Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information:

All assignments are given in the "Experimental part" of the publication. The first spectrum shown of each series is the full ¹H NMR spectrum. Expansions are depicted where they were regarded as necessary. Then the ¹³C NMR spectrum is depicted in the same manner, followed by the ³¹P NMR spectrum. The x-axes is in ppm, while the peak labels are in Hz for all given spectra. Structures are always given on top of the full ¹H NMRspectrum. Integrals are denoted below the x-axes where they are regarded as necessary and the integration range is marked. The numbering of the spectra is in accordance with the numbering of substances in the main text.

¹H NMR spectrum of (±)-3,3,3-Trifluoro-2-hydroxypropane nitrile [(±)-21] (400.27 MHz):

2

¹³C NMR spectrumof (±)-21 (100.65 MHz):

¹H NMR spectrum of (±)-3,3,3-Trifluoro-2-(triisopropylsiloxy)propane nitrile [(±)-22] (400.27 MHz):

4

¹H NMR spectrum of (±)-(1*S**,2*R**)-Diethyl 3,3,3-trifluoro-1-hydroxy-2-(triisopropylsilyloxy)-propylphosphonate [(±)-(1*S**,2*R**)-24b] (400.13 MHz):

¹H NMR spectrum of (±)-(1*R**,2*R**)-Diethyl 3,3,3-trifluoro-1,2-dihydroxypropylphosphonate [(±)-(1*R**,2*R**)-25a] (400.13 MHz):

³¹P NMR spectrum of (±)-(1*R**,2*R**)-25a (161.98 MHz):

¹H NMR spectrum of (±)-(1*S**,2*R**)-Diethyl 3,3,3-trifluoro-1,2-dihydroxypropylphosphonate [(±)-(1*R**,2*S**)-25b] (600.25 MHz):

¹³C NMR spectrum of (±)-(1*R**,2*S**)-25b (150.95 MHz):

³¹P NMR spectrum of (±)-(1*R**,2*S**)-25b (242.97 MHz):

¹H NMR spectrum of (±)-(1*R**,2*R**)-3,3,3-trifluoro-1,2-dihydroxypropylphosphonic acid ammonium salt [(±)-(1*R**,2*R**)-9] (400.13 MHz):

³¹P NMR spectrum of 13a (162.03 MHz):

¹H NMR spectrum of the more polar acetal of dimethyl 1-hydroxy-2-methylallylphosphonate with Noe's lactol [13b] (400.27 MHz):

24

³¹P NMR spectrum of 13b (162.03 MHz):

3654.49

¹H NMR spectrum of the sodium salt of (*R*)-1-hydroxy-2-methylprop-2-enylphosphonic acid [(*R*)-14] (400.27 MHz):

ر میں میں میں میں اور میں	والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	والمراجع والمحافظ المنافع والمحاور المراجع والمراجع والمتأوران	at a substantive solution on a sub-line becaute last	and a long point of the set of the line out of the state
			College Frankerske strender for Strend for Strends	district hours for an end of the for
				•

140	130	120	110	100	90	80	70	60	50	40	30	ppm

³¹P NMR spectrum of (*R*)-14 (162.02 MHz):

¹H NMR spectrum of the sodium salt of (*R*)-1-hydroxy-2-oxopropylphosphonic acid [(*R*)-5] (400.27 MHz):

¹³C NMR spectrum of (*R*)-5 (100.65 MHz):

210	200	190	180	170	160	150	140	130	120	110	100	<mark>90</mark>	80	70	60	50	40	30	20	10	0	ppm

³¹P NMR spectrum of (*R*)-5 (162.02 MHz):

r 3228.46 r 3054.62 r 3053.66 2990.14 2989.14 2988.14 2981.89 2980.89 -3277.41 -3236.74 3039.25 3038.29 3046.46 2312.92 3047.50 2997.34 2996.38 2305.32 2197.56 2192.68 2032.85 2011.60 3285.62 2283.70 2045.02 2023.81 3045.41 2298.07 ~654.20 ~647.08 2290.71 Ö ~_____3054.62 ~___3053.66 ~____3047.50 ~___3045.41 ~__3036.25 ~__3038.29 ∼2997.34 ∼2996.38 ~2990.14 ~2988.14 ~2988.14 ~2988.189 ~2980.89 . N Ν Ν̈́ΗΖ (S)-**18** 7.64 7.62 7.60 7.58 7.56 7.54 7.52 7.50 7.48 7.46 7.44 ppm 2 8 8.5 9.5 7.5 6.5 5.5 4.5 3.5 2.5 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 ppm 1.08 <mark>50</mark>8 1.0 3.19 1.04 10 0.57 0.81 8

¹H NMR spectrum of benzotriazole-activated Z-L-alanine [(S)-18] (400.27 MHz):

¹H NMR spectrumof (+)-*N*-(L-alanyl)-(1*R*,2*R*,2'S)-2-amino-1-hydroxypropylphosphonic acid [(1*R*,2*R*,2'S)-10] (400.27 MHz):

³¹P NMR spectrum of (1*R*,2*R*,2'S)-10 (162.03 MHz):

X-ray structure analysis

The X-ray intensity data was measured on Bruker D8 Venture diffractometer equipped with multilayer monochromators, Mo K/a INCOATEC micro focus sealed tube and Kryoflex II cooling device. The structure was solved by direct methods and refined by full-matrix least-squares techniques. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were inserted at calculated positions and refined with a riding model or as rotating groups. H1A is refined without any constraints or restraints. The following software was used: Frame integration, *Bruker SAINT software package*¹ using a narrow-frame algorithm, Absorption correction, *SADABS*², structure solution, *SHELXL-2013*³, refinement, *SHELXL-2013*³, *OLEX2*⁴, *SHELXLE*⁵, molecular diagrams, *OLEX2*⁴. Experimental data and CCDC-code can be found in Table 1. Crystal data, data collection parameters, and structure refinement details are given in Tables 2 and 3. Table 4 shows a list of hydrogen bonds. Molecular structure in "Ortep View" is displayed in Figure 1.

 Table 1 Experimental parameter and CCDC-Code.

Sample	Machine	Source	Temp.	Detector Distance	Time/ Frame	#Frames	Frame width	CCDC
	Bruker		[K]	[mm]	[s]		[°]	
25b	D8	Мо	100	40	20	647	0.8	1522706

(±)-(1*R**,2*S**)-Diethyl 3,3,3-trifluoro-1,2-dihydroxypropylphosphonate [(±)-(1*R**,2*S**)-25b].

Figure 1 Asymmetric Unit of **25b**, drawn with 50% displacement ellipsoids. Disorder and hydrogen atoms omitted for clarity. O1 and O2 are located in anti position for both independent molecules. Two intermolecular hydrogen bonds (light blue shaded) in the asymmetric unit can be detected. Main residue disorder is 47 %. Bond precision: C-C = 0.0052 Å.

The above shown crystal structure shows the two hydroxyl groups of **25b** to be anti-orientated and **25b** thus to have $(1R^*, 2S^*)$ -configuration. [The assignment of the configurations at C1 and C2 is according to the CIP-rules attributing the following priorities to the respective substituents: **C1**: $1 = P(O)(OEt)_2$, 2 = OH, $3 = CH(OH)CF_3$, 4 = H; **C2**: 1 = OH, $2 = CH(OH)P(O)(OEt)_2$, $3 = CF_3$, 4 = H].

Chemical formula	C7H14O5F3P	Crystal system		monoclinic		
Formula weight [g/mol]	266.15	Space group	P21/n			
Temperature [K]	100	Z	8			
Measurement method	Φ and ω scans	Volume [Å ³]	2362.1(3)			
Radiation (Wavelength [Å])	ΜοΚα (λ = 0.71073)	Unit cell dimensions [Å] and [°]	10.0601(8)	90		
Crystal size / [mm ³]	0.436 × 0.392 × 0.28		15.2849(12)	90.477 (3)		
Crystal habit	clear colourless block		15.3621 (11)	90		

Table 2 Sample and crystal data of 25b.

Density (calculated) / [g/cm ³]	1.497	Absorption coefficient / [mm ⁻¹]	0.276
Abs. correction Tmin	0.746	Abs. correction Tmax	0.5087
Abs. correction type	multi-scan	F(000) [e ⁻]	1104

Table 3 Data collection and structure refinement of 25b.

Index ranges	-11 ≤ h ≤ 12, -18 ≤ k ≤ 18, -18 ≤ l ≤ 18	Theta range for data collection [°]	4.858 to 50.698			
Reflections number	34854	Data / restraints / parameters		4305/26/390		
Refinement method	Least squares	Final B indicos	all data	R1 = 0.0725, wR2 = 0.1615		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$	Final K Indices	l>2σ(l)	R1 = 0.0657, wR2 = 0.1566		
Goodness-of-fit on F ²	1.084		w=1/[o ² (F	$w=1/[\sigma^{2}(F_{o}^{2})+(0.0548P)^{2}+5.3378P]$		
Largest diff. peak and hole [e Å ⁻³]	0.70/-0.6	Weighting scheme	wh	ere $P=(F_0^2+2F_c^2)/3$		

Table 4 Hydrogen Bonds in 25b.

D	Н	Α	d(D-H)/Å	d(H-A)/Å	d(H-A)/Å d(D-A)/Å						
Intermolecular											
O2B	H2B	05A	0.84	1.79	2.618(9)	166.8					
O1D	H1D	05C	0.84	2.01	2.81(2)	160.8					
01A	H1A	O5B	0.84	1.75	2.592(3)	177.5					
O1B	H1B	01A ²	0.84	1.74	2.56(3)	164.7					
02A	H2A	05A ¹	0.84	1.83	2.662(8)	169.5					
02A	H2A	05C ¹	0.84	1.99	2.80(3)	162.1					
O2D	H2D	01A ²	0.84	2.02	2.83(2)	163.0					
¹ -x+1, -y+1,	-z; ² -x+3/2, y	y-1/2, -z+1/2									

 ¹ Bruker SAINT v8.32BA Copyright © 2005-2016 Bruker AXS.
 ² G. M. Sheldrick, 1996, *SHELXS*. University of Göttingen, Germany.
 ³ G. M. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112.
 ⁴ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339.
 ⁵ C. B. Huebschle, G. M. Sheldrick, B. Dittrich, *J. Appl. Cryst.*, 2011, **44**, 1281.