Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Blue-Light-Promoted Carbon-Carbon Double Bond Isomerization and Its Application in Syntheses of Quinolines

Xinzheng Chen, [†] Shuxian Qiu, [†] Sasa Wang, [†] Huifei Wang,^{*,†} and Hongbin Zhai^{*,†,‡,⊥}

[†] Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China 518055

[‡] The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

[⊥]Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China *E-mail: zhaihb@pkusz.edu.cn*

Table of Contents

(85 Pages)

General information	S2
General procedure for preparation of α , β -unsaturated ketone substrates	S2
General procedure for synthesis of quinolines	S3
UV-visible absorption spectra of 1a and 2a	S4
¹ H NMR and ¹³ C NMR spectra data of the substrates	S4
¹ H NMR and ¹³ C NMR spectra data of the products	S15
Copies of ¹ H NMR and ¹³ C NMR spectra	S24

I. General Information

All reagents were purchased at the highest commercial quality and used as received unless otherwise noted. Anhydrous THF was distilled from sodium-benzophenone. Analytically pure ethanol was purchased and used as received, however no precautions were taken to exclude air or water from the solvent or reaction mixtures and reactions run with undried solvent proceed similarly. Thin-layer chromatography (TLC) was conducted with 0.25 mm Yantai silica gel plates (60F-254) and visualized by exposure to UV light (254 nm) or stained with KMnO₄. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040–0.063 mm). Data for ¹H NMR spectra were reported as following: chemical shift (δ /ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad.), coupling constant (*J*/Hz) and integration. Data for ¹³C NMR and ¹⁹F NMR spectra were reported in terms of the chemical shift. The UV-visible absorption spectra were recorded on Shimadzu UV-2600 UV-visible spectrophotometer. High-resolution mass spectrometry (HRMS) was conducted on Bruker Apex IV RTMS.

II. General procedure for preparation of α , β -unsaturated ketone substrates

Method A:

- 1) To a dry flask was added 2-nitrobenzaldehyde i (8.0 mmol) under argon. Then ketone ii (9.6 mmol), ZrCl₄ (3.2 mmol) and anyhydrous DCE (40 mL) were added. The mixture was maintained at 60°C until the complete disappearance of the substrates monitored by TLC. The reaction was quenched with H₂O. The mixture was extracted with DCM three times and the combined organic phases were washed with saturated brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to afford iii. (A modified method of Angela Patti, according to ref: Angela Patti *, Sonia Pedotti *Tetrahedron* 2010, 66, 5607-5611).
- 2) Iron powder (20.0 mmol, 10 equiv.) and concd. hydrochloric acid (ca. 10 mg) were added to a solution of iii (2.0 mmol) in EtOH (10 mL) and water (2.5 mL). The mixture was heated to reflux and monitored by TLC. After substrate iii was consumed, the mixture was cooled to room temperature and extracted with ethyl acetate three times. The combined organic phases were washed with saturated brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to afford 1. (A modified method of Jens Christoffers, according to ref: Claas L üder Diedrich, Wolfgang Frey and Jens Christoffers* *Eur. J. Org. Chem.* 2008, 1811–1816).

Method B:

1) To a mixture of 2-nitrobenzaldehyde i (4.0 mmol), ketone ii (8.0 mmol) and H₂O (4.0 mL) was added 5% NaOH aqueous solution (0.4 mL). The reaction was maintained at 40°C for 12 h before being cooled to room temperature and extracted

with ethyl acetate three times. The combined organic phases were washed with saturated brine, dried over Na_2SO_4 and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to afford **iv**.

- 2) The aldol product **iv** (3.0 mmol) was dissolved in toluene, and a catalytic amount of *p*-toluenesulfonic acid (0.3 mmol) was added. The reaction was refluxed. After substrate **iv** was consumed, the mixture was cooled to room temperature. And the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography to afford the α , β -unsaturated ketone products **iii**.
- 3) Iron powder (20.0 mmol, 10 equiv.) and concd. hydrochloric acid (ca. 10 mg) were added to a solution of iii (2.0 mmol) in EtOH (10 mL) and water (2.5 mL). The mixture was heated to reflux and monitored by TLC. After substrate iii was consumed, the mixture was cooled to room temperature and extracted with ethyl acetate three times. The combined organic phases were washed with saturated brine, dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to afford 1. (A modified method of Jens Christoffers, according to ref: Claas L üder Diedrich, Wolfgang Frey and Jens Christoffers* *Eur. J. Org. Chem.* 2008, 1811–1816).

Method C:

To a N₂-purged dry flask was added 2-iodoaniline \mathbf{v} (1.0 mmol), dichlorobis(tri-*o*-tolylphosphine)palladium(II) (0.06 mmol), but-3-en-2-one \mathbf{vi} (1.4 mmol), Et₃N (1.3 mmol) and MeCN (6.0 mL). The reaction was heated to reflux for 24 h. After 2iodoaniline \mathbf{v} was consumed, the mixture was cooled to room temperature and diluted with ethyl acetate. The organic layer was washed with water and brine. The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was purified by silica gel column chromatography to afford **1**. (A modified method of Naoto Chatani, according to ref: Mamoru Tobisu, Hirokazu Fujihara, Keika Koh and Naoto Chatani* *J. Org. Chem.* **2010**, *75*, 4841–4847).

Substrates **1b-1x** were prepared according to **Method A**. Substrates **1a**, **1y-1ad**, **1ak-1am** were prepared according to **Method B**. Substrates **1ae-1aj** were prepared according to **Method C**.

S3

Typical procedure: Substrate **1** (0.1 mmol) and anhydrous THF (1.0 mL) were added to a 5 mL flask. The solution was stirred under irradiation of blue LEDs (5 W LED light band was used, see **Fig. 1**). The reaction was monitored by TLC. After the consumption of starting materials, the mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography to afford quinoline product **2**. (*Please Note: Low power blue LED light band (only 5 W) was used in the experiment. Exothermic effect was not obvious. The reactions were conducted at room temperature while the inside temperature was 1.5 °C higher than room temperature.)*

For gram-scale experiment: Substrate 1a (1.79 g, 11.1 mmol) and anhydrous THF (50 mL) were added to a 100 mL flask. The solution was stirred under irradiation of blue LEDs (5 W LED light band was used, see Fig. 1). The reaction was monitored by TLC. After 5 days, the mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane : ethyl acetate = 10 : 1) to afford quinoline product 2a (1.49 g, 10.4 mmol, 93%).

IV. UV-visible absorption spectra of 1a and 2a

The UV-visible absorption spectra were recorded in MeCN in 1 cm path quartz cuvettes using a Shimadzu UV-2600 UV-visible spectrophotometer. The substrate concentrations are $10 \,\mu$ M in MeCN.

(*E*)-4-(2-aminophenyl)but-3-en-2-one (1a): Following method B, compound 1a was obtained in 42% yield (three steps, 1.79 g, yellow oil). ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.37 (3.0H, s), 3.99 (2.0H, br), 6.67 (1.0H, d, *J*=15.95 Hz), 6.71 (1.0H, dd, *J*=0.85, 8.10 Hz), 6.78 (1.0H, t, *J*=7.58 Hz), 7.18 (1.0H, dd, *J*=1.48, 15.33 Hz), 7.39 (1.0H, dd, *J*=1.30, 7.80 Hz), 7.68 (1.0H, d, *J*=15.95 Hz); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 28.0, 116.9, 119.1, 119.9, 126.8, 128.2, 131.5, 138.6, 145.8, 198.1; HRMS calculated for C₁₀H₁₂NO ([M + H]⁺): 162.0919, found: 162.0914.

(*E*)-3-(2-aminophenyl)-1-phenylprop-2-en-1-one (1b): Following method A, compound 1b was obtained in 58% yield (two steps, 0.263 g, yellow solid, mp. 113–116 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 4.06 (2.0H, br), 6.73 (1.0H, d, *J*=8.04 Hz), 6.80 (1.0H, t, *J*=7.52 Hz), 7.21 (1.0H, m), 7.47-7.61 (5.0H, m), 7.97-8.04 (3.0H, m); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 116.8, 118.9, 120.3, 121.8, 128.1, 128.4, 128.6, 131.7, 132.7, 138.3, 140.1, 146.2, 190.3; HRMS calculated for C₁₅H₁₄NO ([M + H]⁺): 224.1075, found: 224.1070.

(*E*)-3-(2-aminophenyl)-1-(p-tolyl)prop-2-en-1-one (1c): Following method A, compound 1c was obtained in 76% yield (two steps, 0.294 g, yellow solid, mp. 125–128 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.44 (3.0H, s), 4.07 (2.0H, br), 6.73 (1.0H, d, *J*=8.08 Hz), 6.80 (1.0H, t, *J*=7.50 Hz), 7.17-7.22 (1.0H, m), 7.30 (2.0H, d, *J*=8.04 Hz), 7.47-7.54 (2.0H, m), 7.93-8.00 (3.0H, m); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 21.6, 116.7, 118.9, 120.4, 121.9, 128.1, 128.6, 129.3, 131.5, 135.7, 139.6, 143. 6, 146.1, 189.8; HRMS calculated for C₁₆H₁₆NO ([M + H]⁺): 238.1232, found: 238.1228.

(*E*)-3-(2-aminophenyl)-1-(4-ethylphenyl)prop-2-en-1-one (1d): Following method A, compound 1d was obtained in 47% yield (two steps, 0.215 g, yellow solid, mp. 91–94 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 1.28 (3.0H, t, *J*=7.60 Hz), 2.73 (2.0H, q, *J*=7.60 Hz), 4.07 (2.0H, br), 6.73 (1.0H, d, *J*=8.04 Hz), 6.80 (1.0H, t, *J*=7.52 Hz), 7.20 (1.0H, m), 7.33 (2.0H, d, *J*=8.12 Hz), 7.47-7.54 (2.0H, m), 7.96-8.00 (3.0H, m); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 15.2, 28.9, 116.7, 118.9, 120.4, 121.9, 128.1, 128.1, 128.7, 131.5, 135.9, 139.6, 146.1, 149.7, 189.8; HRMS calculated for C₁₇H₁₇NNaO ([M + Na]⁺): 274.1208, found: 274.1202.

(*E*)-3-(2-aminophenyl)-1-mesitylprop-2-en-1-one (1e): Following method A, compound 1e was obtained in 76% yield (two steps, 0.283 g, yellow oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.21 (6.0H, s), 2.32 (3.0H, s), 3.88 (2.0H, br), 6.68 (1.0H, d, *J*=8.08 Hz), 6.77 (1.0H, m), 6.87 (3.0H, m), 7.18 (1.0H, m), 7.41 (2.0H, m); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 19.4,

21.1, 116.8, 119.0, 119.6, 128.0, 128.4, 131.9, 134.0, 137.4, 138.3, 141.7, 145.9, 201.0; HRMS calculated for $C_{18}H_{19}NNaO$ ([M + Na]⁺): 288.1364, found: 288.1361.

(*E*)-3-(2-aminophenyl)-1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (1f): Following method A, compound 1f was obtained in 42% yield (two steps, 0.189 g, yellow solid, mp. 122–124 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =4.09 (2.0H, br), 6.74 (1.0H, dd, *J*=0.80, 8.12 Hz), 6.81 (1.0H, t, *J*=7.52 Hz), 7.23 (1.0H, t, *J*=8.38 Hz), 7.45 (1.0H, d, *J*=15.36 Hz), 7.54 (1.0H, dd, *J*=1.22, 7.86 Hz), 7.76 (2.0H, d, *J*=8.16 Hz), 8.03 (1.0H, d, *J*=15.41 Hz), 8.11 (2.0H, d, *J*=8.08 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 116.9, 119.0, 119.9, 121.0, 125.6 (q, ³*J*(C,F) = 3.6 Hz), 128.2, 128.7, 132.1, 133.8, 134.0, 141.2, 141.3, 146.5, 189.3; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) = -63.0; HRMS calculated for C₁₆H₁₃F₃NO ([M + H]⁺): 292.0949, found: 292.0942.

(*E*)-3-(2-aminophenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (1g): Following method A, compound 1g was obtained in 72% yield (two steps, 0.258 g, yellow solid, mp. 122–125 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 3.88 (3.0H, s), 4.10 (2.0H, br), 6.72 (1.0H, d, *J*=8.04 Hz), 6.79 (1.0H, t, *J*=7.50 Hz), 6.97 (2.0H, d, *J*=8.80 Hz), 7.19 (1.0H, m), 7.50 (2.0H, m), 7.97 (1.0H, d, *J*=15.32 Hz), 8.04 (2.0H, d, *J*=8.76 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 55.4, 113.8, 116.7, 118.8, 120.4, 121.6, 128.0, 130.7, 131.1, 131.4, 139.2, 146.1, 163.3, 188.5; HRMS calculated for C₁₆H₁₆NO₂ ([M + H]⁺): 254.1181, found: 254.1178.

(*E*)-3-(2-aminophenyl)-1-(2-methoxyphenyl)prop-2-en-1-one (1h): Following method A, compound 1h was obtained in 67% yield (two steps, 0.325 g, yellow oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =3.90 (3.0H, s), 4.05 (2.0H, br), 6.70 (1.0H, dd, *J*=0.84, 8.08 Hz), 6.77 (1.0H, t, *J*=7.50 Hz), 6.99 (1.0H, d, *J*=8.32 Hz), 7.04 (1.0H, m), 7.17 (1.0H, m), 7.33 (1.0H, d, *J*=15.69 Hz), 7.47 (2.0H, m), 7.65 (1.0H, dd, *J*=1.8, 7.53 Hz), 7.82 (1.0H, d, *J*=15.69 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 55.7, 111.6, 116.6, 118.7, 120.4, 120.7, 126.9, 128.3, 129.4, 130.4, 131.2, 132.9, 138.4, 146.1, 158.1, 192.5; HRMS calculated for C₁₆H₁₅NNaO₂ ([M + Na]⁺): 276.1000, found: 276.0997.

(*E*)-3-(2-aminophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (1i): Following method A, compound 1i was obtained in 49% yield (two steps, 0.218 g, yellow solid, mp. 135–137 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =4.08 (2.0H, br), 6.73 (1.0H, d, *J*=8.08 Hz), 6.80 (1.0H, t, *J*=7.52 Hz), 7.14-7.22 (3.0H, m), 7.45 (1.0H, d, *J*=15.32 Hz), 7.52 (1.0H, dd, *J*=1.08, 7.84 Hz), 8.00 (1.0H, d, *J*=15.36 Hz), 8.06 (2.0H, dd, *J*=5.44, 8.84 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 115.7 (d, ²*J*(C,F) = 21.7 Hz), 116.8, 118.9, 120.1, 121.2, 128.1, 131.0 (d, ³*J*(C,F) = 9.2 Hz), 131.8, 134.6 (d, ⁴*J*(C,F) = 3.0 Hz), 140.3, 146.3, 165.5 (d, ¹*J*(C,F) = 252.7 Hz), 188.5; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) = -105.7; HRMS calculated for C₁₅H₁₃FNO ([M + H]⁺): 242.0981, found: 242.0978.

(*E*)-3-(2-aminophenyl)-1-(4-chlorophenyl)prop-2-en-1-one (1j): Following method A, compound 1j was obtained in 43% yield (two steps,0.171 g, yellow solid, mp. 120–123 °C). ¹H NMR (500 MHz, CDCl₃): δ (ppm) =4.09 (2.0H, br), 6.73 (1.0H, d, *J*=7.95 Hz), 6.80 (1.0H, t, *J*=7.50 Hz), 7.21 (1.0H, t, *J*=8.28 Hz), -7.43 (1.0H, d, *J*=15.35 Hz), 7.47 (2.0H, d, *J*=8.55 Hz), 7.52 (1.0H, dd, *J*=0.85, 7.63 Hz), 7.96 (2.0H, d, *J*=8.50 Hz), 8.00 (1.0H, d, *J*=15.35 Hz); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 116.9, 118.9, 120.1, 121.1, 128.1, 128.9, 129.8, 131.9, 136.6, 139.1, 140.6, 146.3, 188.9; HRMS calculated for C₁₅H₁₃ClNO ([M + H]⁺): 258.0686, found: 258.0675.

(*E*)-3-(2-aminophenyl)-1-(4-bromophenyl)prop-2-en-1-one (1k): Following method A, compound 1k was obtained in 48% yield (two steps, 0.204 g, orange solid, mp. 127–129 °C). ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 4.07 (2.0H, br), 6.73 (1.0H, d, *J*=8.10 Hz), 6.80 (1.0H, t, *J*=7.52 Hz), 7.22 (1.0H, m), 7.43 (1.0H, d, *J*=15.34 Hz), 7.52 (1.0H, d, *J*=7.11 Hz), 7.64 (2.0H, d, *J*=8.49 Hz), 7.89 (2.0H, d, *J*=8.52 Hz), 8.00 (1.0H, d, *J*=15.37 Hz); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) =116.9, 118.9, 120.0, 121.0, 127.8, 128.1, 129.9, 131.9, 137.0, 140.6, 146.3, 189.1; HRMS calculated for C₁₅H₁₃BrNO ([M + H]⁺): 302.0181, found: 302.0172.

(*E*)-3-(2-aminophenyl)-1-(4-iodophenyl)prop-2-en-1-one (11): Following method A, compound 11 was obtained in 34% yield (two steps, 0.364 g, orange solid, mp. 126–129 °C). ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 4.08 (2.0H, br), 6.73 (1.0H, d, *J*=8.10 Hz), 6.80 (1.0H, t, *J*=7.52 Hz), 7.21 (1.0H, t, *J*=8.34 Hz), 7.42 (1.0H, d, *J*=15.37 Hz), 7.52 (1.0H, dd, *J*=0.93, 7.83 Hz), 7.73 (2.0H, d, *J*=8.49 Hz), 7.86 (2.0H, d, *J*=8.49 Hz), 8.00 (1.0H, d, *J*=15.37 Hz); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 100.5, 116.9, 118.9, 120.0, 120.9, 128.1, 129.8, 131.9, 137.5, 137.9, 140.6, 146.3, 189.4; HRMS calculated for C₁₅H₁₃INO ([M + H]⁺): 350.0042, found: 350.0041.

(*E*)-4-(3-(2-aminophenyl)acryloyl)benzonitrile (1m): Following method A, compound 1m was obtained in 54% yield (two steps, 0.285 g, orange solid, mp. 154–158 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 4.09 (2.0H, br), 6.74 (1.0H, dd, *J*=0.78, 8.14 Hz), 6.81 (1.0H, t, *J*=7.54 Hz), 7.23 (1.0H, t, *J*=6.94 Hz), 7.42 (1.0H, d, *J*=15.32 Hz), 7.53 (1.0H, dd, *J*=1.22, 7.86 Hz), 7.80 (2.0H, d, *J*=8.56 Hz), 8.04 (1.0H, d, *J*=15.32 Hz), 8.09 (2.0H, d, *J*=8.56 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) =115.9, 117.0, 118.0, 119.0, 119.7, 120.5, 128.2, 128. 8, 132.3, 132.5, 141.6, 141.7, 146.6, 188.8; HRMS calculated for C₁₆H₁₃N₂O ([M + H]⁺): 249.1028, found: 249.1016.

(*E*)-3-(2-aminophenyl)-1-(4-aminophenyl)prop-2-en-1-one (1n): Following method A, compound 1n was obtained in 50% yield (two steps, 0.213 g, yellow solid, mp. 176–178 °C). ¹H NMR (400 MHz, CD₃CN): δ (ppm) = 4.53 (2.0H, br), 4.84 (2.0H, br), 6.67-6.71 (3.0H, m), 6.73 (1.0H, dd, *J*=0.80, 8.08 Hz), 7.15 (1.0H, t, *J*=8.40 Hz), 7.52-7.59 (2.0H, q, *J*=8.15 Hz), 7.84-7.91 (3.0H, m); ¹³C NMR (100 MHz, CD₃CN): δ (ppm) = 114.2, 117.4, 118.74, 121.0, 122.4, 128.3, 128.7, 131.8, 132.0, 138.7, 148.3, 153.8, 188.0; HRMS calculated for C₁₅H₁₅N₂O ([M + H]⁺): 239.1184, found: 239.1179.

(*E*)-3-(2-aminophenyl)-1-(naphthalen-2-yl)prop-2-en-1-one (10): Following method A, compound 10 was obtained in 65% yield (two steps, 0.262 g, orange solid, mp. 143–145 °C). ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 4.11 (2.0H, br), 6.74 (1.0H, d, *J*=8.04 Hz), 6.83 (1.0H, t, *J*=7.49 Hz), 7.22 (1.0H, t, *J*=8.34 Hz), 7.62 (4.0H, m), 8.01 (5.0H, m), 8.54 (1.0H, s); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 116.8, 118.9, 120.3, 121.8, 124.4, 126.7, 127.8, 128.2, 128.3, 128.5, 129.5, 129.8, 131.7, 132. 6, 135.4, 135.6, 140.0, 146.3, 190.0; HRMS calculated for C₁₉H₁₆NO ([M + H]⁺): 274.1232, found: 274.1225.

(*E*)-3-(2-aminophenyl)-1-(pyridin-4-yl)prop-2-en-1-one (1p): Following method A, compound 1p was obtained in 8% yield (two steps, 83.0 mg, dark red solid, mp. 150–152 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 4.11 (2.0H, br), 6.73 (1.0H, dd, J=0.80, 8.12 Hz), 6.80 (1.0H, t, J=7.54 Hz), 7.23 (1.0H, t, J=8.42 Hz), 7.39 (1.0H, d, J=15.41 Hz), 7.53 (1.0H, dd, J=1.30, 7.86 Hz), 7.78 (2.0H, d, J=6.08 Hz), 8.03 (1.0H, d, J=15.41 Hz), 8.82 (2.0H, d, J=6.04 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm)

= 117.0, 119.0, 119.6, 120.4, 121.4, 128.2, 132.4, 142.0, 144.5, 146.6, 150.8, 189.4; HRMS calculated for $C_{14}H_{13}N_2O$ ([M + H]⁺): 225.1028, found: 225.1025.

(*E*)-3-(2-aminophenyl)-1-(furan-2-yl)prop-2-en-1-one (1q): Following method A, compound 1q was obtained in 31% yield (two steps, 0.283 g, orange solid, mp. 127–128 °C). ¹H NMR (500 MHz, CDCl₃): δ (ppm) =4.12 (2.0H, br), 6.58 (1.0H, dd, *J*=1.68, 3.53 Hz), 6.72 (1.0H, d, *J*=8.00 Hz), 6.78 (1.0H, t, *J*=7.50 Hz), 7.19 (1.0H, t, *J*=8.30 Hz), 7.31 (1.0H, d, *J*=3.55 Hz), 7.37 (1.0H, d, *J*=15.45 Hz), 7.53 (1.0H, d, *J*=6.95 Hz), 7.64 (1.0H, d, *J*=0.95 Hz), 8.03 (1.0H, d, *J*=15.50 Hz); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 112.4, 116.8, 117.3, 118.8, 119.9, 120.8, 128.1, 131.7, 139.2, 146.4, 146.4, 153.7, 178.0; HRMS calculated for C₁₃H₁₂NO₂ ([M +H]⁺): 214.0868, found: 214.0862.

(*E*)-3-(2-aminophenyl)-1-(thiophen-2-yl)prop-2-en-1-one (1r): Following method A, compound 1r was obtained in 58% yield (two steps, 0.350 g, yellow solid, mp. 119–120 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =4.09 (2.0H, br), 6.73 (1.0H, d, *J*=8.08 Hz), 6.80 (1.0H, t, *J*=7.52 Hz), 7.17-7.23 (2.0H, m), 7.36 (1.0H, d, *J*=15.28 Hz), 7.52 (1.0H, d, *J*=7.80 Hz), 7.67 (1.0H, d, *J*=4.88 Hz), 7.85 (1.0H, d, *J*=3.76 Hz), 8.01 (1.0H, d, *J*=15.28 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) =116.8, 118.8, 120.0, 121.4, 128.1, 128.2, 131.6, 131.7, 133.7, 139.3, 145.7, 146.3, 182.0; HRMS calculated for C₁₃H₁₂NOS ([M + H]⁺): 230.0640, found: 230.0634.

(*E*)-2-(2-aminobenzylidene)cyclopentanone (1s): Following method B, compound 1s was obtained in 14% yield (three steps, 0.320 g, yellow solid, mp. 106–108 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.00 (2.0H, m), 2.41 (2.0H, t, *J*=7.78 Hz), 2.89 (2.0H, dt, *J*=2.60, 7.14 Hz), 3.96 (2.0H, br), 6.71 (1.0H, dd, *J*=0.92, 8.08 Hz), 6.77 (1.0H, t, *J*=7.52 Hz), 7.16 (1.0H, t, *J*=8.40 Hz), 7.30 (1.0H, dd, *J*=1.04, 7.76 Hz), 7.43 (1.0H, t, *J*=2.56 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 20.4, 29.4, 38.0, 116.0, 118.1, 120.4, 126.7, 129.3, 130.5, 136.4, 146.4, 207.9; HRMS calculated for C₁₂H₁₄NO ([M + H]⁺): 188.1075, found: 188.1069.

(E)-2-(2-aminobenzylidene)cyclohexanone (1t): Following method B, compound 1t was obtained in 19% yield (three steps,

0.310 g, yellow solid, mp. 97–98 °C). ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 1.70-1.75 (2.0H, m), 1.90-1.95 (2.0H, m), 2.53 (2.0H, t, *J*=6.75 Hz), 2.71 (2.0H, dt, *J*=1.84, 6.50 Hz), 3.81 (2.0H, br), 6.70 (1.0H, d, *J*=8.00 Hz), 6.73 (1.0H, t, *J*=7.50 Hz), 7.08 (1.0H, d, *J*=7.60 Hz), 7.12 (1.0H, t, *J*=7.65 Hz), 7.39 (1.0H, s); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 23.6, 24.0, 28.9, 40.4, 115.5, 117.7, 120.7, 129.7, 130.9, 138.0, 145.4, 201.7; HRMS calculated for C₁₃H₁₅NNaO ([M + Na]⁺): 224.1051, found: 224.1047.

(*E*)-2-(2-aminobenzylidene)cycloheptanone (1u): Following method B, compound 1u was obtained in 16% yield (three steps, 0.302 g, yellow solid, mp. 136–137 °C). ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 1.70-1.79 (6.0H, m), 2.59-2.62 (2.0H, m), 2.70-2.72 (2.0H, m), 3.75 (2.0H, br), 6.71 (1.0H, d, *J*=8.05 Hz), 6.75 (1.0H, t, *J*=7.45 Hz), 7.04 (1.0H, d, *J*=7.55 Hz), 7.13 (1.0H, t, *J*=8.18 Hz), 7.47 (1.0H, s); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 25.4, 28.0, 29.7, 31.1, 43.4, 124.8, 128.7, 131.0, 132.6, 132.8, 133.1, 141.5, 203.3; HRMS calculated for C₁₄H₁₈NO ([M + H]⁺): 216.1388, found: 216.1384.

(*E*)-2-(2-aminobenzylidene)-2,3-dihydro-1H-inden-1-one (1v): Following method B, compound 1v was obtained in 27% yield (three steps, 0.136 g, yellow solid, mp. 181–183 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) = 4.03 (2.0H, br), 5.64 (2.0H, s), 6.63 (1.0H, t, *J*=7.44 Hz), 6.75 (1.0H, d, *J*=7.40 Hz), 7.11 (1.0H, t, *J*=8.24 Hz), 7.47 (1.0H, t, *J*=6.66 Hz), 7.54 (1.0H, d, *J*=7.12 Hz), 7.64-7.71 (3.0H, m), 7.78 (1.0H, d, *J*=7.60 Hz); ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) = 32.0, 116.1, 116.2, 118.5, 123.3, 126.6, 127.5, 129.2, 129.4, 130.9, 133.1, 134.4, 137.7, 149.6, 149.9, 193.1; HRMS calculated for C₁₆H₁₄NO ([M + H]⁺): 236.1075, found: 236.1072.

(*E*)-2-(2-aminobenzylidene)-3,4-dihydronaphthalen-1(2H)-one (1w): Following method B, compound 1w was obtained in 52% yield (three steps, 0.271 g, yellow solid, mp. 116–119 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.91-2.95 (2.0H, m), 3.00-3.03 (2.0H, m), 3.87 (2.0H, br), 6.74-6.80 (2.0H, m), 7.13-7.19 (2.0H, m), 7.25 (1.0H, d, *J*=7.52 Hz), 7.37 (1.0H, t, *J*=7.46 Hz), 7.49 (1.0H, t, *J*=7.42 Hz), 7.79 (1.0H, s), 8.15 (1.0H, d, *J*=7.72 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 27.5, 29.1, 115.6, 117.9, 120.9, 127.0, 128.2, 128.2, 129.7, 129.9, 132.4, 133.3, 133.4, 136.6, 143.5, 145.4, 187.8; HRMS calculated for C₁₇H₁₆NO ([M + H]⁺): 250.1232, found: 250.1226.

(*E*)-1-(2-aminophenyl)-2-methylpent-1-en-3-one (1x): Following method B, compound 1x was obtained in 41% yield (three steps, 0.383 g, yellow solid, mp. 60–62 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =1.17 (3.0H, t, *J*=7.28 Hz), 1.96 (3.0H, d, *J*=1.32 Hz), 2.84 (2.0H, q, *J*=7.27 Hz), 3.71 (2.0H, br), 6.74 (1.0H, d, *J*=8.00 Hz), 6.80 (1.0H, t, *J*=7.10 Hz), 7.10-7.17 (2.0H, m), 7.45 (1.0H, s); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 8.7, 13.4, 31.0, 115.7, 118.3, 121.5, 129.5, 129.6, 134.2, 138.5, 144.2, 202.7; HRMS calculated for C₁₂H₁₆NO ([M + H]⁺): 190.1232, found: 190.1228.

(*E*)-4-(2-aminophenyl)-3-methylbut-3-en-2-one (1y): Following method B, compound 1y was obtained in 83% yield (three steps, 0.480 g, yellow solid, mp. 50–54 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =1.95 (3.0H, d, *J*=1.36 Hz), 2.46 (3.0H, s), 3.73 (2.0H, br), 6.75 (1.0H, dd, *J*=0.78, 8.02 Hz), 6.78-6.82 (1.0H, m), 7.11-7.18 (2.0H, m), 7.46 (1.0H, s); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 13.2, 26.0, 115.7, 118.3, 121.4, 129.6, 129.7, 135.7, 139.1, 144.2, 200.1; HRMS calculated for C₁₁H₁₄NO ([M + H]⁺): 176.1075, found: 176.1070.

(*E*)-1-(2-aminophenyl)-4,4-dimethylpent-1-en-3-one (1z): Following method B, compound 1z was obtained in 17% yield (three steps, 0.157 g, yellow solid, mp. 89–92 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 1.23 (9.0H, s), 3.99 (2.0H, br), 6.70 (1.0H, dd, *J*=0.90, 8.10 Hz), 6.77 (1.0H, t, *J*=7.30 Hz), 7.04 (1.0H, d, *J*=15.36 Hz), 7.15-7.20 (1.0H, m), 7.43 (1.0H, dd, *J*=1.34, 7.82 Hz), 7.83 (1.0H, d, *J*=15.32 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 26.4, 43.1, 116.6, 118.8, 120.3, 120.9, 127.9, 131.2, 138.1, 145.9, 204.4; HRMS calculated for C₁₃H₁₈NO ([M + H]⁺): 204.1388, found: 204.1384.

(*E*)-3-(2-aminophenyl)-1-cyclohexylprop-2-en-1-one (1aa): Following method B, compound 1aa was obtained in 22% yield (three steps, 0.240 g, yellow solid, mp. 82–85 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =1.19-1.48 (5.0H, m), 1.69-1.1.73 (1.0H, m), 1.80-1.85 (2.0H, m), 1.90 (2.0H, d, *J*=13.40 Hz), 2.59 (1.0H, tt, *J*=3.36, 11.22 Hz), 3.98 (2.0H, br), 6.70 (1.0H, dd, *J*=0.88, 8.08 Hz), 6.74-6.78 (2.0H, m), 7.15-7.20 (1.0H, m), 7.42 (1.0H, dd, *J*=1.34, 7.82 Hz), 7.76 (1.0H, d, *J*=15.65 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 25.8, 25.9, 28.7, 50.0, 116.7, 118.9, 120.1, 124.5, 128.0, 131.3, 137.5, 145.9, 203.0; HRMS

calculated for $C_{15}H_{20}NO([M + H]^+)$: 230.1545, found: 230.1540.

(*E*)-4-(2-amino-5-fluorophenyl)but-3-en-2-one (1ab): Following method A, compound 1ab was obtained in 17% yield (two steps, 0.109 g, yellow solid, mp. 128–130 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.36 (3.0H, s), 3.86 (2.0H, br), 6.63 (1.0H, d, *J*=15.89 Hz), 6.66 (1.0H, dd, *J*=4.68, 8.80 Hz), 6.91 (1.0H, td, *J*=2.92, 8.91 Hz), 7.09 (1.0H, dd, *J*=2.86, 9.50 Hz), 7.61 (1.0H, dd, *J*=1.00, 15.89 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 28.3, 113.3 (d, ²*J*(C,F) = 22.7 Hz), 118.1 (d, ³*J*(C,F) = 7.7 Hz), 118.4, 118.6, 120.9 (d, ³*J*(C,F) = 7.1 Hz), 127.5, 137.2 (d, ⁴*J*(C,F) = 2.32 Hz), 142.0, 156.3 (d, ¹*J*(C,F) = 235.7 Hz), 197.9; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) = -125.8; HRMS calculated for C₁₀H₁₁FNO ([M + H]⁺): 180.0825, found: 180.0820.

(*E*)-4-(2-amino-4-chlorophenyl)but-3-en-2-one (1ac): Following method A, compound 1ac was obtained in 20% yield (two steps, 36.5 mg, yellow solid, mp. 76–79 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.35 (3.0H, s), 4.04 (2.0H, s), 6.62 (1.0H, d, *J*=2.52 Hz), 6.65 (1.0H, d, *J*=4.64 Hz), 7.11 (1.0H, dd, *J*=2.36, 8.60 Hz), 7.34 (1.0H, d, *J*=2.32 Hz), 7.57 (1.0H, d, *J*=15.89 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 28.4, 118.0, 121.0, 123.7, 127.2, 127.3, 131.1, 136.9, 144.4, 197.8; HRMS calculated for C₁₀H₁₁ClNO ([M + H]⁺): 196.0529, found: 196.0526.

(*E*)-4-(2-amino-4-bromophenyl)but-3-en-2-one (1ad): Following method A, compound 1ad was obtained in 17% yield (two steps, 0.166 g, pale yellow solid, mp. 130–132 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =2.35 (3.0H, s), 4.06 (2.0H, br), 6.65 (1.0H, d, *J*=15.89 Hz), 6.87-6.90 (2.0H, m), 7.23 (1.0H, d, *J*=9.00 Hz), 7.57 (1.0H, d, *J*=15.93 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 28.3, 118.7, 119.3, 122.1, 125.4, 126.9, 129.3, 137.4, 146.8, 197.9; HRMS calculated for C₁₀H₁₁BrNO ([M + H]⁺): 240.0024, found: 240.0021.

(*E*)-4-amino-3-(3-oxobut-1-en-1-yl)benzonitrile (1ae): Following method C, compound 1ae was obtained in 43% (79.1 mg, yellow solid, mp. 142–143 °C). ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.37 (3.0H, s), 4.51 (2.0H, br), 6.71-6.67 (2.0H, m), 7.40 (1.0H, q, *J*=3.42 Hz), 7.54 (1.0H, d, *J*=15.80 Hz), 7.65 (1.0H, d, *J*=1.60 Hz); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) =

28.8, 101.4, 116.4, 119.2, 119.7, 128.4, 132.6, 134.3, 135.7, 149.1, 197.2; HRMS calculated for $C_{11}H_{10}N_2NaO$ ([M + Na]⁺): 209.0691, found: 209.0681.

(*E*)-methyl 4-amino-3-(3-oxobut-1-en-1-yl)benzoate (1af): Following method C, compound 1af was obtained in 51% (112.7 mg, yellow solid, mp. 139–140 °C). ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.37 (3.0H, s), 3.87 (3.0H, s), 4.42 (2.0H, br), 6.68 (1.0H, d, *J*=8.50 Hz), 6.76 (1.0H, d, *J*=15.80 Hz), 7.62 (1.0H, d, *J*=15.80 Hz), 7.84 (1.0H, q, *J*=3.38 Hz), 8.11 (1.0H, d, *J*=1.45 Hz); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 28.6, 51.8, 115.8, 118.7, 120.4, 127.5, 130.4, 132.7, 137.1, 149.6, 166.6, 197.7; HRMS calculated for C₁₂H₁₃NNaO₃ ([M + Na]⁺): 242.0793, found: 242.0792.

(*E*)-4-(2-amino-5-methylphenyl)but-3-en-2-one (1ag): Following method C, compound 1ag was obtained in 49% (86.0 mg, yellow oil). ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.24 (3.0H, s), 2.35 (3.0H, s), 3.86 (2.0H, br), 6.67-6.62 (2.0H, m), 7.00 (1.0H, q, *J*=3.28 Hz), 7.21 (1.0H, s), 7.66 (1.0H, d, *J*=15.95 Hz); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 20.3, 28.0, 117.1, 120.0, 126.6, 128.3, 128.3, 132.5, 138.7, 143.6, 198.1; HRMS calculated for C₁₁H₁₄NO ([M + H]⁺): 176.1070, found: 176.1066.

(*E*)-4-(2-amino-3,5-dimethylphenyl)but-3-en-2-one (1ah): Following method C, compound 1ah was obtained in 37% (69.4 mg, yellow oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.16 (3.0H, s), 2.22 (3.0H, s), 2.36 (3.0H, s), 3.87 (2.0H, br), 6.65 (1.0H, d, *J*=15.85 Hz), 6.93 (1.0H, s), 7.10 (1.0H, s), 7.71 (1.0H, d, *J*=15.89 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 17.5, 20.3, 28.1, 119.4, 123.4, 125.9, 126.5, 127.4, 133.7, 139.0, 141.9, 198.2; HRMS calculated for C₁₂H₁₆NO ([M + H]⁺): 190.1226, found: 190.1227.

(*E*)-4-(2-amino-5-methoxyphenyl)but-3-en-2-one (1ai): Following method C, compound 1ai was obtained in 21% (40.8 mg, yellow oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.37 (3H, s), 3.73 (2H, br), 3.76 (3H, s), 6.68-6.62 (2H, m), 6.82 (1.0H, dd, *J*=2.90, 8.74 Hz), 6.92 (1.0H, d, *J*=2.84 Hz), 7.67 (1.0H, d, J=15.97 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 27.9, 55.7, 111.3, 118.5, 119.0, 120.8, 126.9, 138.5, 139.9, 152.9, 198.2; HRMS calculated for C₁₁H₁₄NO₂ ([M + H]⁺): 192.1019,

found: 192.1018.

1aj

(*E*)-4-(2-amino-4-methoxyphenyl)but-3-en-2-one (1aj): Following method C, compound 1aj was obtained in 28% (53.9 mg, yellow solid, mp. 122–123 °C). ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 2.36 (3.0H, s), 3.81 (3.0H, s), 4.08 (2.0H, br), 6.23 (1.0H, d, *J*=2.46 Hz), 6.39 (1.0H, q, *J*=3.72 Hz), 6.59 (1.0H, d, *J*=15.82 Hz), 7.38 (1.0H, d, *J*=8.73 Hz), 7.65 (1.0H, d, *J*=15.85 Hz); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 28.1, 55.3, 101.2, 106.2, 113.0, 124.1, 129.9, 138.4, 147.8, 162.7, 198.2; HRMS calculated for C₁₁H₁₃NNaO₂ ([M + Na]⁺): 214.0844, found: 214.0838.

(*E*)-4-(6-aminobenzo[*d*][1,3]dioxol-5-yl)but-3-en-2-one (1ak): Following method A, compound 1ak was obtained in 12% yield (two steps, 81.0 mg, yellow solid, mp. 102–103 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.33 (3.0H, s), 3.91 (2.0H, br), 5.90 (2.0H, s), 6.25 (1.0H, s), 6.49 (1.0H, d, *J*=15.65 Hz), 6.87 (1.0H, s), 7.63 (1.0H, d, *J*=15.65 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 28.2, 98.2, 101.2, 105.6, 112.1, 123.6, 137.8, 141.4, 142.9, 151.0, 198.0; HRMS calculated for C₁₁H₁₂NO₃ ([M + H]⁺): 206.0817, found: 206.0812.

(*E*)-4-(2,4-diaminophenyl)but-3-en-2-one (1al): Following method A, compound 1al was obtained in 13% yield (two steps, 0.127 g, dark brown oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.65 (3.0H, s), 3.84 (4.0H, br), 6.89 (1.0H, dd, *J*=2.12, 8.64 Hz), 7.00 (1.0H, d, *J*=8.24 Hz), 7.16 (1.0H, d, *J*=1.88 Hz), 7.53 (1.0H, d, *J*=8.60 Hz), 7.86 (1.0H, d, *J*=8.24 Hz); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 26.7, 109.8, 118.9, 128.8, 129.8, 138.5, 148.7, 155.2, 163.6, 198.3; HRMS calculated for C₁₀H₁₃N₂O ([M + H]⁺): 177.1028, found: 177.1023.

(*E*)-4-(2-amino-5-hydroxyphenyl)but-3-en-2-one (1am): Following method A, compound 1am was obtained in 23% yield (two steps, 89.8 mg, brown solid, mp. 109–111 °C). ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) = 2.32 (3.0H, s), 5.13 (2.0H, br), 6.38 (1.0H, d, *J*=16.05 Hz), 6.56-6.65 (2.0H, m), 6.80 (1.0H, d, *J*=2.68 Hz), 7.75 (1.0H, d, *J*=16.09 Hz), 8.61 (1.0H, s); ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) = 26.9, 111.3, 117.9, 118.3, 120.4, 125.0, 139.7, 141.6, 148.4, 198.1; HRMS calculated

VI. ¹H NMR and ¹³C NMR spectra data of the products

2-methylquinoline (**2a**): 99% (20.5 mg, pale yellow oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =2.75 (3.0H, s), 7.28 (1.0H, d, *J*=8.36 Hz), 7.48 (1.0H, t, *J*=7.18 Hz), 7.68 (1.0H, t, *J*=8.36 Hz), 7.77 (1.0H, d, *J*=8.07 Hz), 8.03 (2.0H, t, *J*=8.90 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 25.4, 122.0, 125.6, 126.5, 127.5, 128.6, 129.4, 136.1, 147.9, 159.0; HRMS calculated for C₁₀H₁₀N ([M + H]⁺): 144.0813, found: 144.0807.

2-phenylquinoline (**2b**): 97% (21.1 mg, white solid, mp. 73–76 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.48 (1.0H, t, *J*=7.24 Hz), 7.51-7.56 (3.0H, m), 7.74 (1.1H, t, *J*=8.36 Hz), 7.83 (1.0H, d, *J*=8.12 Hz), 7.88 (1.0H, d, *J*=8.60 Hz), 8.17-8.23 (4.0H, m); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 119.0, 126.2, 127.2, 127.4, 127.5, 128.8, 129.3, 129.6, 129.7, 136.7, 139. 7, 148.3, 157.3; HRMS calculated for C₁₅H₁₂N ([M + H]⁺): 206.0970, found: 206.0963.

2-(*p*-tolyl)quinoline (2c): 99% (20.9 mg, white solid, mp. 72–75 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =2.44 (3.0H, s), 7.34 (2.0H, d, *J*=7.92 Hz), 7.51 (1.0H, t, *J*=6.96 Hz), 7.72 (1.0H, t, *J*=8.34 Hz), 7.81 (1.0H, d, *J*=7.24 Hz), 7.86 (1.0H, d, *J*=8.64 Hz), 8.09 (2.0H, d, *J*=8.16 Hz), 8.18 (2.0H, d, *J*=15.77 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 21.3, 118.8, 126.0, 127.1, 127.4, 129.5, 129.6, 136.6, 136.8, 139.3, 148.3, 157.3; HRMS calculated for C₁₆H₁₄N ([M + H]⁺): 220.1126, found: 220.1121.

2-(4-ethylphenyl)quinoline (**2d**): 94% (16.0 mg, white solid, mp. 48–49 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 1.30 (3.0H, t, *J*=7.60 Hz), 2.74 (2.0H, q, *J*=7.60 Hz), 7.37 (2.0H, d, *J*=8.12 Hz), 7.52 (1.0H, t, *J*=7.46 Hz), 7.72 (1.0H, t, *J*=8.30 Hz), 7.82 (1.0H, d, *J*=8.32 Hz), 7.87 (1.0H, d, *J*=8.56 Hz), 8.10 (2.0H, d, *J*=8.16 Hz), 8.19 (2.0H, t, *J*=9.66 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 15.5, 28.7, 118.9, 126.0, 127.1, 127.4, 127.5, 128.4, 129.5, 129.7, 136.6, 137.1, 145.7, 148.3, 157.4; HRMS calculated for C₁₇H₁₆N ([M + H]⁺): 234.1283, found: 234.1277.

2-mesitylquinoline (**2e**): 61% (28.7 mg, pale yellow oil). ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.06 (6.0H, s), 2.35 (3.0H, s), 6.98 (2.0H, s), 7.36 (1.0H, d, *J*=8.35 Hz), 7.58 (1.0H, t, *J*=7.85 Hz), 7.74 (1.0H, t, *J*=8.28 Hz), 7.88 (1.0H, d, *J*=8.05 Hz), 8.17 (1.0H, d, *J*=8.45 Hz), 8.21 (1.0H, d, *J*=8.35 Hz); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 20.1, 21.1, 122.9, 126.3, 126.7, 127.5, 128.4, 129.4, 129.5, 135.6, 136.1, 137.6, 137.9, 148.2, 160.6; HRMS calculated for C₁₈H₁₈N ([M + H]⁺): 248.1439, found: 248.1435.

2-(4-(trifluoromethyl)phenyl)quinoline (**2f**): 71% (17.3 mg, white solid, mp. 122–124 °C). ¹H NMR (500 MHz, CDCl₃): δ (ppm) =7.57 (1.0H, t, *J*=8.00 Hz), 7.74-7.79 (3.0H, m), 7.85 (1.0H, d, *J*=8.05 Hz), 7.89 (1.0H, d, *J*=8.55 Hz), 8.19 (1.0H, d, *J*=8.50 Hz), 8.26 (1.0H, d, *J*=8.65 Hz), 8.29 (2.0H, d, *J*=8.15 Hz); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 118.7, 123.1, 125.3, 125.7 (q, ³*J*(C,F) = 3.5 Hz), 126.8, 127.4, 127.5, 127.8, 129.9, 131.1, 137.1, 143.0, 148.3, 155.7; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) = -62.6; HRMS calculated for C₁₆H₁₁F₃N ([M + H]⁺): 274.0844, found: 274.0839.

2-(4-methoxyphenyl)quinoline (**2g**): 91% (20.0 mg, white solid, mp. 118–119 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 3.89 (3.0H, s), 7.05 (2.0H, d, *J*=8.84 Hz), 7.50 (1.0H, t, *J*=7.10 Hz), 7.71 (1.0H, t, *J*=8.36 Hz), 7.80 (1.0H, dd, *J*=1.00, 8.28 Hz), 7.83 (1.0H, d, *J*=8.60 Hz), 8.13-8.18 (4.0H, m); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 55.4, 114.2, 118.5, 125.9, 126.9, 127.4, 128.8, 129.5, 132.2, 136.6, 148.3, 156.9, 160.8; HRMS calculated for C₁₆H₁₄NO ([M + H]⁺): 236.1075, found: 236.1069.

2-(2-methoxyphenyl)quinoline (**2h**): 96% (22.0 mg, pale yellow oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 3.87 (3.0H, s), 7.04 (1.0H, d, *J*=8.20 Hz), 7.14 (1.0H, dt, *J*=0.89, 7.47 Hz), 7.40-7.45 (1.0H, m), 7.53 (1.0H, t, *J*=8.02 Hz), 7.71 (1.0H, t, *J*=8.38 Hz), 7.83 (1.0H, d, *J*=8.12 Hz), 7.86 (1.0H, dd, *J*=1.76, 7.56 Hz), 7.89 (1.0H, d, *J*=8.56 Hz), 8.14 (1.0H, d, *J*=8.60 Hz), 8.18 (1.0H, d, *J*=8.48 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 55.6, 111.4, 121.2, 123.4, 126.1, 127.0, 127.3, 129.1, 129.6, 129.7, 130.3, 131.4, 135.0, 148.3, 157.1, 157.2; HRMS calculated for C₁₆H₁₄NO ([M + H]⁺): 236.1075, found: 236.1073.

2-(4-fluorophenyl)quinoline (**2i**): 90% (19.5 mg, white solid, mp. 90–91 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.21 (2.0H, t, *J*=8.70 Hz), 7.53 (1.0H, t, *J*=8.00 Hz), 7.73 (1.0H, dd, *J*=5.54, 8.42 Hz), 7.82 (2.0H, d, *J*=8.60 Hz), 8.14-8.21 (4.0H, m); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 115.7 (d, ²*J*(C,F) = 21.5 Hz), 118.6, 126.3, 127.1, 127.4, 129.4 (d, ³*J*(C,F) = 8.5 Hz), 129.6, 129.7, 135.8 (d, ⁴*J*(C,F) = 3.0 Hz), 136.9, 148.2, 156.2, 163.8 (d, ¹*J*(C,F) = 247.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) = -112.5; HRMS calculated for C₁₅H₁₁FN ([M + H]⁺): 224.0876, found: 224.0870.

2-(4-chlorophenyl)quinoline (**2j**): 96% (22.0 mg, white solid, mp. 106–110 °C). ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.49 (2.0H, d, *J*=8.58 Hz), 7.55 (1.0H, d, *J*=7.86 Hz), 7.74 (1.0H, t, *J*=8.31 Hz), 7.83 (2.0H, d, *J*=8.58 Hz), 8.12 (2.0H, d, *J*=8.58 Hz), 8.16 (1.0H, d, *J*=8.94 Hz), 8.21 (1.0H, d, *J*=8.64 Hz); ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 118.5, 126.5, 127.2, 127.4, 128.8, 129.0, 129.6, 129.8, 135.5, 136.9, 138.0, 148.2, 155.9; HRMS calculated for C₁₅H₁₁ClN ([M + H]⁺): 240.0580, found: 240.0578.

(*E*)-4-(2-amino-4-bromophenyl)but-3-en-2-one (2k): 97% (29.5 mg, white solid, mp. 113–116 °C). ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 7.54 (1.0H, t, *J*=7.23 Hz), 7.65 (2.0H, d, *J*=8.50 Hz), 7.74 (1.0H, t, *J*=8.23 Hz), 7.83 (2.0H, d, *J*=8.60 Hz), 8.06 (2.0H, d, *J*=8.50 Hz), 8.16 (1.0H, d, *J*=8.50 Hz), 8.21 (1.0H, d, *J*=8.60 Hz); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 118.4, 123.9, 126.5, 127.2, 127.5, 129.1, 129.7, 129.8, 131.9, 136.9, 138.5, 148.2, 156.0; HRMS calculated for C₁₅H₁₁BrN ([M + H]⁺): 284.0075, found: 284.0061.

2-(4-iodophenyl)quinoline (**2l**): 94% (17.9 mg, white solid, mp. 138–141 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.54 (1.0H, t, *J*=8.04 Hz), 7.74 (1.0H, t, *J*=8.42 Hz), 7.82 (2.0H, d, *J*=8.60 Hz), 7.86 (2.0H, d, *J*=8.64 Hz), 7.92 (2.0H, d, *J*=8.64 Hz), 8.16 (1.0H, d, *J*=8.60 Hz), 8.21 (1.0H, d, *J*=8.64 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 95.9, 118.4, 126.5, 127.2, 127.5, 129.2, 129.7, 129.8, 136.9, 137.9, 139.1, 148.2, 156.1; HRMS calculated for C₁₅H₁₁IN ([M + H]⁺): 331.9936, found: 331.9927.

4-(quinolin-2-yl)benzonitrile (**2m**): 30% (5.9 mg, white solid, mp. 90–94 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =7.59 (1.0H, t, *J*=7.18 Hz), 7.77 (1.0H, t, *J*=8.32 Hz), 7.82 (2.0H, d, *J*=8.32 Hz), 7.88 (2.0H, t, *J*=9.12 Hz), 8.18 (1.0H, d, *J*=8.52 Hz), 8.27-8.30 (3.0H, m); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 112.7, 118.6, 118.8, 127.1, 127.5, 128.1, 129.9, 130.1, 132.6, 137.3, 143.7, 148.2, 154.9; HRMS calculated for C₁₆H₁₁N₂ ([M + H]⁺): 231.0922, found: 231.0915.

4-(quinolin-2-yl)aniline (**2n**): 80% (16.6 mg, white solid, mp. 105–108 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 3.88 (2.0H, br), 6.81 (2.0H, d, *J*=8.68 Hz), 7.47 (1.0H, t, *J*=8.06 Hz), 7.69 (1.0H, t, *J*=8.42 Hz), 7.78 (1.0H, d, *J*=8.44 Hz), 7.80 (1.0H, d, *J*=8.80 Hz), 8.03 (2.0H, d, *J*=8.68 Hz), 8.13 (2.0H, t, *J*=7.28 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 115.1, 118.3, 125.5, 126.7, 127.3, 128.8, 129.3, 129.4, 129.9, 136.4, 147.8, 148.3, 157.2; HRMS calculated for C₁₅H₁₃N₂ ([M + H]⁺): 221.1079, found: 221.1074.

2-(naphthalen-2-yl)quinoline (**2o**): 97% (23.5 mg, white solid, mp. 141–144 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =7.53-7.57 (3.0H, m), 7.76 (1.0H, t, *J*=8.28 Hz), 7.85 (1.0H, dd, *J*=1.36, 8.12 Hz), 7.91 (1.0H, dd, *J*=3.44, 5.96 Hz), 8.00-8.04 (3.0H, m), 8.25 (2.0H, d, *J*=8.44 Hz), 8.39 (1.0H, dd, *J*=1.82, 8.62 Hz), 8.63 (1.0H, d, *J*=0.88 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 119.1, 125.0, 126.3, 126.7, 127.1, 127.2, 127.5, 127.7, 128.5, 128.8, 129.7, 129.7, 133.5, 133.8, 136.8, 136.9, 148.3, 157.1; HRMS calculated for C₁₉H₁₄N ([M + H]⁺): 256.1126, found: 256.1120.

2-(pyridin-4-yl)quinoline (**2p**): 34% (6.4 mg, white solid, mp. 80–83 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.59 (1.0H, t, *J*=7.94 Hz), 7.78 (1.0H, t, *J*=8.36 Hz), 7.87 (1.0H, d, *J*=8.16 Hz), 7.91 (1.0H, d, *J*=8.56 Hz), 8.07 (2.0H, d, *J*=6.04 Hz), 8.20 (1.0H, d, *J*=8.48 Hz), 8.30 (1.0H, d, *J*=8.56 Hz), 8.79 (2.0H, d, *J*=5.52 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 118.4, 121.6, 127.2, 127.5, 127.8, 130.0, 130.1, 137.3, 146.7, 148.3, 150.5, 154.5; HRMS calculated for C₁₄H₁₁N₂ ([M + H]⁺): 207.0922, found: 207.0918.

2-(furan-2-yl)quinoline (**2q**): 65% (12.6 mg, colorless oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =6.59 (1.0H, dd, *J*=1.74, 3.38 Hz), 7.22 (1.0H, d, *J*=3.40 Hz), 7.50 (1.0H, t, *J*=7.46 Hz), 7.63 (1.0H, d, *J*=1.00 Hz), 7.70 (1.0H, t, *J*=8.34 Hz), 7.78 (1.0H, d, *J*=8.12 Hz), 7.82 (1.0H, d, *J*=8.60 Hz), 8.13 (1.0H, d, *J*=8.56 Hz), 8.16 (1.0H, d, *J*=8.72 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 110.1, 112.2, 117.4, 126.2, 127.1, 127.5, 129.3, 129.8, 136.6, 144.1, 148.1, 149.0, 153.7; HRMS calculated for C₁₃H₁₀NO ([M + H]⁺): 196.0762, found: 196.0759.

2-(thiophen-2-yl)quinoline (**2r**): 99% (20.7 mg, white solid, mp. 124–127 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =7.16 (1.0H, q, *J*=2.91 Hz), 7.46-7.50 (2.0H, m), 7.67-7.80 (4.0H, m), 8.08-8.13 (2.0H, m); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 117.6, 125.8, 126.1, 127.1, 127.4, 128.0, 128.5, 129.2, 129.8, 136.6, 145.4, 148.1, 152.3; HRMS calculated for C₁₃H₁₀NS ([M + H]⁺): 212.0534, found: 212.0531.

2,3-dihydro-1H-cyclopenta[b]quinoline (**2s**): 99% (19.7 mg, pale yellow oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.15-2.23 (2.0H, m), 3.07 (2.0H, dt, *J*=1.30, 7.41 Hz), 3.15 (2.0H, t, *J*=7.64 Hz), 7.44 (1.0H, t, *J*=8.00 Hz), 7.60 (1.0H, t, *J*=8.36 Hz), 7.71 (1.0H, dd, *J*=0.94, 8.10 Hz), 7.87 (1.0H, s), 8.01 (1.0H, d, *J*=8.40 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 23.6, 30.5, 34.6, 125.5, 127.3, 127.4, 128.3, 128.5, 130.3, 135.6, 147.5, 167.9; HRMS calculated for C₁₂H₁₂N ([M + H]⁺): 170.0970, found: 170.0962.

1,2,3,4-tetrahydroacridine (**2t**): 99% (20.6 mg, colorless solid, mp. 38–40 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 1.85-1.91 (2.0H, m), 1.95-2.01 (2.0H, m), 2.96 (2.0H, t, *J*=6.26 Hz), 3.12 (2.0H, t, *J*=6.54 Hz), 7.42 (1.0H, t, *J*=8.02 Hz), 7.59 (1.0H, t, *J*=8.38 Hz), 7.68 (1.0H, d, *J*=8.12 Hz), 7.78 (1.0H, s), 7.97 (1.0H, d, *J*=8.44 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 22.9, 23.2, 29.2, 33.5, 125.5, 126.8, 127.2, 128.2, 128.4, 130.9, 134.9, 146.5, 159.3; HRMS calculated for C₁₃H₁₄N ([M + H]⁺): 184.1126, found: 184.1119.

2u

7,8,9,10-tetrahydro-6H-cyclohepta[b]quinoline (2u): 94% (18.7 mg, colorless solid, mp. 57–62 °C). ¹H NMR (500 MHz,

CDCl₃): δ (ppm) = 1.74-1.92 (6.0H, m), 2.94 (2.0H, d, *J*=11.05 Hz), 3.21 (2.0H, d, *J*=11.20 Hz), 7.44 (1.0H, t, *J*=7.93 Hz), 7.61 (1.0H, t, *J*=8.33 Hz), 7.70 (1.0H, d, *J*=8.10 Hz), 7.79 (1.0H, s), 7.99 (1.0H, d, *J*=8.45 Hz); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 27.0, 28.8, 32.2, 35.4, 40.0, 125.7, 126.8, 127.3, 128.4, 128.5, 134.5, 136.5, 146.3, 164.6; HRMS calculated for C₁₄H₁₆N ([M + H]⁺): 198.1283, found: 198.1277.

11*H***-indeno[1,2-b]quinoline (2v)**: 63% (13.5 mg, colorless solid, mp. 154–157 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 4.04 (2.0H, s), 7.48-7.53 (3.0H, m), 7.60-7.62 (1H, m), 7.70 (1.1H, t, *J*=8.38 Hz), 7.83 (1.0H, dd, *J*=1.12, 8.08 Hz), 8.18-8.21 (2.0H, m), 8.30-8.32 (1.0H, m); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 34.0, 122.1, 125.4, 125.7, 127.4, 127.5, 127.7, 128.8, 129.1, 130.0, 131.2, 134.6, 140.3, 145.1, 148.0, 161.7; HRMS calculated for C₁₆H₁₂N ([M + H]⁺): 218.0970, found: 218.0966.

5,6-dihydrobenzo[c]acridine (**2w**): 99% (24.9 mg, colorless solid, mp. 60–62 °C). ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 3.02 (2.0H, t, *J*=6.95 Hz), 3.14 (2.0H, t, *J*=6.90 Hz), 7.28 (1.0H, d, *J*=7.45 Hz), 7.37 (1.0H, dt, *J*=1.38, 7.36 Hz), 7.41-7.44 (1.0H, m), 7.46-7.49 (1.0H, m), 7.63-7.66 (1.0H, m), 7.75 (1.0H, d, *J*=7.45 Hz), 7.93 (1.0H, s), 8.13 (1.0H, d, *J*=8.45 Hz), 8.58 (1.0H, dd, *J*=1.00, 7.70 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 28.4, 28.9, 126.0, 126.1, 126.9, 127.3, 127.9, 128.6, 129.5, 129.7, 130.6, 133.6, 134.8, 139.4, 147.7, 153.4; HRMS calculated for C₁₇H₁₄N ([M + H]⁺): 232.1126, found: 232.1123.

2x

2-ethyl-3-methylquinoline (**2x**): 95% (16.6 mg, colorless solid, mp. 66–68 °C). ¹H NMR (500 MHz, CDCl₃): δ (ppm) =1.37 (3.0H, t, *J*=7.55 Hz), 2.48 (3.0H, d, *J*=0.65 Hz), 2.99 (2.0H, q, *J*=7.55 Hz), 7.44 (1.0H, t, *J*=7.98 Hz), 7.60 (1.0H, t, *J*=8.35 Hz), 7.69 (1.0H, d, *J*=7.30 Hz), 7.82 (1.0H, s), 8.02 (1.0H, d, *J*=8.45 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 12.8, 19.1, 29.5, 125.6, 126.6, 127.3, 128.2, 128.5, 129.4, 135.7, 146.6, 163.3; HRMS calculated for C₁₂H₁₄N ([M + H]⁺): 172.1126, found: 172.1122.

2,3-dimethylquinoline (**2y**): 92% (15.0 mg, colorless oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =2.43 (3.0H, d, *J*=0.48 Hz), 2.68 (3.0H, s), 7.41-7.46 (1.0H, m), 7.58-7.63 (1.0H, m), 7.69 (1.0H, d, *J*=8.08 Hz), 7.82 (1.0H, s), 7.99 (1.0H, d, *J*=8.44 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 19.6, 23.6, 125.6, 126.7, 127.4, 128.3, 128.3, 130.0, 135.2, 146.5, 159.0; HRMS calculated for C₁₁H₁₂N ([M + H]⁺): 158.0970, found: 158.0965.

2-(tert-butyl)quinoline (**2z**): 99% (20.2 mg, colorless oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =1.48 (9.0H, s), 7.45-7.50 (1.0H, m), 7.53 (1.0H, d, *J*=8.64 Hz), 7.65-7.69 (1.0H, m), 7.77 (1.0H, dd, *J*=1.24, 8.08 Hz), 8.07 (2.0H, d, *J*=8.52 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 30.1, 38.1, 118.2, 125.6, 126.4, 127.2, 129.0, 129.4, 135.8, 147.4, 169.2; HRMS calculated for C₁₃H₁₆N ([M + H]⁺): 186.1283, found: 186.1278.

2aa

2-cyclohexylquinoline (**2aa**): 90% (19.1 mg, colorless oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) =1.31-1.39 (1.0H, m), 1.47 (2.0H, tq, *J*=3.23, 12.74 Hz), 1.63 (2.0H, dq, *J*=3.05, 12.50 Hz), 1.76-1.81 (1.0H, m), 1.87-1.91 (2.0H, m), 2.00-2.04 (2.0H, m), 2.92 (1.0H, tt, *J*=3.43, 11.97 Hz), 7.32 (1.0H, d, *J*=8.48 Hz), 7.45-7.49 (1.0H, m), 7.65-7.69 (1.0H, m), 7.76 (1.0H, dd, *J*=1.12, 8.12 Hz), 8.03-8.08 (2.0H, m); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 26.1, 26.5, 32.8, 47.6, 119.5, 125.6, 126.9, 127.4, 128.9, 129.2, 136.3, 147.8, 166.8; HRMS calculated for C₁₅H₁₈N ([M + H]⁺): 212.1439, found: 212.1433.

6-fluoro-2-methylquinoline (**2ab**): 52% (11.2 mg, yellow solid, mp. 39–42 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.73 (3.0H, s), 7.29 (1.0H, d, *J*=8.52 Hz), 7.38 (1.0H, q, *J*=3.89 Hz), 7.41-7.46 (1.0H, m), 7.97-8.01 (2H, m); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 25.2, 110.5 (d, ²*J*(C,F) = 21.5 Hz), 119.4 (d, ²*J*(C,F) = 25.4 Hz), 122.7, 126.9 (d, ³*J*(C,F) = 10.0 Hz), 131.0 (d, ³*J*(C,F) = 9.0 Hz), 135.5 (d, ⁴*J*(C,F) = 5.3 Hz), 144.9, 158.3 (d, ⁴*J*(C,F) = 2.6 Hz), 159.9 (d, ¹*J*(C,F) = 245.0 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) = -115.0; HRMS calculated for C₁₀H₉FN ([M + H]⁺): 162.0719, found: 162.0715.

6-chloro-2-methylquinoline (**2ac**): 95% (13.4 mg, white solid, mp. 80–82 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.73 (3.0H, s), 7.30 (1.0H, d, *J*=8.44 Hz), 7.60 (1.0H, dd, *J*=2.36, 9.00 Hz), 7.74 (1.0H, d, *J*=2.32 Hz), 7.93 (1.0H, d, *J*=3.40 Hz), 7.96 (1.0H, d, *J*=2.80 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 25.3, 122.9, 126.1, 127.0, 130.2, 130.2, 131.3, 135.2, 146.2, 159.3; HRMS calculated for C₁₀H₉ClN ([M + H]⁺): 178.0424, found: 178.0417.

7-bromo-2-methylquinoline (**2ad**): 96% (18.8 mg, white solid, mp. 51–53 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.73 (3.0H, s), 7.28 (1.0H, d, *J*=8.40 Hz), 7.55 (1.0H, q, *J*=3.51 Hz), 7.62 (1.0H, d, *J*=8.64 Hz), 7.99 (1.0H, d, *J*=8.40 Hz), 8.19 (1.0H, d, *J*=1.72 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 25.4, 122.3, 123.4, 125.0, 128.7, 129.2, 131.1, 135.9, 148.5, 160.1; HRMS calculated for C₁₀H₉BrN ([M + H]⁺): 221.9918, found: 221.9912.

2ae

2-methylquinoline-6-carbonitrile (**2ae**): 86% (14.5 mg, white solid, mp. 164–165 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.78 (3.0H, s), 7.41 (1.0H, d, J=8.52 Hz), 7.81 (1.0H, q, J=3.52 Hz), 8.07 (1.0H, d, J=5.08 Hz), 8.09 (1.0H, d, J=4.68 Hz), 8.17 (1.0H, d, J=1.72 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 25.6, 109.3, 118.6, 123.7, 125.8, 130.1, 130.2, 133.7, 136.2, 148.8, 162.5; HRMS calculated for C₁₁H₉N₂ ([M + H]⁺): 169.0760, found: 169.0758.

2af

methyl 2-methylquinoline-6-carboxylate (**2af**): 76% (15.2 mg, white solid, mp. 95–96 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.76 (3.0H, s), 3.97 (3.0H, s), 7.34 (1.0H, d, *J*=8.40 Hz), 8.03 (1.0H, d, *J*=8.80 Hz), 8.13 (1.0H, d, *J*=8.44 Hz), 8.26 (1.0H, q, *J*=3.57 Hz), 8.53 (1.0H, d, *J*=1.80 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 25.5, 52.3, 122.7, 125.5, 127.2, 128.8, 128.9, 130.6, 137.2, 149.7, 161.5, 166.7; HRMS calculated for C₁₂H₁₂NO₂ ([M + H]⁺): 202.0863, found: 202.0867.

2ag

2,6-dimethylquinoline (**2ag**): 64% (10.0 mg, pale yellow oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.51 (3.0H, s), 2.72 (3.0H, s), 7.24 (1.0H, d, *J*=8.40 Hz), 7.49-7.52 (2.0H, m), 7.91 (1.0H, d, *J*=8.48 Hz), 7.95 (1.0H, d, *J*=8.44 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 21.4, 25.2, 121.9, 126.3, 126.4, 128.2, 131.6, 135.3, 135.5, 146.4, 157.9; HRMS calculated for C₁₁H₁₂N ([M + H]⁺): 158.0964, found: 158.0962.

2ah

2,6,8-trimethylquinoline (**2ah**): 81% (13.9 mg, pale yellow oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.47 (3.0H, s), 2.73 (3.0H, s), 2.77 (3.0H, s), 7.22 (1.0H, d, *J*=8.36 Hz), 7.37 (2.0H, s), 7.91 (1.0H, d, *J*=8.32 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 17.7, 21.4, 25.5, 121.5, 124.3, 126.4, 131.7, 134.7, 135.5, 136.0, 145.5, 156.8; HRMS calculated for C₁₂H₁₄N ([M + H]⁺): 172.1121, found: 172.1113.

6-methoxy-2-methylquinoline (**2ai**): 60% (10.3 mg, pale yellow oil). ¹H NMR (500 MHz, CDCl₃): δ (ppm) = 2.70 (3.0H, s), 3.91 (3.0H, s), 7.04 (1.0H, d, *J*=2.80 Hz), 7.24 (1.0H, d, *J*=8.40 Hz), 7.33 (1.0H, q, *J*=3.98 Hz), 7.92 (1.0H, d, *J*=9.25 Hz), 7.94 (1.0H, d, *J*=8.50 Hz); ¹³C NMR (125 MHz, CDCl₃): δ (ppm) = 25.0, 55.5, 105.3, 121.8, 122.2, 127.3, 130.0, 135.0, 143.9, 156.3, 157.2; HRMS calculated for C₁₁H₁₂NO ([M + H]⁺): 174.0913, found: 174.0916.

7-methoxy-2-methylquinoline (**2aj**): 74% (12.8 mg, colorless oil). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.70 (3.0H, s), 3.93 (3.0H, s), 7.11-7.15 (2.0H, m), 7.35 (1.0H, d, *J*=2.48 Hz), 7.63 (1.0H, d, *J*=8.88 Hz), 7.94 (1.0H, d, *J*=8.28 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 25.2, 55.4, 106.7, 118.6, 119.7, 121.5, 128.4, 135.8, 149.4, 159.1, 160.7; HRMS calculated for C₁₁H₁₂NO ([M + H]⁺): 174.0913, found: 174.0914.

6-methyl-[1,3]dioxolo[4,5-g]quinoline (**2ak**): 61% (11.5 mg, white solid, mp. 144–145 °C). ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 2.66 (3.0H, s), 6.07 (2.0H, s), 7.00 (1.0H, s), 7.12 (1.0H, d, *J*=8.28 Hz), 7.31 (1.0H, s), 7.83 (1.0H, d, *J*=8.28 Hz); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 24.9, 101.5, 102.6, 105.3, 120.1, 123.1, 135.0, 146.0, 147.1, 150.5, 156.6; HRMS calculated for C₁₁H₁₀NO₂ ([M + H]⁺): 188.0712, found: 188.0705.

2-methylquinolin-6-ol (2am): 20% (3.3 mg, light pink oil). ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) = 2.57 (3.0H, s), 7.08 (1.0H, d, *J*=2.68 Hz), 7.24 (1.0H, dd, *J*=2.72, 9.04 Hz), 7.27 (1.0H, d, *J*=8.48 Hz), 7.75 (1.0H, d, *J*=9.00 Hz), 8.01 (1.0H, d, *J*=8.44 Hz), 9.84 (1.0H, s); ¹³C NMR (100 MHz, DMSO-*d*₆): δ (ppm) = 24.5, 108.3, 121.5, 122.0, 127.4, 129.6, 134.4, 142.5, 154.8, 155.0; HRMS calculated for C₁₀H₁₀NO ([M + H]⁺): 160.0762, found: 160.0757.

VII. ¹H and ¹³C NMR Spectra

Fig. S1. ¹H NMR Spectrum of 1a (500 MHz, CDCl₃).

Fig. S2. ¹³C NMR Spectrum of 1a (125 MHz, CDCl₃).

Fig. S4. ¹³C NMR Spectrum of 1b (100 MHz, CDCl₃).

Fig. S6. ¹³C NMR Spectrum of 1c (100 MHz, CDCl₃).

Fig. S8. ¹³C NMR Spectrum of 1d (100 MHz, CDCl₃).

Fig. S9. ¹H NMR Spectrum of 1e (400 MHz, CDCl₃).

Fig. S10. ¹³C NMR Spectrum of 1e (100 MHz, CDCl₃).

Fig. S12. ¹³C NMR Spectrum of 1f (100 MHz, CDCl₃).

Fig. S13. ¹⁹F NMR Spectrum of 1f (376 MHz, CDCl₃).

Fig. S14. ¹H NMR Spectrum of 1g (400 MHz, CDCl₃).

Fig. S15. ¹³C NMR Spectrum of 1g (100 MHz, CDCl₃).

Fig. S16. ¹H NMR Spectrum of 1h (400 MHz, CDCl₃).

Fig. S17. ¹³C NMR Spectrum of 1h (100 MHz, CDCl₃).

Fig. S18. ¹H NMR Spectrum of 1i (400 MHz, CDCl₃).

Fig. S19. ¹³C NMR Spectrum of 1i (100 MHz, CDCl₃).

Fig. S20. ¹⁹F NMR Spectrum of 1i (376 MHz, CDCl₃).

Fig. S22. ¹³C NMR Spectrum of 1j (125 MHz, CDCl₃).

200 180 160 140 120 100 80 60 40 20 0 ppm

Fig. S24. ¹³C NMR Spectrum of 1k (75 MHz, CDCl₃).

Fig. S26. ¹³C NMR Spectrum of 11 (75 MHz, CDCl₃).

Fig. S28. ¹³C NMR Spectrum of 1m (100 MHz, CDCl₃).

Fig. S30. ¹³C NMR Spectrum of 1n (100 MHz, CD₃CN).

Fig. S31. ¹H NMR Spectrum of 10 (300 MHz, CDCl₃).

Fig. S32. ¹³C NMR Spectrum of 10 (75 MHz, CDCl₃).

Fig. S34. ¹³C NMR Spectrum of 1p (100 MHz, CDCl₃).

Fig. S35. ¹H NMR Spectrum of 1q (500 MHz, CDCl₃).

Fig. S36. ¹³C NMR Spectrum of 1q (125 MHz, CDCl₃).

S41

Fig. S37. ¹H NMR Spectrum of 1r (400 MHz, CDCl₃).

Fig. S38. ¹³C NMR Spectrum of 1r (100 MHz, CDCl₃).

Fig. S39. ¹H NMR Spectrum of 1s (400 MHz, CDCl₃).

Fig. S40. ¹³C NMR Spectrum of 1s (100 MHz, CDCl₃).

Fig. S41. ¹H NMR Spectrum of 1t (500 MHz, CDCl₃).

Fig. S42. ¹³C NMR Spectrum of 1t (125 MHz, CDCl₃).

Fig. S43. ¹H NMR Spectrum of 1u (500 MHz, CDCl₃).

Fig. S44. ¹³C NMR Spectrum of 1u (125 MHz, CDCl₃).

Fig. S46. ¹³C NMR Spectrum of 1v (100 MHz, DMSO-d₆).

Fig. S47. ¹H NMR Spectrum of 1w (400 MHz, CDCl₃).

Fig. S48. ¹³C NMR Spectrum of 1w (100 MHz, CDCl₃).

Fig. S49. ¹H NMR Spectrum of 1x (400 MHz, CDCl₃).

Fig. S50. ¹³C NMR Spectrum of 1x (100 MHz, CDCl₃).

Fig. S52. ¹³C NMR Spectrum of 1y (100 MHz, CDCl₃).

Fig. S53. ¹H NMR Spectrum of 1z (400 MHz, CDCl₃).

Fig. S54. ¹³C NMR Spectrum of 1z (100 MHz, CDCl₃).

Fig. S55. ¹H NMR Spectrum of 1aa (400 MHz, CDCl₃).

Fig. S56. ¹³C NMR Spectrum of 1aa (100 MHz, CDCl₃).

Fig. S57. ¹H NMR Spectrum of 1ab (400 MHz, CDCl₃).

Fig. S58. ¹³C NMR Spectrum of 1ab (100 MHz, CDCl₃).

Fig. S59. ¹⁹F NMR Spectrum of 1ab (376 MHz, CDCl₃).

Fig. S60. ¹H NMR Spectrum of 1ac (400 MHz, CDCl₃).

Fig. S61. ¹³C NMR Spectrum of 1ac (100 MHz, CDCl₃).

Fig. S62. ¹H NMR Spectrum of 1ad (400 MHz, CDCl₃).

Fig. S63. ¹³C NMR Spectrum of 1ad (100 MHz, CDCl₃).

Fig. S64. ¹H NMR Spectrum of 1ae (500 MHz, CDCl₃).

Fig. S65. ¹³C NMR Spectrum of 1ae (125 MHz, CDCl₃).

Fig. S66. ¹H NMR Spectrum of 1af (500 MHz, CDCl₃).

Fig. S67. ¹³C NMR Spectrum of 1af (125 MHz, CDCl₃).

Fig. S68. ¹H NMR Spectrum of 1ag (500 MHz, CDCl₃).

Fig. S70. ¹H NMR Spectrum of 1ah (400 MHz, CDCl₃).

Fig. S71. ¹³C NMR Spectrum of 1ah (100 MHz, CDCl₃).

Fig. S72. ¹H NMR Spectrum of 1ai (400 MHz, CDCl₃).

Fig. S74. ¹H NMR Spectrum of 1aj (300 MHz, CDCl₃).

Fig. S75. ¹³C NMR Spectrum of 1aj (75 MHz, CDCl₃).

Fig. S76. ¹H NMR Spectrum of 1ak (400 MHz, CDCl₃).

Fig. S77. ¹³C NMR Spectrum of 1ak (100 MHz, CDCl₃).

Fig. S78. ¹H NMR Spectrum of 1al (400 MHz, CDCl₃).

Fig. S79. ¹³C NMR Spectrum of 1al (100 MHz, CDCl₃).

Fig. S80. ¹H NMR Spectrum of 1am (400 MHz, DMSO-*d*₆).

Fig. S81. ¹³C NMR Spectrum of 1am (100 MHz, DMSO-*d*₆).

Fig. S82. ¹H NMR Spectrum of 2a (400 MHz, CDCl₃).

Fig. S83. ¹³C NMR Spectrum of 2a (100 MHz, CDCl₃).

Fig. S84. ¹H NMR Spectrum of 2b (400 MHz, CDCl₃).

Fig. S85. ¹³C NMR Spectrum of 2b (100 MHz, CDCl₃).

Fig. S86. ¹H NMR Spectrum of 2c (400 MHz, CDCl₃).

Fig. S87. ¹³C NMR Spectrum of 2c (100 MHz, CDCl₃).

Fig. S88. ¹H NMR Spectrum of 2d (400 MHz, CDCl₃).

Fig. S89. ¹³C NMR Spectrum of 2d (100 MHz, CDCl₃).

Fig. S90. ¹H NMR Spectrum of 2e (500 MHz, CDCl₃).

Fig. S91. ¹³C NMR Spectrum of 2e (125 MHz, CDCl₃).

Fig. S92. ¹H NMR Spectrum of 2f (500 MHz, CDCl₃).

Fig. S93. ¹³C NMR Spectrum of 2f (125 MHz, CDCl₃).

Fig. S94. ¹⁹F NMR Spectrum of 2f (376 MHz, CDCl₃).

Fig. S96. ¹³C NMR Spectrum of 2g (100 MHz, CDCl₃).

Fig. S97. ¹H NMR Spectrum of 2h (400 MHz, CDCl₃).

Fig. S98. ¹³C NMR Spectrum of 2h (100 MHz, CDCl₃).

Fig. S99. ¹H NMR Spectrum of 2i (400 MHz, CDCl₃).

Fig. S100. ¹³C NMR Spectrum of 2i (100 MHz, CDCl₃).

Fig. S101. ¹⁹F NMR Spectrum of 2i (376 MHz, CDCl₃).

Fig. S102. ¹H NMR Spectrum of 2j (300 MHz, CDCl₃).

Fig. S103. ¹³C NMR Spectrum of 2j (75 MHz, CDCl₃).

Fig. S104. ¹H NMR Spectrum of 2k (500 MHz, CDCl₃).

Fig. S105. ¹³C NMR Spectrum of 2k (125 MHz, CDCl₃).

Fig. S106. ¹H NMR Spectrum of 2l (400 MHz, CDCl₃).

Fig. S107. ¹³C NMR Spectrum of 2l (100 MHz, CDCl₃).

Fig. S108. ¹H NMR Spectrum of 2m (400 MHz, CDCl₃).

Fig. S109. ¹³C NMR Spectrum of 2m (100 MHz, CDCl₃).

Fig. S110. ¹H NMR Spectrum of 2n (400 MHz, CDCl₃).

Fig. S111. ¹³C NMR Spectrum of 2n (100 MHz, CDCl₃).

Fig. S112. ¹H NMR Spectrum of 20 (400 MHz, CDCl₃).

Fig. S113. ¹³C NMR Spectrum of 20 (100 MHz, CDCl₃).

Fig. S114. ¹H NMR Spectrum of 2p (400 MHz, CDCl₃).

Fig. S115. ¹³C NMR Spectrum of 2p (100 MHz, CDCl₃).

Fig. S116. ¹H NMR Spectrum of 2q (400 MHz, CDCl₃).

Fig. S117. ¹³C NMR Spectrum of 2q (100 MHz, CDCl₃).

Fig. S118. ¹H NMR Spectrum of 2r (400 MHz, CDCl₃).

Fig. S119. ¹³C NMR Spectrum of 2r (100 MHz, CDCl₃).

Fig. S120. ¹H NMR Spectrum of 2s (400 MHz, CDCl₃).

Fig. S121. ¹³C NMR Spectrum of 2s (100 MHz, CDCl₃).

Fig. S122. ¹H NMR Spectrum of 2t (400 MHz, CDCl₃).

Fig. S123. ¹³C NMR Spectrum of 2t (100 MHz, CDCl₃).

Fig. S124. ¹H NMR Spectrum of 2u (500 MHz, CDCl₃).

Fig. S125. ¹³C NMR Spectrum of 2u (125 MHz, CDCl₃).

Fig. S126. ¹H NMR Spectrum of 2v (400 MHz, CDCl₃).

Fig. S127. ¹³C NMR Spectrum of 2v (100 MHz, CDCl₃).

Fig. S128. ¹H NMR Spectrum of 2w (500 MHz, CDCl₃).

Fig. S129. ¹³C NMR Spectrum of 2w (100 MHz, CDCl₃).

Fig. S130. ¹H NMR Spectrum of 2x (500 MHz, CDCl₃).

Fig. S131. ¹³C NMR Spectrum of 2x (100 MHz, CDCl₃).

Fig. S132. ¹H NMR Spectrum of 2y (400 MHz, CDCl₃).

Fig. S133. ¹³C NMR Spectrum of 2y (100 MHz, CDCl₃).

Fig. S134. ¹H NMR Spectrum of 2z (400 MHz, CDCl₃).

Fig. S135. ¹³C NMR Spectrum of 2z (100 MHz, CDCl₃).

Fig. S136. ¹H NMR Spectrum of 2aa (400 MHz, CDCl₃).

Fig. S137. ¹³C NMR Spectrum of 2aa (100 MHz, CDCl₃).

Fig. S138. ¹H NMR Spectrum of 2ab (400 MHz, CDCl₃).

Fig. S139. ¹³C NMR Spectrum of 2ab (100 MHz, CDCl₃).

Fig. S140. ¹⁹F NMR Spectrum of 2ab (376 MHz, CDCl₃).

Fig. S141. ¹H NMR Spectrum of 2ac (400 MHz, CDCl₃).

Fig. S142. ¹³C NMR Spectrum of 2ac (100 MHz, CDCl₃).

Fig. S143. ¹H NMR Spectrum of 2ad (400 MHz, CDCl₃).

Fig. S144. ¹³C NMR Spectrum of 2ad (100 MHz, CDCl₃).

Fig. S145. ¹H NMR Spectrum of 2ae (400 MHz, CDCl₃).

Fig. S146. ¹³C NMR Spectrum of 2ae (100 MHz, CDCl₃).

Fig. S147. ¹H NMR Spectrum of 2af (400 MHz, CDCl₃).

Fig. S148. ¹³C NMR Spectrum of 2af (100 MHz, CDCl₃).

Fig. S149. ¹H NMR Spectrum of 2ag (400 MHz, CDCl₃).

Fig. S150. ¹³C NMR Spectrum of 2ag (100 MHz, CDCl₃).

Fig. S151. ¹H NMR Spectrum of 2ah (400 MHz, CDCl₃).

Fig. S152. ¹³C NMR Spectrum of 2ah (100 MHz, CDCl₃).

Fig. S153. ¹H NMR Spectrum of 2ai (500 MHz, CDCl₃).

Fig. S154. ¹³C NMR Spectrum of 2ai (125 MHz, CDCl₃).

Fig. S155. ¹H NMR Spectrum of 2aj (400 MHz, CDCl₃).

Fig. S156. ¹³C NMR Spectrum of 2aj (100 MHz, CDCl₃).

Fig. S157. ¹H NMR Spectrum of 2ak (400 MHz, CDCl₃).

Fig. S158. ¹³C NMR Spectrum of 2ak (100 MHz, CDCl₃).

Fig. S159. ¹H NMR Spectrum of 2am (400 MHz, DMSO-*d*₆).

Fig. S160. ¹³C NMR Spectrum of 2am (100 MHz, DMSO-d₆).

