_{2}$.

Plate detection: $50 \mu \mathrm{~L}$ CTG solution, melt in advance and balance to room temperature, was added to each hole. According to the operating instructions of CTG, oscillators with microporous plate blend 2 minutes. At room temperature for 10 min , Envision2104 was used to measure the luminescence signal values.

Data processing: inhibition ratio $=1-\mathrm{V}_{\text {sample }} / \mathrm{V}_{\text {vehicle control }} \times 100 \%$. $\mathrm{V}_{\text {sample }}$ for drug treatment group, $\mathrm{V}_{\text {vehicle control }}$ for solvent control group. Using GraphPad Prism 5.0 software and nonlinear regression model S type dose draw survival rate curve and calculate the IC_{50} value.

4.4. P-ERK cellular assay in A375 and SK-Mel-2 cells

4.4.1. Recovery, culture and passage of cells

A375 and SK-MEL-2 human melanoma cell line were both obtained from American Type Culture Collection (Manassas, VA). Removed melanoma cells cryopreserved tube from liquid nitrogen tank, shaking in $37^{\circ} \mathrm{C}$ water bath to make it melt quickly. The centrifugal tube was added cell suspension in super-clean bench, 5 mL EMEM medium was added. Centrifugalized the mixture 5 min with 1000 rpm , discarded supernatant, joined 2 mL EMEM (Eagle's minimal essential medium) supplemented with 10% serum to suspense cells, vaccinating it in culture bottle. Put culture bottle in incubator with $37^{\circ} \mathrm{C}$, saturated humidity, $5 \% \mathrm{CO}_{2}$. The next day,
discarded the original medium, added 6 mL fresh medium to remove dead cells. Passage when cell numbers around 90%. Discarded supernatant, washed twice with PBS (phosphate buffered saline), added $2 \mathrm{~mL} 0.25 \%$ pancreatic enzyme to digest $2-$ 3 min . When cells becoming round under microscope, discarded pancreatic enzyme, added 2 mL EMEM medium to terminate digestion. Making the adherent cells blow down to a single suspension cells with a pipette gently. According to the speed of cell growth, culture the cell from one to three or four.

4.4.2 Plating cells and dosing

When the melanoma cells A375 and SK-Mel-2 in the logarithmic phase, vaccinating $3-5 \times 10^{5}$ cells in 96 cell plate with EMEM medium supplemented with 10% heat-inactivated FBS (fetal bovine serum), culturing cells in incubator with $37^{\circ} \mathrm{C}$, saturated humidity, $5 \% \mathrm{CO}_{2}$. When cell confluence reached $80-90 \%$, discarding medium, diluting drugs with culture medium into $0.4 \mu \mathrm{M}, 0.2 \mu \mathrm{M}, 0.1 \mu \mathrm{M}, 0.05 \mu \mathrm{M}$, $0.025 \mu \mathrm{M}$, dosing drugs in 96 cell plate , using DMSO as negative control.

4.4.3 Protein sample preparation

The cells were treated with compounds or DMSO for 24 h . After treatment, digestion cells with $500 \mu \mathrm{~L} 0.25 \%$ trypsin, then adding $500 \mu \mathrm{~L}$ medium to terminate digestion. Blowed cells evenly, centrifugalized the mixture 5 min with 3000 rpm , discarded supernatant, put centrifugal tube on the ice, added suitable amount of protein lysis solution RIPA (Radio-immunoprecipitation assay), protease inhibitor PMSF (Phenylmethanesulfonyl fluoride) (1 mL RIPA/ $10 \mu \mathrm{~L}$ PMSF) and phosphatase inhibitors (1 mL RIPA/ $10 \mu \mathrm{~L}$ phosphatase inhibitors), blowed cells evenly, $4^{\circ} \mathrm{C}$ for 30 min , make cells lysate, every 5 min vortex once. Centrifugalizing the lysate 15 min with 12000 rpm in $4^{\circ} \mathrm{C}$, gathering supernatant, using the BCA protein assay kit to determine the total protein concentration. Adding $1 / 4$ volume $5 \times$ SDS-PAGE loading buffer, boiling water bath for 10 min to make protein denaturation. The specific signals of bands of interest were quantified by Gel-Pro Analyzer.

4.4.4 Western blot detection

Use $30 \mu \mathrm{~g}$ protein samples in 12% SDS-PAGE (polyacrylamide gel electrophoresis) electrophoresis. Transfer protein from running gel to PVDF (Poly vinylidene fluoride)
membrane with wet transfer method, steady flow 200 mA , according to the $1 \mathrm{kDa} / \mathrm{min}$ transfer velocity, according to the interest protein molecular weight to determine the transfer membrane time. Using 10\% non-fat milk blocked PVDF membrane for 1.5 h in $37^{\circ} \mathrm{C}$. Using 5% BSA diluted primary anti-phospho-ERK $1 / 2$ antibody, $4^{\circ} \mathrm{C}$ incubation overnight. $1 \times$ TBST washed the membrane three times, each time 10 min . Using 5\% non-fat milk diluted secondary anti-phospho-ERK1/2 antibody with HRP tag, room temperature incubation 1 h . $1 \times$ TBST washed the membrane three times, each time 10 min . Droping appropriate amount ECL luminous on membrane, using Tanon5200 automatic chemiluminescence image analysis system to exposure.

4.5. Solubility Determination

The test substance is dissolved in the solvent system at $37^{\circ} \mathrm{C}$. HPLC determination of the concentration of the solute in the solution, which must not contain any undissolved particles, is used to quantify the solubility. Composition of standard buffer solutions: Phosphate buffer pH 7.4 : 50 mL of 0.2 M monobasic potassium phosphate solution were placed in a 200 mL volumetric flask, 39.1 mL of 0.2 M sodium hydroxide solution was added followed by water to the appropriate volume. Preparation of the standard solution: The test substance (generally 1 mg) was placed into an amber-glass volumetric flask and dissolved completely in a solution of acetonitrile/methanol (1:1, V/V). The target concentration is between 0.1 and 0.2 $\mathrm{mg} / \mathrm{mL}$. The standard solution and test sample (see below) use the same test substance. Preparation of the test sample: The test sample (generally 2-3 mg) was placed into a UniPrep syringeless filter ($5 \mathrm{~mL} ; 0.45 \mu \mathrm{M}$), 2 mL of solvent (generally 50 mM phosphate buffer at pH 7.4) were added and the sample agitated for 24 h at $37^{\circ} \mathrm{C}$. After 24 h , the suspension was filtered and the concentration of dissolved substance determined by HPLC (see Chromatographic Conditions). If the substance has completely dissolved, the result is stated as $>\mathrm{x} \mu \mathrm{g} / \mathrm{mL}$, calculated from the sample weight taken and the volume of solvent used.

Chromatographic Conditions: Solvent system: Eluent A: Ultrapure water/formic acid for analysis (999:1, V/V); Eluent B: Acetonitrile/formic acid for analysis (999:1, V/V). Equipment settings: Wavelength range of 190-400 nm, column: Chromolith 18e
$100 * 3 \mathrm{~mm}$, temperature: $37^{\circ} \mathrm{C}$, Gradient program as follows:

Time (Min)	Eluent $(\%)$	Eluent B (\%)	Flow (mL/min)
0	90	10	0.85
0.6	90	10	0.85
4	10	90	0.85
5.5	10	90	0.85
5.51	90	10	2.50
8	90	10	2.50

Quantitative determination: The result is determined quantitatively based the external standard method through integration of the peak areas with reference to figures obtained for the standard substance.

Calculation:

$$
\mathrm{L}(\mu \mathrm{~g} / \mathrm{mL})=[\mathrm{a}(\mathrm{~A}) * \mathrm{c}(\mathrm{~S}) * \mathrm{~F}(\mathrm{~A})] / \mathrm{a}(\mathrm{~S}) * \mathrm{~F}(\mathrm{~S})
$$

$\mathrm{a}(\mathrm{A})=$ peak area for analyte $/ \mathrm{mL} ; \mathrm{a}(\mathrm{S})=$ peak area for standard $/ \mathrm{mL} ; \mathrm{c}(\mathrm{S})=$ concentration of standard $(\mu \mathrm{g} / \mathrm{mL}) ; \mathrm{F}(\mathrm{A})=$ dilution factor for analyte; $\mathrm{F}(\mathrm{S})=$ dilution factor for standard.
4.6. The in vivo pharmacokinetic study of $\mathbf{Y - 1}$ and $\mathbf{I}-\mathbf{1 5}$ in rats

Every compound: 6 male SD rats. The body weight of them is $180-220$ g. Fasted 24 h , divided into two groups randomly (each group is 3). The first group of SD rats by $10 \mathrm{mg} / \mathrm{kg}$ dose lavage to give compound suspension, and the second group of SD rats by $2.5 \mathrm{mg} / \mathrm{kg}$ dose intravenous to give compound solution. Take blank blood before giving medicine, take venous blood about $150 \mu \mathrm{~L}$ at different time points after the treatment of compounds in eppendorf tube with heparin, centrifuged, took plasma about $50 \mu \mathrm{~L},-20^{\circ} \mathrm{C}$ saved for testing.

The point time of blood collection:
intravenous injection: $5 \mathrm{~min}, 15 \mathrm{~min}, 30 \mathrm{~min}, 45 \mathrm{~min}, 60 \mathrm{~min}, 2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}, 12 \mathrm{~h}, 24 \mathrm{~h}$. oral administration: $5 \mathrm{~min}, 15 \mathrm{~min}, 30 \mathrm{~min}, 1 \mathrm{~h}, 1.5 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}, 12 \mathrm{~h}, 24 \mathrm{~h}$.

Dispensing method:
Injection solution: 15 mg compounds, DMA (dimethylamine, proper quantities), 7.5 mL propylene glycol, diluted with 10% glucose injection to achieve the $2 \mathrm{mg} / \mathrm{mL}$ solution of compounds.

Suspension: 15 mg compounds, 0.5% methyl cellulose (proper quantities), grinded evenly in mortar to achieve the $2 \mathrm{mg} / \mathrm{mL}$ solution of compounds.

Processing and determination of the $50 \mu \mathrm{~L}$ plasma samples: $50 \mu \mathrm{~L}$ plasma samples in Eppendorf tude, $50 \mu \mathrm{~L}$ acetonitrile and $100 \mu \mathrm{~L}$ acetonitrile solution with internal standard vortex blending. Centrifuged 10 min with 16000 rpm , took supernatant on LC-MS/MS determination.

The calculation method of pharmacokinetic parameters: The blood drug concentration-time data to the DAS 2.1.1 program using the statistical method to calculate pharmacokinetic parameters. Cmax and Tmax are measured, C-t curve established late phase elimination rate constant k for $\operatorname{LnC}-t$ linear regression, $\mathrm{AUC}_{0-\mathrm{t}}$ value calculation method for the trapezoidal area, 0 -up time of the area under the curve $\mathrm{AUC}=\mathrm{AUC}_{0-\mathrm{t}}+\mathrm{C}_{\mathrm{t}} / \mathrm{k} . \mathrm{C}_{\mathrm{t}}$ is the last blood drug concentration, K is the blood drug concentration late phase elimination rate constant.

The calculation method of absolute bioavailability:

$$
\mathrm{F}(\%)=\left(\mathrm{AUC}_{\mathrm{ev}} \times \mathrm{D}_{\mathrm{iv}}\right) /\left(\mathrm{AUC}_{\mathrm{iv}} \times \mathrm{D}_{\mathrm{ev}}\right) \times 100 \%
$$

4.7. Chemistry synthesis

All starting materials were obtained from commercial suppliers and used without further purification. NMR spectrum recorded, on a BrukerDPX-300 spectrometer, in DMSO- d_{6} using TMS as the internal standard. Chemical shifts (d) were reported in parts per million downfield from the internal standard. The signals were quoted as s (singlet), d (doublet), t (triplet), m (multiplet). Analytical thin-layer chromatography (TLC) was performed with silica gel 60 F254, 0.25 mm per-coated TLC plates. TLC plates were visualized using UV254. Column chromatography was conducted on silica gel (200-300 mesh). Mass spectra were obtained on a Waters Quattro Micromass instrument using electrospray ionization (ESI) technique.
Diethyl 2-(2-chloropyrimidin-4-yl) malonate (I-a)
To a solution of diethyl malonate ($16.5 \mathrm{~g}, 99 \mathrm{mM}$) in THF (300 mL) was added sodium hydride $(60 \%, 8.0 \mathrm{~g}, 198 \mathrm{mM})$ successively. The mixture stirred at $0^{\circ} \mathrm{C}$ for 0.5 h , followed by addition of the required 2, 4-dichloropyrimidine $(9.8 \mathrm{~g}, 66 \mathrm{mM})$ and heating to reflux for another 2.5 h . After cooling the reaction, the mixture was diluted in 300 mL saturated ammonium chloride solution, the aqueous layer was extracted
with EtOAc ($500 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine (300 $\mathrm{mL} \times 3$), dried over anhydrous MgSO_{4}. The mixture was evaporated in vacuo and purified by silica gel column chromatography to obtain I-a as oil. ESI-MS m/z: 149.0 $[\mathrm{M}+\mathrm{H}]^{+}$.
Ethyl 2-(2-chloropyrimidin-4-yl) acetate (I-b)
I-a $(8.2 \mathrm{~g}, 30 \mathrm{mM})$ and sodium ethoxide $(0.7 \mathrm{~g}, 3 \mathrm{mM})$ in ethanol $(100 \mathrm{~mL})$ were heated to reflux for 2.5 h . After cooling the reaction, $\mathrm{HCl}(1 \mathrm{M})$ was added to adjust pH to 7. The mixture was evaporated in vacuo and purified by silica gel column chromatography to get I-b as oil. ESI-MS m/z: $201.0[\mathrm{M}+\mathrm{H}]^{+}$.
General procedure for the preparation of important intermediate I-c-1~I-c-3
Ethyl 1-(2-chloropyrimidin-4-yl) cyclopropane-1-carboxylate (I-c-1)
The mixture of I-b ($5.0 \mathrm{~g}, 25 \mathrm{mM}$), sodium hydroxide ($2.0 \mathrm{~g}, 50 \mathrm{mM}$) and 1, 2dibromoethane ($15.9 \mathrm{~g}, 100 \mathrm{mM}$) were stirred at room temperature in DMF (150 mL) for 5 h . The mixture was diluted in 150 mL water, the aqueous layer was extracted with ethyl acetate $(250 \mathrm{~mL} \times 3)$. The combined organic phase were evaporated in vacuo and purified by silica gel column chromatography to get $\mathbf{I}-\mathbf{c}-\mathbf{1}$ as oil. ESI-MS $\mathrm{m} / \mathrm{z}: 227.1[\mathrm{M}+\mathrm{H}]^{+}$.
Ethyl 2-(2-chloropyrimidin-4-yl)-2-methylpropanoate (I-c-2)
I-c-2 ($2.1 \mathrm{~g}, 94.3 \%$) was prepared from I-b $(2.1 \mathrm{~g}, 10.3 \mathrm{mM})$, sodium hydroxide $(0.8 \mathrm{~g}, 20.6 \mathrm{mM})$ and iodomethane $(5.9 \mathrm{~g}, 41.3 \mathrm{mM})$, in a manner similar to $\mathbf{I}-\mathbf{c - 1}$. ESI-MS m/z: $229.1[\mathrm{M}+\mathrm{H}]^{+}$.

Ethyl 1-(2-chloropyrimidin-4-yl) cyclopentane-1-carboxylate (I-c-3)
I-c-3 ($2.4 \mathrm{~g}, 90.2 \%$) was prepared from $\mathbf{I}-\mathbf{b}(2.1 \mathrm{~g}, 10.3 \mathrm{mM})$, sodium hydroxide $(0.8 \mathrm{~g}, 20.6 \mathrm{mM})$ and 1,4-dibromobutane $(8.9 \mathrm{~g}, 41.3 \mathrm{mM})$, in a manner similar to $\mathbf{I - c}-$ 2. ESI-MS m/z: $255.1[\mathrm{M}+\mathrm{H}]^{+}$.

N-(4-chloro-3-(trifluoromethyl)phenyl)-3-(1-(2-chloropyrimidin-4-yl)cyclopropane-1-carboxamido)-4-methylbenzamide (I-d-1)

The mixture of I-c-1 $(0.45 \mathrm{~g}, 2 \mathrm{mM})$ and the intermediate $\mathbf{A 1}(0.66 \mathrm{~g}, 2 \mathrm{mM})$ in anhydrous toluene $(10 \mathrm{~mL})$ were degassed for 10 min and with nitrogen gas refilled. To the stirred reaction mixture was added a solution of $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}(2 \mathrm{M}$ solution in toluene, 3.0 mL) dropwise via syringe over 5 min at $0^{\circ} \mathrm{C}$. The resulting suspension was stirred for 0.5 h , then heated to $80^{\circ} \mathrm{C}$ and stirred until all solid was dissolved.

Reaction mixture was further stirred for $4-6 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$ until TLC analysis showed the complete consumption of $\mathbf{A 1}$, quenched with $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(10 \mathrm{~mL})$. The mixture was evaporated in vacuo and purified by silica gel column chromatography to get I-d-1 $(0.88 \mathrm{~g}, 86.5 \%)$ as a yellow solid. ESI-MS $m / z: 509.1[\mathrm{M}+\mathrm{H}]^{+}$.

4-chloro-N-(3-(1-(2-chloropyrimidin-4-yl)cyclopropane-1-carboxamido)-4-methylphenyl)-3-(trifl-uoromethyl)benzamide (I-d-2)

I-d-2 $(0.90 \mathrm{~g}, 88.6 \%)$ was prepared from $\mathbf{I - c}-\mathbf{1}(0.45 \mathrm{~g}, 2 \mathrm{mM})$ and the intermediate A2 $(0.66 \mathrm{~g}, 2 \mathrm{mM})$ as a yellow solid, in a manner same as I-d-1. ESI-MS $m / z: 509.1$ $[\mathrm{M}+\mathrm{H}]^{+}$.

N-(5-(3-(4-chloro-3-(trifluoromethyl)phenyl)ureido)-2-methylphenyl)-1-(2-
chloropyrimidin-4-yl)cyclopropane-1-carboxamide (I-d-3)
$\mathbf{I}-\mathbf{d}-\mathbf{3}(0.85 \mathrm{~g}, 81.3 \%)$ was prepared from $\mathbf{I}-\mathbf{c - 1}(0.45 \mathrm{~g}, 2 \mathrm{mM})$ and the intermediate A3 $(0.69 \mathrm{~g}, 2 \mathrm{mM})$ as a yellow solid, in a manner same as I-d-1. ESI-MS $m / z: 524.1$ $[\mathrm{M}+\mathrm{H}]^{+}$.

N-(4-chloro-3-(trifluoromethyl)phenyl)-3-(2-(2-chloropyrimidin-4-yl)-2-methylpropanamido)-4-methylbenzamide (I-d-4)

I-d-4 ($0.91 \mathrm{~g}, 89.1 \%$) was prepared from I-c-2 $(0.46 \mathrm{~g}, 2 \mathrm{mM})$ and the intermediate A1 $(0.66 \mathrm{~g}, 2 \mathrm{mM})$ as a yellow solid, in a manner same as I-d-1. ESI-MS $m / z: 511.1$ $[\mathrm{M}+\mathrm{H}]^{+}$.

N-(4-chloro-3-(trifluoromethyl)phenyl)-3-(1-(2-chloropyrimidin-4-yl)cyclopentane-1-carboxamido)-4-methylbenzamide (I-d-5)

I-d-5 ($0.98 \mathrm{~g}, 91.4 \%$) was prepared from $\mathbf{I - c}-\mathbf{3}(0.51 \mathrm{~g}, 2 \mathrm{mM})$ and the intermediate A1 $(0.66 \mathrm{~g}, 2 \mathrm{mM})$ as a yellow solid, in a manner same as I-d-1. ESI-MS m / z : 537.1 $[\mathrm{M}+\mathrm{H}]^{+}$.

3-(1-(2-chloropyrimidin-4-yl)cyclopropane-1-carboxamido)-4-methyl-N-(4-morpholino-3-(trifluoromethyl) phenyl) benzamide (I-d-6)

I-d-6 ($0.94 \mathrm{~g}, 83.7 \%$) was prepared from I-c-1 $(0.45 \mathrm{~g}, 2 \mathrm{mM})$ and the intermediate $\mathbf{A 4}(0.76 \mathrm{~g}, 2 \mathrm{mM})$ as a yellow solid, in a manner same as I-d-1. ESI-MS $m / z: 560.2$ $[\mathrm{M}+\mathrm{H}]^{+}$.

3-(1-(2-chloropyrimidin-4-yl)cyclopropane-1-carboxamido)-4-methyl-N-(4-(4-
methylpiperazin-1-yl)-3-(trifluoromethyl) phenyl) benzamide (I-d-7)
I-d-7 ($0.90 \mathrm{~g}, 78.4 \%$) was prepared from $\mathbf{I - c}-\mathbf{1}(0.45 \mathrm{~g}, 2 \mathrm{mM})$ and the intermediate A5 $(0.78 \mathrm{~g}, 2 \mathrm{mM})$ as a yellow solid, in a manner same as I-d-1. ESI-MS m / z : 573.2 $[\mathrm{M}+\mathrm{H}]^{+}$.

3-(1-(2-chloropyrimidin-4-yl)cyclopropane-1-carboxamido)-4-methyl-N-(4-(morpholinomethyl)-3-(trifluoromethyl) phenyl) benzamide (I-d-8)

I-d-8 $(0.95 \mathrm{~g}, 82.7 \%)$ was prepared from I-c-1 $(0.45 \mathrm{~g}, 2 \mathrm{mM})$ and the intermediate $\mathbf{A 6}(0.79 \mathrm{~g}, 2 \mathrm{mM})$ as a yellow solid, in a manner same as I-d-1. ESI-MS $m / z: 574.2$ $[\mathrm{M}+\mathrm{H}]^{+}$.

3-(1-(2-chloropyrimidin-4-yl)cyclopropane-1-carboxamido)-4-methyl-N-(4-(morpholinomethyl)phenyl)benzamide (I-d-9)

I-d-9 $(0.88 \mathrm{~g}, 87.1 \%)$ was prepared from $\mathbf{I - c - 1}(0.45 \mathrm{~g}, 2 \mathrm{mM})$ and the intermediate A7 $(0.65 \mathrm{~g}, 2 \mathrm{mM})$ as a yellow solid, in a manner same as I-d-1. ESI-MS $m / z: 506.2$ $[\mathrm{M}+\mathrm{H}]^{+}$.

3-(1-(2-chloropyrimidin-4-yl)cyclopropane-1-carboxamido)-4-methyl-N-(4-((1-methylpiperidin-4-yl)oxy)-3-(trifluoromethyl)phenyl)benzamide (I-d-10)

I-d-10 ($0.89 \mathrm{~g}, 75.6 \%$) was prepared from I-c-1 $(0.45 \mathrm{~g}, 2 \mathrm{mM})$ and the intermediate $\mathbf{A 8}(0.81 \mathrm{~g}, 2 \mathrm{mM})$ as a yellow solid, in a manner same as I-d-1. ESI-MS $m / z: 588.2[\mathrm{M}+\mathrm{H}]^{+}$.

3-(1-(2-chloropyrimidin-4-yl)cyclopropane-1-carboxamido)-4-methyl-N-(4-((1-methylpiperidin-4-yl)methoxy)-3-(trifluoromethyl)phenyl)benzamide (I-d-11)

I-d-11 ($0.85 \mathrm{~g}, 70.8 \%$) was prepared from I-c-1 $(0.45 \mathrm{~g}, 2 \mathrm{mM})$ and the intermediate $\mathbf{A 9}(0.84 \mathrm{~g}, 2 \mathrm{mM})$ as a yellow solid, in a manner same as I-d-1. ESI-MS $m / z: 588.2[\mathrm{M}+\mathrm{H}]^{+}$.

3-(1-(2-chloropyrimidin-4-yl)cyclopropane-1-carboxamido)-4-methyl-N-(4-(3-morpholinopropox-y)-3-(trifluoromethyl)phenyl)benzamide (I-d-12)

I-d-12 ($1.10 \mathrm{~g}, 87.2 \%$) was prepared from I-c-1 $(0.45 \mathrm{~g}, 2 \mathrm{mM})$ and the intermediate $\mathbf{A 1 0}(0.87 \mathrm{~g}, 2 \mathrm{mM})$ as a yellow solid, in a manner same as I-d-1. ESIMS: $m / z: 618.2[\mathrm{M}+\mathrm{H}]^{+}$.

N-(4-chloro-3-(trifluoromethyl)phenyl)-4-methyl-3-(1-(2-(methylamino)pyrimidin-4-yl)cycloprop-ane-1-carboxamido)benzamide ($\mathbf{(- 0 1)}$

The mixture of $\mathbf{I}-\mathbf{d}-\mathbf{1}(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and methylamine ($33 \%, 0.7 \mathrm{~mL}, 5 \mathrm{mM}$) were stirred at room temperature for 2 h . The mixture was evaporated in vacuo and purified by silica gel column chromatography to get $\mathbf{I}-\mathbf{0 1}(0.46 \mathrm{~g}, 91.2 \%)$ as a white solid. mp : $235-236^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 1.40-1.41$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$-cyclopropyl), 1.56-1.57 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$-cyclopropyl), $2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.81\left(3 \mathrm{H}, \mathrm{d}, \mathrm{NHCH}_{3}, J=\right.$ $4.6 \mathrm{~Hz})$, , $6.56-6.57(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.22-7.23(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.41(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.0$ $\mathrm{Hz}), 7.71-7.77(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.07-8.08(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=2.0 \mathrm{~Hz}$, $J=8.8 \mathrm{~Hz}), 8.24(1 \mathrm{H}, \mathrm{d}$, pyrimidine- $\mathrm{H}, ~ J=4.6 \mathrm{~Hz}), 8.36(1 \mathrm{H}, \mathrm{d}$, pyrimidine- $\mathrm{H}, J=$ $2.0 \mathrm{~Hz}), 10.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.79(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO) δ 169.01, 165.40, 162.00, 158.45, 140.16, 138.68, 136.66, 131.94, 130.25, 124.89, 124.62, 124.41, 118.93, 118.90, 106.30, 106.14, 95.18, 27.76, 17.97. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ClF}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 504.1336$; found, 504.1406.

4-chloro-N-(4-methyl-3-(1-(2-(methylamino)pyrimidin-4-yl)cyclopropane-1-carboxamido)phenyl)-3-(trifluoromethyl)benzamide (I-02)

I-02 $(0.45 \mathrm{~g}, 89.7 \%)$ was prepared from $\mathbf{I}-\mathbf{d}-\mathbf{2}(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and methylamine ($33 \%, 0.7 \mathrm{~mL}, 5 \mathrm{mM}$), in a manner same as I-01. mp: $215-217^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): $\delta 1.39-1.40\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$-cyclopropyl), $1.52-1.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ cyclopropyl), $2.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.81\left(3 \mathrm{H}, \mathrm{d}, \mathrm{NHCH}_{3}, J=4.9 \mathrm{~Hz}\right), 6.54(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}$, $J=4.9 \mathrm{~Hz}), 7.19-7.22(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=2.0 \mathrm{~Hz}, J=8.2 \mathrm{~Hz})$, 7.90-7.93 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.23-8.28 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $8.40(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}, J=1.5 \mathrm{~Hz}$), 10.49 (1H, s, NHCO). ${ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO) δ 168.70, 168.59, 162.81, 161.93, 158.40, 136.57, 136.46, 134.01, 133.81, 133.30, 131.81, 130.04, 127.01, 126.94, 124.44, 120.85, 117.49, 117.24, 105.86, 27.87, 17.59, 17.33. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{ClF}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 504.1336$; found, 504.1410 . N-(5-(3-(4-chloro-3-(trifluoromethyl)phenyl)ureido)-2-methylphenyl)-1-(2-(methylamino)pyrimidin-4-yl)cyclopropane-1-carboxamide (I-03)

I-03 $(0.45 \mathrm{~g}, 85.8 \%)$ was prepared from $\mathbf{I}-\mathbf{d}-\mathbf{3}(0.52 \mathrm{~g}, 1 \mathrm{mM})$ and methylamine $(33 \%, 0.7 \mathrm{~mL}, 5 \mathrm{mM})$, in a manner same as I-01. mp: $94-96^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$,

DMSO- d_{6}): δ 1.38-1.39 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$-cyclopropyl), $1.54-1.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{-}\right.$ cyclopropyl), $2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.83\left(3 \mathrm{H}, \mathrm{d}, \mathrm{NHCH}_{3}, J=4.9 \mathrm{~Hz}\right), 6.53(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}$, $J=4.9 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.3 \mathrm{~Hz}), 7.19(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=4.7 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{ArH}, J=2.0 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}), 7.61-7.63(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.65-7.68(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.13$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=1.6 \mathrm{~Hz}), 8.24(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=4.7 \mathrm{~Hz}), 8.94(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCONH}), 9.21$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCONH}$). ${ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO) δ 172.56, 168.64, 163.28, 158.42, $157.54,152.22,139.35,137.11,136.69,131.82$, 130.11, 124.61, 122.88, 122.16, 120.98, 116.67, 115.12, 114.34, 106.36, 48.27, 27.05, 25.18, 16.94. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ClF}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 519.1445$; found, 519.1508.

N-(4-chloro-3-(trifluoromethyl)phenyl)-4-methyl-3-(2-methyl-2-(2-(methylamino) pyrimidin-4-yl)propanamido)benzamide ($\mathbf{I} \mathbf{- 0 4}$)

I-04 ($0.45 \mathrm{~g}, 89.4 \%$) was prepared from $\mathbf{I}-\mathbf{d}-\mathbf{4}(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and methylamine $(33 \%, 0.7 \mathrm{~mL}, 5 \mathrm{mM})$, in a manner same as I-01. mp: $178-181^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): $\delta 1.55\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.83\left(3 \mathrm{H}, \mathrm{d}, \mathrm{NHCH}_{3}, J=\right.$ $4.7 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}, J=5.2 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{q}, \mathrm{ArH}, J=4.7 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}$, $J=8.4 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=2.1 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=1.6 \mathrm{~Hz})$, 7.92 ($1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.4 \mathrm{~Hz}$), 8.26 ($2 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=1.6 \mathrm{~Hz}, J=8.2 \mathrm{~Hz}$), $8.40(1 \mathrm{H}, \mathrm{d}$, $\mathrm{NH}, J=1.6 \mathrm{~Hz}), 8.98(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.49(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR (300 MHz , DMSO) δ 172.81, 172.67, 162.80, 162.34, 158.43, 136.49, 136.45, 134.03, 133.79, $133.33,131.87,129.98,128.39,127.01,124.42,117.99,117.67,106.14,49.03,27.79$, 25.19, 17.02. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClF}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 506.1492; found, 506.1564 .

N -(4-chloro-3-(trifluoromethyl)phenyl)-4-methyl-3-(1-(2-(methylamino)pyrimidin-4-yl)cyclopent-ane-1-carboxamido)benzamide (I-05)

I-05 $(0.47 \mathrm{~g}, 88.7 \%)$ was prepared from $\mathbf{I}-\mathbf{d}-5(0.54 \mathrm{~g}, 1 \mathrm{mM})$ and methylamine ($33 \%, 0.7 \mathrm{~mL}, 5 \mathrm{mM}$), in a manner same as I-01. mp: $215-217^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): $\delta 1.67-1.69$ (4H, m, H-cyclopentyl), $2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{CH}_{3}\right)$, 2.172.21 (2H, t, H-cyclopentyl), 2.38-2.45 (2H, t, H-cyclopentyl), 2.84 ($3 \mathrm{H}, \mathrm{d}, \mathrm{NHCH}_{3}, J$ $=4.6 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}, J=5.1 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{q}, \mathrm{ArH}, J=4.4 \mathrm{~Hz}), 7.17(1 \mathrm{H}, \mathrm{d}$, $\mathrm{ArH}, J=8.4 \mathrm{~Hz}), 7.58(1 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=2.1 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}), 7.71(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=$
$2.0 \mathrm{~Hz}), 7.91(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.4 \mathrm{~Hz}), 8.24-8.30(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.40(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, $8.94(1 \mathrm{H}, \mathrm{s}, \mathrm{CONH}), 10.48(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 171.77$, $171.55,162.80,162.44,158.29,136.56,136.44,134.02,133.79,133.31,131.83$, $129.99,127.93,127.01,126.37,124.44,120.82,117.58,106.68,61.67,35.07,27.78$, 24.00, 16.92. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClF}_{3} \mathrm{~N}_{5} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 532.1649; found, 532.1731 .

N-(4-chloro-3-(trifluoromethyl)phenyl)-3-(1-(2-((2-hydroxyethyl)amino)pyrimidin-4-yl)cyclopropane-1-carboxamido)-4-methylbenzamide (I-06)

I-d-1 ($0.51 \mathrm{~g}, 1 \mathrm{mM}$), 2-aminoethan-1-ol ($0.31 \mathrm{~g}, 5 \mathrm{mM}$) and $\mathrm{N}, \mathrm{N}-$ diisopropylethylamine $(0.65 \mathrm{~g}, 5 \mathrm{mM})$ in ethanol were heated to reflux for 5 h . The mixture was evaporated in vacuo and purified by silica gel column chromatography to get $\mathbf{I}-06(0.47 \mathrm{~g}, 87.3 \%)$ as a white solid. $\mathrm{mp}: 224-225^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO- d_{6}): δ 1.34-1.41 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$-cyclopropyl), $1.47-1.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ cyclopropyl), $2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 3.34-3.39\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 3.48-3.54 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), $4.68(1 \mathrm{H}, \mathrm{t}, \mathrm{OH}, J=5.4 \mathrm{~Hz}), 6.55-6.56(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.21-7.23(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.41$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.0 \mathrm{~Hz}), 7.74(2 \mathrm{H}, \mathrm{t}, \mathrm{ArH}, J=9.3 \mathrm{~Hz}), 8.04-8.07(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.14$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=1.8 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}), 8.23(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=5.0 \mathrm{~Hz}), 8.36(1 \mathrm{H}, \mathrm{d}$, $\mathrm{ArH}, J=2.0 \mathrm{~Hz}), 10.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.80(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR $(300 \mathrm{MHz}$, DMSO) $\delta \quad 168.98,165.49,164.33,161.23,158.40,143.09,138.68,136.51,131.92$, 130.34, 124.90, 124.56, 124.17, 118.98, 115.36, 113.77, 106.39, 59.71, 43.38, 17.88. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{ClF}_{3} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 534.1442$; found, 534.1510. N-(4-chloro-3-(trifluoromethyl)phenyl)-3-(1-(2-((2-methoxyethyl)amino)pyrimidin-4-yl)cyclopropane-1-carboxamido)-4-methylbenzamide (I-07)

I-07 $(0.48 \mathrm{~g}, 88.2 \%)$ was prepared from $\mathbf{I}-\mathbf{d}-\mathbf{1}(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and 2-methoxyethan1 -amine ($0.38 \mathrm{~g}, 5 \mathrm{mM}$), in a manner same as I-06. mp: 203-204 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ MHz, DMSO- d_{6}): $\delta 1.40-1.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$-cyclopropyl), $1.56-1.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ cyclopropyl), $2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 3.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.35-3.44(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 6.56-6.57(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.35(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=5.6 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{d}$, $\mathrm{ArH}, J=8.1 \mathrm{~Hz}), 7.74(2 \mathrm{H}, \mathrm{t}, \mathrm{ArH}, J=9.1 \mathrm{~Hz}), 8.08(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}$, $J=2.2 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}), 8.23(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=4.9 \mathrm{~Hz}), 8.36(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=2.2 \mathrm{~Hz})$,
$10.61(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.85(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR (300 MHz , DMSO) $\delta 168.94$, $168.62,165.39,161.35,158.43,138.68,136.70,133.85,131.93,130.24,126.36$, 124.88, 124.56, 124.14, 120.95, 118.96, 118.87,106.17, 70.31, 57.73, 40.19, 17.86.HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClF}_{3} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 548.1598$; found, 548.1672.

N -(4-chloro-3-(trifluoromethyl)phenyl)-3-(1-(2-((3-methoxypropyl)amino)pyrimidin-4-yl)cyclopr-opane-1-carboxamido)-4-methylbenzamide (I-08)

I-08 ($0.49 \mathrm{~g}, 87.9 \%$) was prepared from $\mathbf{I - d} \mathbf{- 1}(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and 3-methoxypropan-1-amine ($0.45 \mathrm{~g}, 5 \mathrm{mM}$), in a manner same as I-06. mp: 195-196 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta 1.40-1.41$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$, H-cyclopropyl), 1.56-1.57 (2H, m, CH_{2}, H-cyclopropyl), 1.73-1.77 (2H, m, $\mathrm{CH}_{2}, \mathrm{H}_{\left.-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.29(3 \mathrm{H}, \mathrm{s} \text {, }}$ $\left.\mathrm{ArCH}_{3}\right), 3.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.28-3.31\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 6.56-6.57(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NH}), 7.24-7.26(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.0 \mathrm{~Hz}), 7.74(2 \mathrm{H}, \mathrm{t}, \mathrm{ArH}, J=9.1$ $\mathrm{Hz}), 8.08(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=2.2 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}), 8.23(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}$, $J=4.7 \mathrm{~Hz}), 8.36(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=2.3 \mathrm{~Hz}), 10.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.82(1 \mathrm{H}, \mathrm{s}$, NHCO). ${ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO) δ 168.97, 167.85, 165.41, 161.28, 158.46, $138.69,136.69,136.33,131.95,131.90,130.23,126.35,124.87,124.57,124.43$, 124.15, 120.95, 118.98, 106.23, 69.77, 57.81, 37.98, 28.98, 17.93. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClF}_{3} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 548.1598$; found, 548.1664.

N-(4-chloro-3-(trifluoromethyl)phenyl)-4-methyl-3-(1-(2-((2-(methylamino) ethyl) amino)pyrimidin-4-yl)cyclopropane-1-carboxamido)benzamide (I-09)

I-09 ($0.46 \mathrm{~g}, 84.7 \%$) was prepared from $\mathbf{I - d}-\mathbf{1}(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and N -methylethane-1,2-diamine ($0.37 \mathrm{~g}, 5 \mathrm{mM}$), in a manner same as I-06. mp: 184-185 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300MHz, DMSO- d_{6}): δ 1.41-1.44 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$-cyclopropyl), $1.49-1.53$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-$ cyclopropyl), $2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.71\left(2 \mathrm{H}, \mathrm{t}, \mathrm{NCH}_{2}, J=6.8 \mathrm{~Hz}\right), 3.12-3.15(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3}, \mathrm{NHCH}_{3}\right), 3.58\left(2 \mathrm{H}, \mathrm{t}, \mathrm{NHCH}_{2}, J=6.8 \mathrm{~Hz}\right), 6.64(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}, J=5.1 \mathrm{~Hz}), 7.41$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.2 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.8 \mathrm{~Hz}), 7.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=1.9$ $\mathrm{Hz}, J=8.2 \mathrm{~Hz}), 7.92-7.95(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.13(1 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=2.3 \mathrm{~Hz}, J=8.8 \mathrm{~Hz})$, $8.27(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=5.1 \mathrm{~Hz}), 8.36(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=2.3 \mathrm{~Hz}), 9.91(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO})$, 10.56 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 169.27,168.24,165.33,161.08$, $157.83,149.75,138.67,137.69,136.55,135.23,131.93,130.39,125.59,124.94$,
124.27, 119.00, 118.91, 106.53, 35.59, 31.76, 17.91, 16.79. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClF}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 547.1758; found, 547.1835.

N-(4-chloro-3-(trifluoromethyl)phenyl)-3-(1-(2-((2-(dimethylamino)ethyl)amino) pyrimidin-4-yl)cyclopropane-1-carboxamido)-4-methylbenzamide (I-10)
$\mathbf{I}-10(0.45 \mathrm{~g}, 80.3 \%)$ was prepared from $\mathbf{I}-\mathbf{d}-\mathbf{1}(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and $\mathrm{N}, \mathrm{N}-$ dimethylethane-1,2-diamine ($0.44 \mathrm{~g}, 5 \mathrm{mM}$), in a manner same as I-06. mp: 197$199^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 1.41-1.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$-cyclopropyl), 1.47$1.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$-cyclopropyl), $2.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.40(2 \mathrm{H}$, $\left.\mathrm{t}, \mathrm{CH}_{2}, J=6.7 \mathrm{~Hz}\right), 3.37-3.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.56-6.57(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.10-7.12(1 \mathrm{H}, \mathrm{m}$, ArH), 7.42 ($1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.0 \mathrm{~Hz}$), 7.71-7.77 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.10-8.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $8.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=2.1 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}), 8.23(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=4.8 \mathrm{~Hz}), 8.37(1 \mathrm{H}, \mathrm{d}$, ArH, $J=2.1 \mathrm{~Hz}), 10.61(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.84(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR (300 MHz , DMSO) $\delta 174.99,168.92,165.41,161.22,158.44,138.70,136.66,134.81,131.92$, $130.24,126.34,124.87,124.52,124.15,118.88,106.51,106.08,103.97,58.46,38.62$, 45.13, 17.92. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{ClF}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 561.1914; found, 561.1995.

N-(4-chloro-3-(trifluoromethyl)phenyl)-4-methyl-3-(1-(2-((2-
morpholinoethyl)amino)pyrimidin-4-yl)cyclopropane-1-carboxamido)benzamide (I11)

I-11 ($0.53 \mathrm{~g}, 87.1 \%$) was prepared from $\mathbf{I - d}-1(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and 2-morpholinoethan-1-amine ($0.65 \mathrm{~g}, 5 \mathrm{mM}$), in a manner same as I-06. $\mathrm{mp}: 223-225^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-$ NMR (300 MHz, DMSO- d_{6}): δ 1.41-1.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$-cyclopropyl), 1.57-1.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$-cyclopropyl), $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.37-2.38\left(4 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.46$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{NCH}_{2}, J=6.8 \mathrm{~Hz}\right), 3.40\left(2 \mathrm{H}, \mathrm{t}, \mathrm{NHCH}_{2}, J=6.5 \mathrm{~Hz}\right), 3.53-3.55(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 6.55-6.56(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.11-7.13(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}, J=8.0$ $\mathrm{Hz}), 7.70-7.77$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.14 ($2 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=2.2 \mathrm{~Hz}, J=8.8 \mathrm{~Hz}$), $8.23(1 \mathrm{H}, \mathrm{d}$, $\mathrm{NH}, J=4.9 \mathrm{~Hz}), 8.37(1 \mathrm{H}, \mathrm{d}, \mathrm{NH}, J=2.2 \mathrm{~Hz}), 10.62(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.83(1 \mathrm{H}, \mathrm{s}$, NHCO). ${ }^{13} \mathrm{C}$ NMR (300MHz, DMSO) $\delta 168.96,168.66,166.03,165.33,158.53$, $138.70,136.64,131.92,130.25,124.89,124.50,124.43,124.34,124.15,118.98$,
118.90, 106.49, 66.13, 57.25, 53.30, 37.70, 18.01.HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{ClF}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 603.2020$; found, 603.2105 .

N-(4-chloro-3-(trifluoromethyl)phenyl)-4-methyl-3-(1-(2-((3-morpholinopropyl) amino)pyrimidin-4-yl)cyclopropane-1-carboxamido)benzamide (I-12)

I-12 ($0.52 \mathrm{~g}, 84.8 \%$) was prepared from $\mathbf{I - d}-1(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and 3-morpholinopropan-1-amine ($0.72 \mathrm{~g}, 5 \mathrm{mM}$), in a manner same as I-06. mp: 187$188^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 1.40-1.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$-cyclopropyl), 1.571.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$-cyclopropyl), 1.63-1.72 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.28(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH}_{3}\right), 2.81-2.82\left(7 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{3}, \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.68-3.72\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 6.53-$ $6.55(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.31(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.41(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.0 \mathrm{~Hz}), 7.70-7.78(2 \mathrm{H}, \mathrm{m}$, ArH), 8.12-8.16 (2H, m, ArH), $8.22(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=5.0 \mathrm{~Hz}), 8.40(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=$ $2.3 \mathrm{~Hz}), 10.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.80(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO) δ 168.97, 168.77, $165.39,161.34,158.48,138.69,136.62,131.92,130.25,126.76$, $124.87,124.52,124.20,120.88,118.95,118.88,106.17,66.14,56.00,53.29,39.09$, 25.77, 18.02. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{ClF}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 617.2177; found, 617.2245 .

N-(4-chloro-3-(trifluoromethyl)phenyl)-4-methyl-3-(1-(2-((2-(pyrrolidin-1-yl) ethyl) amino)pyrimidin-4-yl)cyclopropane-1-carboxamido)benzamide (I-13)

I-13 ($0.49 \mathrm{~g}, 84.2 \%$) was prepared from I-d-1 $(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and 2-(pyrrolidin-1-yl)ethan-1-amine ($0.57 \mathrm{~g}, 5 \mathrm{mM}$), in a manner same as $\mathbf{I}-\mathbf{0 6} . \mathrm{mp}: 204-205^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR (300 MHz, DMSO- d_{6}): $\delta 1.40 \sim 1.41$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-$ cyclopropyl), 1.47-1.48 (2H,m, CH_{2}-cyclopropyl), 1.62-1.65 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.41-2.44$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.56\left(2 \mathrm{H}, \mathrm{t}, \mathrm{NCH}_{2}, J=6.8 \mathrm{~Hz}\right), 3.39-3.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2}\right), 6.54-$ $6.55(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.15-7.17$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.42 ($1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.0 \mathrm{~Hz}$), 7.70-7.77 $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.10-8.11(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.14(1 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=1.8 \mathrm{~Hz}, J=8.8 \mathrm{~Hz})$, $8.23(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=4.8 \mathrm{~Hz}), 8.37(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=2.0 \mathrm{~Hz}), 10.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO})$, 10.84 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR (300 MHz , DMSO) $\delta 168.95,168.56,165.40,161.32$, 158.46, 138.69, 136.67, 131.92, 130.24, 126.76, 126.35, 124.88, 124.56, 124.50, $124.09,120.95,118.96,118.89,106.17,54.71,53.55,39.84,23.07,17.96$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{ClF}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 587.2071; found, 587.2137.

N-(4-chloro-3-(trifluoromethyl)phenyl)-4-methyl-3-(1-(2-((2-(piperidin-1-yl)ethyl) amino) pyrimidin-4-yl)cyclopropane-1-carboxamido)benzamide ($\mathbf{I}-\mathbf{1 4}$)
$\mathbf{I}-14(0.48 \mathrm{~g}, 80.6 \%)$ was prepared from $\mathbf{I}-\mathbf{d}-1(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and 2-(piperidin-1-yl)ethan-1-amine ($0.64 \mathrm{~g}, 5 \mathrm{mM}$) in a manner same as I-06. mp: 206-207 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): $\delta 1.42-1.47\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$-cyclopropyl, $\left.\left(\mathrm{CH}_{2}\right)_{3}\right), 1.56-1.57(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}$-cyclopropyl), $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.38-2.39\left(6 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right), 3.35-3.37(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{NHCH}_{2}\right), 6.55-6.56(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.10-7.11(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.41(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=$ $8.0 \mathrm{~Hz}), 7.70-7.77(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.10-8.11(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.13(1 \mathrm{H}, \mathrm{dd}, \mathrm{ArH}, J=2.1$ $\mathrm{Hz}, J=8.8 \mathrm{~Hz}), 8.23(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=3.9 \mathrm{~Hz}), 8.37(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=2.1 \mathrm{~Hz}), 10.61$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$), 10.84 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) δ 168.93, $168.58,165.39,161.24,158.47,148.72,145.96,145.45,138.69,136.68,131.94$, $130.25,124.85,124.56,124.48,124.14,118.96,118.88,106.19,57.56,54.07,38.19$, 25.54, 23.93, 18.01. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{ClF}_{3} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 601.2227$; found, 601.2302.

N-(4-chloro-3-(trifluoromethyl)phenyl)-4-methyl-3-(1-(2-((2-(4-methylpiperazin-1-yl)ethyl)amino)pyrimidin-4-yl)cyclopropane-1-carboxamido)benzamide ($\mathbf{I} \mathbf{- 1 5}$)

I-15 ($0.48 \mathrm{~g}, 77.4 \%$) was prepared from $\mathbf{I - d}-\mathbf{1}(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and 2-(4-methylpiperazin-1-yl)ethan-1-amine ($0.72 \mathrm{~g}, 5 \mathrm{mM}$), in a manner same as I-06. mp: 190-191 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta 1.41-1.43$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$-cyclopropyl), 1.59-1.61 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$-cyclopropyl), $2.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.32-2.39(8 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.41-3.43\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 6.55-6.56(1 \mathrm{H}, \mathrm{m}$, NH), 7.06-7.08 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.41-7.43 (1H, m, ArH), 7.69-7.76 (2H, m, ArH), 8.14$8.17(2 \mathrm{H}, \mathrm{m}, \operatorname{ArH}), 8.24(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.39(1 \mathrm{H}, \mathrm{s}, \operatorname{ArH}), 10.60(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.88$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 168.94,168.59,165.39,161.30$, 158.47, 138.69, 136.68, 131.97, 131.87, 130.22, 126.79, 126.38, 125.97, 124.85, 124.56, 124.17, 120.95, 118.90, 106.48, 56.80, 54.66, 52.66, 45.66, 38.13, 18.04. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{ClF}_{3} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, ~ 616.2336$; found, 616.2422. 4-methyl-3-(1-(2-(methylamino)pyrimidin-4-yl)cyclopropane-1-carboxamido)-N-(4-morpholino-3-(trifluoromethyl)phenyl)benzamide (I-16)

I-16 ($0.51 \mathrm{~g}, 92.7 \%$) was prepared from I-d-6 $(0.56 \mathrm{~g}, 1 \mathrm{mM})$ and methylamine $(33 \%, 0.7 \mathrm{~mL}, 5 \mathrm{mM})$, in a manner same as I-01. mp: $222-223^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): $\delta 1.40-1.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$-cyclopropyl), $1.57-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ cyclopropyl), $2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.81-2.84\left(7 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{3}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right)$, 3.69-3.71 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 6.56-6.57(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.21-7.23(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.40(1 \mathrm{H}, \mathrm{d}$, $\mathrm{ArH}, J=7.8 \mathrm{~Hz}), 7.61(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.8 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=7.8 \mathrm{~Hz}), 8.06-$ $8.09(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.16(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.25(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 10.42(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.76$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) δ 169.01, 168.55, 165.11, 161.84, $158.43,147.09,136.62,136.48,132.26,130.15,125.75,125.07,124.78,124.45$, 122.00, 118.40, 118.33, 106.19, 66.60, 53.44, 27.75, 17.94. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 555.2253; found, 555.2327.

4-methyl-3-(1-(2-(methylamino)pyrimidin-4-yl)cyclopropane-1-carboxamido)-N-(4-(4-methylpip-erazin-1-yl)-3-(trifluoromethyl)phenyl)benzamide (I-17)
$\mathbf{I}-17(0.51 \mathrm{~g}, 90.2 \%)$ was prepared from $\mathbf{I}-\mathbf{d}-7(0.57 \mathrm{~g}, 1 \mathrm{mM})$ and methylamine ($33 \%, 0.7 \mathrm{~mL}, 5 \mathrm{mM}$), in a manner same as I-01. mp: 232-233 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): $\delta 1.40-1.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$-cyclopropyl), $1.57-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ cyclopropyl), $2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.44-2.45(4 \mathrm{H}, \mathrm{m}$, piperazinH), 2.81-2.84 $\left(7 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{3}\right.$, piperazin-H), $6.56-6.57(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.21-7.23(1 \mathrm{H}$, m, ArH), $7.40(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=7.9 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.7 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{d}$, $\mathrm{ArH}, J=7.5 \mathrm{~Hz}), 8.05(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=6.7 \mathrm{~Hz}), 8.15(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.25(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, 10.41 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$), 10.78 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 168.99$, $168.52,165.07,161.82,158.43,147.56,136.59,136.24,132.26,130.15,125.62$, 124.92, 124.74, 124.44, 122.07, 118.43, 118.35, 112.82, 106.48, 55.04, 53.04, 45.77, 27.76, 17.95. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~F}_{3} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 568.2570$; found, 568.2644.

4-methyl-3-(1-(2-(methylamino)pyrimidin-4-yl)cyclopropane-1-carboxamido)-N-(4-(morpholino-methyl)-3-(trifluoromethyl)phenyl)benzamide (I-18)
$\mathbf{I}-18(0.53 \mathrm{~g}, 93.1 \%)$ was prepared from I-d-8 $(0.57 \mathrm{~g}, 1 \mathrm{mM})$ and methylamine ($33 \%, 0.7 \mathrm{~mL}, 5 \mathrm{mM}$), in a manner same as I-01. mp: 202-204 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): δ 1.41-1.42 (2H, m, CH_{2}-cyclopropyl), $1.57-1.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$
cyclopropyl), $2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.36-2.39\left(4 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.82\left(3 \mathrm{H}, \mathrm{d}, \mathrm{NHCH}_{3}\right.$, $J=4.7 \mathrm{~Hz}), 3.57-3.60\left(6 \mathrm{H}, \mathrm{m}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right.$ and $\left.\mathrm{ArCH}_{2}\right), 6.55-6.57(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.21-$ $7.23(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.40(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.0 \mathrm{~Hz}), 7.72-7.77(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.06-8.08$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.21-8.25 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 10.47 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$), 10.78 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 168.99,168.50,165.24,161.79,158.43,138.33$, 136.60, 132.23, 131.36, 131.27, 130.17, 127.19, 124.70, 124.46, 123.43, 122.48, 117.29, 117.20, 106.15, 66.19, 57.83, 53.24, 27.76, 17.95. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 568.2410$; found, 568.2490.

4-methyl-3-(1-(2-(methylamino)pyrimidin-4-yl)cyclopropane-1-carboxamido)-N-(4-(morpholino-methyl)phenyl)benzamide ($\mathbf{(- 1 9)}$
$\mathbf{I}-19(0.47 \mathrm{~g}, 89.1 \%)$ was prepared from $\mathbf{I}-\mathbf{d}-9(0.51 \mathrm{~g}, 1 \mathrm{mM})$ and methylamine ($33 \%, 0.7 \mathrm{~mL}, 5 \mathrm{mM}$), in a manner same as I-01. mp: $109-110^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): $\delta 1.40-1.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$-cyclopropyl), $1.55-1.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ cyclopropyl), $2.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.34\left(4 \mathrm{H}, \mathrm{t}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}, J=4.4 \mathrm{~Hz}\right), 2.81(3 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{NHCH}_{3}, J=4.6 \mathrm{~Hz}\right), 3.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.57\left(4 \mathrm{H}, \mathrm{t}, \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}, J=4.4 \mathrm{~Hz}\right), 6.56(1 \mathrm{H}, \mathrm{d}$, $\mathrm{NH}, J=4.6 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.27(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.4 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}$, $J=8.0 \mathrm{~Hz}), 7.72(3 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.4 \mathrm{~Hz}), 8.02-8.04(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 8.24(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}$, $J=4.6 \mathrm{~Hz}), 10.19(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.78(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR (300 MHz , DMSO) δ 168.96, 168.50, 164.89, 161.87, 158.42, 149.86, 138.00, 136.51, 132.88, $132.77,130.08,129.12,124.72,124.43,120.18,106.38,66.16,62.02,53.09,27.77$, 17.93. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 501.2536$; found, 501.2606. 4-methyl-3-(1-(2-(methylamino)pyrimidin-4-yl)cyclopropane-1-carboxamido)-N-(4-((1-methylpip-eridin-4-yl)oxy)-3-(trifluoromethyl)phenyl)benzamide (I-20)
$\mathbf{I}-20(0.50 \mathrm{~g}, 86.1 \%)$ was prepared from $\mathbf{I}-\mathbf{d}-10(0.59 \mathrm{~g}, 1 \mathrm{mM})$ and methylamine ($33 \%, 0.7 \mathrm{~mL}, 5 \mathrm{mM}$), in a manner same as I-01. mp: 198-200 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): δ 1.41-1.42 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$-cyclopropyl), $1.58-1.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ cyclopropyl), 1.70-1.71 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CHCH}_{2}$), 1.90-1.91 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}, \mathrm{CHCH}_{2}$), 2.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}$), 2.28-2.31 ($\left.4 \mathrm{H}, \mathrm{m}, \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.83\left(3 \mathrm{H}, \mathrm{d}, \mathrm{NHCH}_{3}, J=4.6 \mathrm{~Hz}\right)$, $2.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.56-4.57(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 6.56-6.57(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.21-7.23(1 \mathrm{H}, \mathrm{m}$, ArH), $7.32(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=9.2 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=8.0 \mathrm{~Hz}), 7.76(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}$,
$J=7.8 \mathrm{~Hz}), 7.99-8.02(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.08-8.10(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=$ $4.7 \mathrm{~Hz}), 10.31(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.77(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, DMSO) δ $169.08,168.51,164.84,161.93,158.30,150.85,141.87,136.48,135.89,132.42$, $131.80,130.14,125.63,125.43,124.40,121.75,118.97,115.15,106.33,72.30,51.66$, 45.84, 30.14, 27.67, 17.88. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 583.2566$; found, 583.2638.

4-methyl-3-(1-(2-(methylamino)pyrimidin-4-yl)cyclopropane-1-carboxamido)-N-(4-((1-methylpip-eridin-4-yl)methoxy)-3-(trifluoromethyl)phenyl)benzamide (I-21)

I-21 $(0.51 \mathrm{~g}, 84.9 \%)$ was prepared from $\mathbf{I - d}-11(0.60 \mathrm{~g}, 1 \mathrm{mM})$ and methylamine ($33 \%, 0.7 \mathrm{~mL}, 5 \mathrm{mM}$), in a manner same as I-01. mp: 191-192 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): δ 1.33-1.41 (4H, m, CH_{2}), 1.56-1.57 (2H, m, CH_{2}), 1.69-1.72 (3H, $\left.\mathrm{m}, \mathrm{CH}_{2}, \mathrm{CH}\right), 1.82-1.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.77-2.82$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}_{3}\right.$ and $\left.\mathrm{CH}_{2}\right), 3.94\left(2 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{2}, J=4.7 \mathrm{~Hz}\right), 6.56-6.57(1 \mathrm{H}, \mathrm{m}, \mathrm{NH})$, 7.23-7.27 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=7.8 \mathrm{~Hz}), 7.74(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=7.8 \mathrm{~Hz})$, 7.99-8.08 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.24 ($1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=4.7 \mathrm{~Hz}$), 10.30 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$), 10.74 (1H, s, NHCO). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, ~ D M S O$) δ 168.98, 168.56, 164.84, 161.80, 158.42, 152.42, 136.54, 132.37, 131.84, 130.12, 125.67, 124.40, 121.85, 118.88, $118.80,116.74,116.28,113.56,106.19,72.80,59.76,54.88,46.09,34.85,28.21$, 27.83, 18.01, 13.98. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 597.2723; found, 597.2793.

4-methyl-3-(1-(2-(methylamino)pyrimidin-4-yl)cyclopropane-1-carboxamido)-N-(4-(3-morpholin-opropoxy)-3-(trifluoromethyl)phenyl)benzamide (I-22)

I-22 $(0.56 \mathrm{~g}, 90.7 \%)$ was prepared from $\mathbf{I}-\mathbf{d}-12(0.62 \mathrm{~g}, 1 \mathrm{mM})$ and methylamine $(33 \%, 0.7 \mathrm{~mL}, 5 \mathrm{mM})$, in a manner same as I-01. mp: 172-173 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}): $\delta 1.40-1.41\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$-cyclopropyl), $1.55-1.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\right.$ cyclopropyl), 1.86-1.90 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{O}$), $2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right)$, 2.35-2.45 $\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{NCH}_{2}\right), 2.81\left(3 \mathrm{H}, \mathrm{d}, \mathrm{NHCH}_{3}, J=4.0 \mathrm{~Hz}\right), 3.57\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OCH}_{2}\right), 4.11-$ $4.13\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 6.55-6.56(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 7.26(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=$ $9.0 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J=7.8 \mathrm{~Hz}), 7.72(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.98-8.08(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 8.22-8.28 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $10.30(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}), 10.70(1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}) .{ }^{13} \mathrm{C}$ NMR (300

MHz, DMSO) $\delta 169.00,168.54,164.86,161.87,158.43,152.36,136.58,132.36$, $131.89,130.14,125.72,124.32,121.82,118.88,118.81,117.29,116.92,113.84$, 106.43, 66.63, 66.14, 54.51, 53.31, 27.75, 25.66, 17.92. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~F}_{3} \mathrm{~N}_{6} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$, 613.2672; found, 613.2747.

3-amino- N-(4-chloro-3-(trifluoromethyl)phenyl)-4-methylbenzamide (A1)
4-methyl-3-nitrobenzoic acid ($2.7 \mathrm{~g}, 15 \mathrm{mM}$), oxalyl chloride ($2.5 \mathrm{~mL}, 30 \mathrm{mM}$) and DMF (several drops) in dichloromethane (50 mL) were stirred at room temperature for 2 h . Then, the solvent and oxalyl chloride were evaporated under reduced pressure to get 4-methyl-3-nitrobenzoyl chloride. The benzoyl chloride (1 M solution in dichloromethane, 15 mL) in constant pressure funnel was added to a solution of 4-chloro-3-(trifluoromethyl) aniline ($2.44 \mathrm{~g}, 12.5 \mathrm{mM}$) and triethylamine $(5.2 \mathrm{~mL}, 37.5$ $\mathrm{mM})$ in dichloromethane (40 mL) successively. The reaction mixture was stirred at room temperature for 5 h . Subsequently, the solvent and triethylamine were evaporated under reduced pressure to get substituted amide. Then, reduction of the nitro group was carried out by using $\mathrm{Fe} / \mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{mM} / 37.5 \mathrm{mM})$ in ethanol $/ \mathrm{H}_{2} \mathrm{O}(75$ $\mathrm{mL} / 25 \mathrm{~mL}$). The mixture was heated to reflux for about 3 h , evaporated in vacuo, purified with silica gel column chromatography. Desired aniline ($3 \mathrm{~g}, 72.6 \%$) was afforded as a pale yellow solid. ESI-MS m/z: $329.1[\mathrm{M}+\mathrm{H}]^{+}$.
N-(3-amino-4-methylphenyl)-4-chloro-3-(trifluoromethyl)benzamide (A2)
A2 ($2.6 \mathrm{~g}, 80.4 \%$) was prepared from 4-chloro-3-(trifluoromethyl)benzoic acid (3.4 $\mathrm{g}, 15 \mathrm{mM}$), in a manner same as A1. ESI-MS m/z: $329.1[\mathrm{M}+\mathrm{H}]^{+}$.

1-(3-amino-4-methylphenyl)-3-(4-chloro-3-(trifluoromethyl) phenyl) urea (A3)
Commercially available 4-chloro-3-(trifluoromethyl) aniline ($2.9 \mathrm{~g}, 15 \mathrm{mM}$) and CDI $(2.6 \mathrm{~g}, 16 \mathrm{mM})$ in dichloromethane $(50 \mathrm{~mL})$ were stirred at room temperature for 16 h , followed by addition of the required 4-methyl-3-nitroaniline ($2.3 \mathrm{~g}, 15 \mathrm{mM}$) and stirring at room temperature for another 18 h . The precipitate formed was filtered, washed with ethanol, and then dried under vacuum. The intermediate substituted amide was converted to $\mathbf{A 3}$ ($4.8 \mathrm{~g}, 92.6 \%$) through reduction reaction in a manner same as A1. ESI-MS m/z: $344.1[\mathrm{M}+\mathrm{H}]{ }^{+}$.

4-(4-nitro-2-(trifluoromethyl) phenyl) morpholine (1a)

1-fluoro-4-nitro-2-(trifluoromethyl)benzene ($2.1 \mathrm{~g}, 10 \mathrm{mM}$) and morpholine (2.6 $\mathrm{mL}, 30 \mathrm{mM})$ in DMSO (20 mL) were heated to $100^{\circ} \mathrm{C}$ for 5 h . The mixture was partitioned between ethyl acetate $(80 \times 2 \mathrm{~mL})$ and water $(40 \times 2 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to get $\mathbf{2 a}$ $(2.6 \mathrm{~g}, 9.4 \mathrm{mM})$ as yellow solid in 94.2%. ESI-MS m/z: $277.1[\mathrm{M}+\mathrm{H}]^{+}$.

1-methyl-4-(4-nitro-2-(trifluoromethyl)phenyl)piperazine (1b)
1b ($2.6 \mathrm{~g}, 91.4 \%$) was prepared from N-methyl piperazine ($3.3 \mathrm{~mL}, 30 \mathrm{mM}$), in a manner same as 1a. ESI-MS m/z: $290.1[\mathrm{M}+\mathrm{H}]+$

3-amino-4-methyl-N-(4-morpholino-3-(trifluoromethyl)phenyl)benzamide (A4)
A4 ($3.0 \mathrm{~g}, 85.4 \%$) was prepared from $\mathbf{1 a}(2.6 \mathrm{~g}, 9.4 \mathrm{mM})$, in a manner same as $\mathbf{A 1}$. ESI-MS m/z: $380.2[\mathrm{M}+\mathrm{H}]^{+}$.

3-amino-4-methyl-N-(4-(4-methylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)
benzamide (A5)
A5 (2.7 g, 76.2\%) was prepared from $\mathbf{1 b}(2.6 \mathrm{~g}, 9 \mathrm{mM})$, in a manner same as A1. ESI-MS m/z: $393.2[\mathrm{M}+\mathrm{H}]^{+}$.

1-(bromomethyl)-4-nitrobenzene (2a)
1-methyl-4-nitro-2-(trifluoromethyl) benzene ($2.1 \mathrm{~g}, 10 \mathrm{mM}$) and NBS ($2.1 \mathrm{~g}, 12$ $\mathrm{mM})$ in DCE (25 mL) were heated to reflux for 5 h . The mixture was partitioned between ethyl acetate (80 mL) and water (50 mL), the organic layer was evaporated. The oily residue was purified with column chromatography on silica gel, crystallized with ethyl acetate $/ \mathrm{n}$-hexane (1:4) to give $\mathbf{2 a}(2.5 \mathrm{~g}, 86.4 \%$) as a pale yellow solid

1-(bromomethyl)-4-nitro-2-(trifluoromethyl) benzene (2b)
$\mathbf{2 b}(1.9 \mathrm{~g}, 89.2 \%)$ was prepared from 1-methyl-4-nitrobenzene $(1.4 \mathrm{~g}, 10 \mathrm{mM})$, in a manner same as $\mathbf{2 a}$.

4-(4-nitro-2-(trifluoromethyl)benzyl)morpholine (3a)
The mixture of 2a ($1.9 \mathrm{~g}, 8.8 \mathrm{mM}$), morpholine ($1.1 \mathrm{~mL}, 13.2 \mathrm{mM}$) and triethylamine ($1.8 \mathrm{~mL}, 13.2 \mathrm{mM}$) were heated to reflux in THF for 2 h . The mixture was partitioned between ethyl acetate $(60 \times 2 \mathrm{~mL})$ and water $(40 \times 2 \mathrm{~mL})$, the combined organic layers were evaporated. The oily residue 3a utilized as materials without further purification.

4-(4-nitrobenzyl)morpholine (3b)
$\mathbf{3 b}$ was prepared from $\mathbf{2 b}$, in a manner same as $\mathbf{3 a}$.
3-amino-4-methyl-N-(4-(morpholinomethyl)-3-(trifluoromethyl) phenyl) benzamide (A6)

A6 was prepared from 3a, in a manner same as A1.
3-amino-4-methyl-N-(4-(morpholinomethyl) phenyl) benzamide (A7)
A7 was prepared from 3b, in a manner same as A1.
1-methyl-4-(4-nitro-2-(trifluoromethyl) phenoxy) piperidine (4a)
To a solution of 1-methylpiperidin-4-ol ($1.15 \mathrm{~g}, 10 \mathrm{mM}$) in DMF (10 mL) were added $\mathrm{NaH}(0.48 \mathrm{~g}, 12 \mathrm{mM})$ successively. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h , followed by addition of the required 1-fluoro-4-nitro-2-(trifluoromethyl)benzene and heating to reflux for another 5 h . After cooling to room temperature, the mixture was partitioned between ethyl acetate $(100 \times 2 \mathrm{~mL})$ and water $(40 \times 2 \mathrm{~mL})$. The combined organic layers were evaporated, the resulting residue $\mathbf{4 a}$ utilized as materials without further purification.

1-methyl-4-((4-nitro-2-(trifluoromethyl) phenoxy) methyl) piperidine (4b)
4b was prepared from (1-methylpiperidin-4-yl) methanol, in a manner same as $\mathbf{4 a}$.
4-(3-(4-nitro-2-(trifluoromethyl) phenoxy) propyl) morpholine (4c)
$\mathbf{4 c}$ was prepared from 3-morpholinopropan-1-ol $(1.45 \mathrm{~g}, 10 \mathrm{mM})$, in a manner same as $\mathbf{4 a}$.

3-amino-4-methyl-N-(4-((1-methylpiperidin-4-yl)oxy)-3-(trifluoromethyl)phenyl) benzamide (A8)

A8 (3.6 g, 89.4\%) was prepared from $\mathbf{4 a}(3.0 \mathrm{~g}, 10 \mathrm{mM})$, in a manner same as A1. ESI-MS m/z: $408.2[\mathrm{M}+\mathrm{H}]^{+}$.

3-amino-4-methyl-N-(4-((1-methylpiperidin-4-yl)methoxy)-3-
(trifluoromethyl)phenyl)benzamide (A9)
A9 $(3.6 \mathrm{~g}, 86.4 \%)$ was prepared from $\mathbf{4 b}(3.2 \mathrm{~g}, 10 \mathrm{mM})$, in a manner same as A1. ESI-MS m/z: $422.2[\mathrm{M}+\mathrm{H}]^{+}$.
3-amino-4-methyl-N-(4-(3-morpholinopropoxy)-3-(trifluoromethyl)phenyl) benzamide (A10)
$\mathbf{A 1 0}(3.7 \mathrm{~g}, 85.2 \%)$ was prepared from $\mathbf{4 c}(3.3 \mathrm{~g}, 10 \mathrm{mM})$, in a manner same as A1. ESI-MS m/z: $438.2[\mathrm{M}+\mathrm{H}]^{+}$.

The chemical structures of compounds were confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$

(

丈下ふ心Non＝
 ץ li，

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	1	20	10	
						140	130	120	110	$f 1$（pp		80	70	60	50	40	30	20	10	0

[^0]

```
\ \
```


ロ～ベ
EN No

8
-
\vdots
\vdots

$$
\begin{aligned}
& \begin{array}{l}
8 \\
\stackrel{\infty}{\infty} \\
\stackrel{-}{-}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cc}
\infty & \infty \\
\stackrel{\circ}{\circ} & \stackrel{\infty}{\infty} \\
\dot{0} & \stackrel{1}{n} \\
1 & 1
\end{array}
\end{aligned}
$$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$\stackrel{\text { \& }}{\stackrel{\circ}{\circ}}$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	1
										f_{1} (ppm)										

$$
\begin{array}{llllllllllllllllllllllllllllllllllll}
\hline 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 1 \\
\mathrm{f1}(\mathrm{ppm}) & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0
\end{array}
$$

$\stackrel{\sim}{\infty} \underset{\substack{\infty \\ i}}{\stackrel{\sim}{\infty}}$

$$
\begin{aligned}
& \begin{array}{l}
\text { 응 } \\
\text { 융 } \\
i
\end{array}
\end{aligned}
$$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

[^0]:

