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1. Materials 

The aldehydes 3a-d used as starting materials, as well the other organic, inorganic reactants and 

solvents used in the chemical synthesis of the substrates were purchased from Sigma-Aldrich (St. 

Louis, MO, USA) and/or Alfa-Aesar (Haverhill, MA, USA). All solvents were purified and dried by 

standard methods as required. The primers used for the mutagenesis were purchased through 

the services of Genomed (Debrecen, Hungary). IPTG, Phusion Hot Start DNA Polymerase, dNTPs, 

DpnI, XhoI, Bpu1102I, agarose were all products of Thermo Fischer Scientific (Waltham, MA, 

USA). Plasmid extraction kit and ethidium bromide were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). LB medium were from Liofilchem (Roseto, Italy), protease inhibitor cocktail 

from Hoffman La-Roche (Basel, Switzerland), while the Ni-NTA Superflow resin used for affinity 

chromatography was from Qiagen (Hilden, Germany). 

2. Instrumentation 

The 1H and 13C NMR spectra were recorded on Bruker (Billerica, MA, USA) Avance spectrometers 

operating at 400 MHz and 101 MHz / 600 MHz and 151 MHz, respectively. Spectra were 

recorded at 25 °C in CDCl3, D2O, MeOD, DMSO. 1H and 13C NMR spectra were referenced 

internally to the solvent signal. MS spectra and LC-MS analysis were recorded on Agilent 6410 

Triple Quadrupole LC/MS mass spectrometry system. LC-MS measurements of rac-1a-d were 

performed using Phenomenex Kynetex 2.6 µm C18 100Å, 50×2.1mm column, acetonitrile 70%, 

water (0.1 HCOOH) 30% as mobile phase at 0.3 ml/min flow rate. The MS detector was operated 

in positive electrospray ionization mode, with source temp 35 °C, capillary voltage 4000 V, 

fragmentor 120 V and with MS2Scan mode, at least +/- 50 amu around molecular ion. High 

performance liquid chromatography (HPLC) analyses were conducted with an Agilent (Santa 

Clara, CA, USA) 1200 instrument. Kinetic measurements were performed on and Agilent 8453 

UV-Vis spectrophotometer. For the PCR reactions, the Mastercyler from Eppendorf (Hamburg, 

Germany) was used. Gene sequencing services were performed through Genomed (Debrecen, 

Hungary). Protein purification with size exclusion chromatography were performed with an Äkta 

purifier FPLC (GE Healthcare, Sweden). Preparative scale enzymatic reactions were performed 
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with Heidolph (Schwabach, Germany) Titramax 1100 equipped with incubator module. DNA 

concentrations were measured with Thermo Fischer Scientific (Waltham, MA, USA) Nanodrop 

2000 instrument. SDS-PAGE was performed using the BioRad (Hercules, CA, USA) Mini-Protean 

Tetra Cell vertical electrophoresis unit, using 10% Tris-glycine Laemmli-gels. 

3. Chemical synthesis of substrates rac-1a-d and 2a-d 

Starting from the commercially available aldehydes 3a-d acrylic esters 4a-d were obtained 

through Wittig reaction, using the corresponding triphenyl-phosphoranylidine. The reduction of 

esters 4a-d with DIBAL-H afforded the primary alcohol derivatives 5a-d, which through an 

oxidation with manganese-dioxide, followed by another Wittig reaction with triphenyl-

phosphoranylidene were converted into styrylacrylic esters 7a-d. Mild alkaline hydrolysis from 

esters 7a-d resulted in the styrylacrylates 2a-d (Scheme S1). 

 

 

 

Scheme S1. Synthesis of (2E,4E) styrylacrylates 2a-d. Reagents and conditions: I.  Ph3P=CH-CO2Et, toluene, reflux, 
24 h; II. DIBAL-H/CH2Cl2 at -60 °C, 1 h; III. MnO2/CH2Cl2, RT, 48 h; IV. Ph3P=CH-CO2Et, toluene, reflux, 24 h; V. 10% 
KOH, reflux, 20 h. 
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Scheme S2. Synthesis of racemic styrylalanines rac-1a-d. Reagents and conditions: I. (CH3)3SiCl, NaBr/MeCN, reflux, 
5 h, 50 °C; II. NaH, CH3CONHCH(COOEt)2/DMF, 60 °C, 3 h; III. 10% NaOH in water/MeOH, 60 °C, 5 h; IV. toluene, 
reflux, 20 h; V. dioxane/18% HCl, reflux, 4 h. 

The styrylic alcohols 5a-d, obtained as described above (Scheme S1) were converted into the 

diethyl acetamidomalonates 9a-d via malonic acid coupling of the brominated compounds 8a-d. 

Further, through a mild alkaline hydrolysis of 9a-d, followed by the subsequent decarboxylation 

of 10a-d, the N-acylated amino acids rac-11a-d were obtained. Finally, deprotection of rac-11a-d 

afforded the racemic amino acids rac-1a-d (Scheme S2). 

 

3.1. Synthesis of (2E,4E)-styrylacrylates 2a-d (Scheme S1) 

3.1.1. Synthesis of styrylacrylic esters 4a-d 

Into the stirred solution of aldehydes 3a-d (18 mmol) in dry toluene (60 mL) triphenyl-

phosphoranylidine (8.1 g, 23.4 mmol) was added in portions. The mixture was stirred at 110 °C 

until completion of the reaction (approx. 12 h, checked by TLC), followed by the evaporation of 

the solvent. The residue was purified by silica gel column chromatography using CH2Cl2 as eluent 

leaving the product 4a-d as colorless or yellow viscous oil in 85-90% yield. The 1H, 13C-NMR 

spectra of the products were in accordance with the reported data.1 
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3.1.2. Synthesis of the styryl allylalcohols 5a-d 

Into the cooled solution of acrylic esters 4a-d (3.8 mmol) in dry CH2Cl2 (16 mL), at -60 °C under 

argon atmosphere, 10 mL of DIBAL-H (9.14 mmol, 1M solution in hexane) was added dropwise. 

The mixture was stirred for 1 h at 0 °C and after completion of reaction (checked by TLC), the 

excess of DIBAL-H was quenched with 1 mL of MeOH, followed by addition of 2 mL of saturated 

solution of NH4Cl. The mixture was stirred again at 0 °C for 15 min, followed by extraction with 

CH2Cl2 (3 × 25 mL) and water (3 × 25 mL). The organic phase was dried over anhydrous MgSO4, 

filtered and concentrated in vacuum. The residue was purified by silica gel column 

chromatography using CH2Cl2 as eluent leaving the product 5a-d as colorless or yellow viscous oil 

in 90-95% yields. The 1H-, 13C-NMR spectra of the products are in accordance with the reported 

data.2 

3.1.3. Synthesis of the styrylacroleins 6a-d 

Into the stirred solution of alcohols 5a-d (3.7 mmol) in dry CH2Cl2 (25 mL) was added manganese-

dioxide (1.6 g, 18.5 mmol) in portions. The mixture was stirred for 24 h until the reaction 

completed (checked by TLC).  The mixture was filtered under vacuum through a short silicagel 

pad, using CH2Cl2 as eluent, followed by the removal of the solvent in vacuum to give the product 

6a-d as yellow or orange viscous oil in 84-89% yield. The 1H, 13C-NMR spectra of the products are 

in accordance with the reported data.3 

3.1.4. Synthesis of the styrylacrylates 2a-d 

The reactions from aldehydes 6a-d were performed similarly as described in Section 3.1.1. for the 

reactions from 3a-d (Synthesis of acrylate esters 4a-d). The products were purified by silica gel 

column chromatography using CH2Cl2 as eluent leaving the styrylacrylic esters 7a-d as yellow-

orange oils in 81-85% yields. 

The esters 7a-d were subsequently hydrolyzed by the addition of 10% NaOH (5 mL) and stirring 

under reflux until the reaction completed (4-20 h, checked by TLC). The resulted mixture was 

diluted with water (5 mL), and extracted with ethyl acetate (3×5 mL). The aqueous phase was 
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acidified with 10% HCl solution to pH 1-2, followed by extraction with ethyl acetate (3 × 10 mL). 

The combined organic phases were dried over anhydrous MgSO4, filtered, followed by the 

evaporation of the solvent in vacuum to give 2a-d as white or yellow-white solid in 70-76% yield. 

(2E,4E)-5-Phenylpenta-2,4-dienoic acid (2a) 

Yield: 76%, white solid; 1H NMR (400 MHz, CDCl3) δ: 7.55 (dd, J= 15.3, 9.7 Hz, 1H), 7.49 (d, J= 7.0 

Hz, 2H), 7.35 (ddd, J= 10.7, 9.9, 5.3 Hz, 3H), 7.01–6.84 (m, 2H), 6.01 (d, J= 15.2 Hz, 1H). 13C NMR 

(100 MHz, CDCl3, δ): 172.55, 147.13, 141.80, 135.95, 129.47, 129.00, 127.50, 126.09, 120.41. The 

NMR data are in accordance with data from literature.4 

(2E,4E)-5-(4-Chlorophenyl)penta-2,4-dienoic acid (2b) 

Yield: 70%, yellow-white solid; 1H NMR (600 MHz, D2O) δ: 7.70 (d, J = 7.5 Hz, 1H), 7.34-7.48 (m, 

2H), 7.2-7.32 (m, 3H), 7.00 (m, 1H), 6.04 (d, J = 15.2 Hz, 1H); 13C NMR (151 MHz, D2O):  δ= 172.3, 

145.8, 136.5, 132.4, 131.1, 130.9, 130.7, 130.1, 129.9, 128.3, 128.1. The NMR data are in 

accordance with data from literature.5 

(2E,4E)-5-(2-Chlorophenyl)penta-2,4-dienoic acid (2c) 

Yield: 73%, white solid; 1H NMR (600 MHz, D2O) δ: 7.42 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 

7.13 – 7.00 (m, 1H), 6.96 – 6.85 (m, 1H), 6.80 (d, J = 15.6 Hz, 1H), 5.98 (d, J = 15.2 Hz, 1H). 13C 

NMR (151 MHz, D2O):  δ= 127.7, 127.8 128.2, 128.9, 133.4, 135.1, 136.6, 140.9, 175.8. The NMR 

data are in accordance with data from literature.6 

(2E,4E)-5-(4-Nitrophenyl)penta-2,4-dienoic acid (2d) 

Yield: 72 %, brownish-yellow solid, 1H NMR (600 MHz, D2O) δ: 8.02 (d, J = 6.8 Hz, 2H), 7.47 (d, J = 

6.7 Hz, 2H), 6.96 (m, 1H), 6.91 (m, 1H), 6.74 (d, J = 15.1 Hz, 1H), 5.99 (d, J = 14.9 Hz, 1H). 13C NMR 

(151 MHz, D2O): 175.4, 146.6, 143.4, 140.1, 135.2, 131.5, 130.1, 127.4, 124.1. The NMR data are 

in accordance with data from literature.4 

3.2. Synthesis of racemic amino acids rac-1a-d (Scheme S2) 

Into the stirred solution of styryl allylalcohol 5a-d (10 mmol) in dry CH2Cl2 (50 mL) 

triphenylphosphine (5.5 g, 21 mmol) was added, followed by a portionwise addition of N-
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bromosuccininimide (3.56 g, 20 mmol). The mixture was stirred for at room temperature, until 

the reaction was completed (0.5-2 h, checked by TLC). The solvent was evaporated in vacuum, 

followed by the purification of the residue by silica gel column chromatography using CH2Cl2 as 

eluent leaving the bromides 8a-d which were directly used in the coupling reaction with malonic 

acid. 

NaH (0.48 g, 11 mmol, 55% suspension in mineral oil) was added to dry N,N-dimethylformamide 

(20 mL) and stirred at room temperature under argon atmosphere. After 30 min, diethyl 

acetamidomalonate (2.23 g, 10 mmol) was added and the mixture was stirred for 30 min. To the 

ice-cooled mixture was added dropwise a solution of the bromide 8a-d (10 mmol) dissolved in 

dry N,N-dimethylformamide (10 mL). The reaction mixture was stirred at room temperature for 

3 h and at 60 °C for 4 h. The solution was cooled and poured on a water–ice mixture (200 mL). 

The formed precipitate was filtered off and dried under reduced pressure. The product was re-

dissolved in CH2Cl2 (1-2 mL) and purified by silica gel column chromatography using CH2Cl2 as 

eluent leaving the diethyl 2-acetamido-2-cinnamyl malonic acid derivatives 9a-d. 

The obtained malonic acid 9a-d (6 mmol) was dissolved in methanol (5 mL), followed by addition 

of 10% NaOH solution (5 mL). The resulted mixture was stirred at room temperature for 3 h, and 

at 60 °C until the reaction completed (2-3 h, checked by TLC). Subsequently, the methanol was 

removed in vacuum and the concentrated aqueous solution was diluted with water (10 mL) and 

extracted with ethyl acetate (3 × 10 mL). The pH of the aqueous phase was adjusted to 1 with 

10% HCl solution, followed by extraction with ethyl acetate (3 × 15 mL). The combined organic 

phases were dried over Na2SO4, filtered, followed by the removal of the solvent in vacuum. 

The formed dicarboxylic acid derivative 10a-d was suspended in toluene (10 mL) and heated 

under reflux for 20 h. The solvent was removed in vacuum to leave the products 11a-d. 

The N-acetyl styrylalanine 11a-d was suspended in dry 1,4-dioxane (10 mL) followed by the 

addition of concentrated HCl (0.5 mL). The resulted mixture was heated under reflux until the 

reaction completed (4-12 h, checked by TLC). The organic solvent was evaporated in vacuum and 

the obtained precipitate was washed with anhydrous diethyl ether (3 × 5 mL) to give the pure 

racemic styrylalanines rac-1a-d. 
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rac-(E)-2-Amino-5-phenylpent-4-enoic acid (rac-1a) 

1H NMR (400 MHz, D2O) δ: 7.41-7.51 (m, 2H), 7.32-7.40 (m, 2H), 7.24-7.27 (m, 1H), 6.63 (d, J = 

15.4 Hz 1H), 6.14-6.22 (m,1H), 4.21-4.24 (m, 1H), 2.86 (m, 2H); 13C-NMR: 171.4, 136.3, 135.5, 

128.9, 128.1, 126.3, 121.6, 52.5, 33.5; LC-MS: positive ionization mode m/z: 192.1 ([M+H]+, 

(calculated for C11H13NO2S: 192.0946 ([M+H]+); 146.1 ([M-COOH, -H, +H]). The four illustrative 

scans represent the spectral background of the measurement and the MS spectra at half peak 

height of peak front, at retention time and at half peak height of peak tail, correspondingly. 

 

 



9 

 

 

 

 

 



10 

 

rac-(E)-2-Amino-5-(4-chlorophenyl)pent-4-enoic acid (rac-1b) 

1H NMR (600 MHz, D2O) δ: 7.34-7.41 (m, 2H), 7.27-7.33 (m, 2H), 6.43 (d, J = 14.7 Hz, 1H), 6.18 (m, 

1H), 3.32 (m, 1H), 2.39-2.49 (m, 2H). 13C-NMR: 182.6, 136, 132.2, 131.4, 128.6, 127.5, 127.3, 

55.6, 38.3; LC-MS: positive ionization mode, m/z: 226.1 ([M+H]+, 35Cl), 228.1 ([M+H]+, 37Cl) 

(calculated for C11H12ClNO2 226.0557 ([M+H]+, 35Cl), 228.0527 ([M+H]+, 37Cl). 180.1 ([M-COOH, -

H, +H], 35Cl), 182.1 ([M-COOH, -H, +H], 37Cl). The four illustrative scans represent the spectral 

background of the measurement and the MS spectra at half peak height of peak front, at 

retention time and at half peak height of peak tail, correspondingly. 
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rac-(E)-2-Amino-5-(2-chlorophenyl)pent-4-enoic acid (rac-1c) 

1H NMR (600 MHz, D2O) δ 7.55 (m, 1H), 7.34 (m, 1H), 7.15-7.23 (m, 2H), 6.79 (d, J = 15.3 Hz, 1H), 

6.16 (m, 1H), 3.33 (m, 1H), 2.49 (m, 2H). 13C NMR (151 MHz, D2O): 182.5, 135.2, 131.9, 129.9, 

129.5, 128.7,128.6, 127.3, 126.9, 55.6, 38.5; LC-MS: positive ionization mode, m/z: 226.1 

([M+H]+, 35Cl), 228.1 ([M+H]+, 37Cl) (calculated for C11H12ClNO2 226.0557 ([M+H]+, 35Cl), 228.0527 

([M+H]+, 37Cl); 180.0 ([M-COOH, -H, +H], 35Cl), 182.0 ([M-COOH, -H, +H], 37Cl). The four illustrative 

scans represent the spectral background of the measurement and the MS spectra at half peak 

height of peak front, at retention time and at half peak height of peak tail, correspondingly. 
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rac-(E)-2-Amino-5-(4-nitrophenyl)pent-4-enoic acid (rac-1d) 

1H NMR (400 MHz, D2O) δ 8.08 (d, J = 8.7 Hz, 2H), 7.5 (d, J = 8.8 Hz, 2H), 6.54 (d, J = 15.9 Hz, 1H), 

6.35-6.45 (m, 1H), 3.36 (t, J = 6 Hz, 1H), 2.43-2.57 (m, 2H). 13C NMR (151 MHz, D2O): 182.3, 145, 

144.3, 131.8, 130.9, 126.7, 123.9, 55.5, 38.6; LC-MS: positive ionization mode, m/z: 236.1 

([M+H]+) (calculated for C11H12N2O4 236.0797 ([M+H]+); 190.1 ([M-COOH, -H, +H]). The four 

illustrative scans represent the spectral background of the measurement and the MS spectra at 

half peak height of peak front, at retention time and at half peak height of peak tail, 

correspondingly. 
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4. Michaelis-Menten curves with non-linear fitting for calculation of the 

kinetic parameters (KM, vmax, kcat) 

The kinetic measurements were based on UV-spectroscopy by monitoring the production of the 

acrylic derivative 2a-d at wavelengths where the corresponding amino acids rac-1a-d showed no 

absorption 

 

Table S1. The wavelengths used for monitoring the production of acrylic derivatives 2a-d and molar 

extinction coefficients (ε) at the corresponding wavelengths 

Substrate Product λ 
(nm) 

ε 
(M

-1
·cm

-1
) 

L-Phe cinnamic acid 290 8810 
L-1a, rac-1a 2a 302 26900 

rac-1b 2b 306 37500 

rac-1c 2c 300 25800 
rac-1d 2d 360 13000 

 

The values of vmax and KM were obtained from non-linear regression fitting of the Michaelis-

Menten curves by MATLAB using the equation v = vmax[S]/(KM + [S]). The kcat values were 

calculated according to equation kcat= vmax/[E], where [E]- represents the enzyme concentration 

used in the kinetic assay (μM) – Table S2. 

 

Table S2. Enzyme concentrations used in the kinetic assays 

Substrate F137V (μM) wt-PcPAL (μM) F137A (μM) F137G (μM) 

L-Phe 0.3125 0.3125 0.3125 0.3125 

L-1a 0.3125 0.3125 0.3125 0.3125 

1a 0.3125 0.625 - - 

1b 0.3125 9.375 - - 

1c 0.3125 2.5 - - 

1d 2.5 2.5 - - 
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Figure S1. Non-linear fitting curves for the ammonia elimination from L-Phe catalyzed by wt-

PcPAL; measured in triplicate. 

 

 

 

Figure S2. Non-linear fitting curves for the ammonia elimination from L-Phe catalyzed by F137V-

PcPAL; measured in triplicate. 
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Figure S3. Non-linear fitting curves for the ammonia elimination from L-Phe catalyzed by F137A-

PcPAL; measured in triplicate. 

 

 

 

Figure S4. Non-linear fitting curves for the ammonia elimination from L-Phe catalyzed by F137G-

PcPAL; measured in triplicate. 
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Figure S5. Non-linear fitting curves for the ammonia elimination from L-1a catalyzed by wt-

PcPAL; measured in triplicate. 

 

 

 

 

Figure S6. Non-linear fitting curves for the ammonia elimination from L-1a catalyzed by F137V-

PcPAL, measured in triplicate. 
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Figure S7. Non-linear fitting curves for the ammonia elimination from L-1a catalyzed by F137A-

PcPAL; measured in triplicate. 

 

 

 

Figure S8. Non-linear fitting curves for the ammonia elimination from L-1a catalyzed by F137G-

PcPAL; measured in triplicate. 

 

 

 



21 

 

 

Figure S9. Non-linear fitting curves for the ammonia elimination from rac-1a catalyzed by wt-

PcPAL; measured in triplicate. 

 

 

 

Figure S10. Non-linear fitting curves for the ammonia elimination from rac-1a catalyzed by 

F137V-PcPAL; measured in triplicate.  
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Figure S11. Non-linear fitting curves for the ammonia elimination from rac-1b catalyzed by wt-

PcPAL; measured in triplicate. 

 

 

 

Figure S12. Non-linear fitting curves for the ammonia elimination from rac-1b catalyzed by 

F137V-PcPAL; measured in triplicate. 
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Figure S13. Non-linear fitting curves for the ammonia elimination from rac-1c catalyzed by wt-

PcPAL; measured in triplicate. 

 

 

 

Figure S14. Non-linear fitting curves for the ammonia elimination from rac-1c catalyzed by 

F137V-PcPAL; measured in triplicate. 
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Figure S15. Non-linear fitting curves for the ammonia elimination from rac-1d catalyzed by wt-

PcPAL; measured in triplicate 

 

 

 

 

Figure S16. Non-linear fitting curves for the ammonia elimination from rac-1d catalyzed by 

F137V-PcPAL measured in triplicate. 
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5. HPLC monitoring of the enzymatic reactions 

5.1. Determination of the conversion by HPLC 

In order to determine the conversion in the PcPAL-catalyzed enzymatic transformations, the 

relative response factor of the acrylic derivatives 2a-d compared to the amino acids rac-1a-d was 

determined by injecting the mixture of known composition of the corresponding amino acid rac-

1a-d and the corresponding acrylic derivative 2a-d onto an Agilent Zorbax Eclipse XDB-C8 column 

(150 × 4.6 mm; 5 µm). 

 

 

Table S3. HPLC methods and response factors, used for the conversion value determinations 

Compound Eluent*[% B] 
Retention time (min) Response factor 

rac-1 2 2 vs. rac-1 

rac-1a, 2a 15 to 50 in 15 min
 

9.5 13.5 2.63 

rac-1b, 2b 25 to 60 in 12 min
 

12.0 15.1 1.41 

rac-1c, 2c 15 to 50 in 12 min
 

10.6 13.3 1.54 

rac-1d, 2d 20 to 60 in 12 min
 

9.6 12.2 0.20 

* Mobile phase: A: NH4OH buffer (0.1 M, pH 9.0) / B: MeOH; flow rate: 1.0 mL min
-1

, measurements performed at 

20 °C, wavelength used for UV detection: 260 nm. 
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5.2 HPLC chromatograms of the PcPAL-catalyzed ammonia elimination reaction from 

rac-1a-d at the end-point of monitoring 

 

Figure S17.HPLC chromatogram of the ammonia elimination from rac-1a catalyzed by wt-PcPAL 

(after 274 h reaction time; conversion value: 50%). 

 

Figure S18.HPLC chromatogram of the ammonia elimination from rac-1b catalyzed by wt-PcPAL 

(after 504 h reaction time; conversion value: 29%). 
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Figure S19.HPLC chromatogram of the ammonia elimination from rac-1c catalyzed by wt-PcPAL 

(after 600 h reaction time; conversion value: 36%). 

 

 

Figure S20. HPLC chromatogram of the ammonia elimination from rac-1d catalyzed by wt-PcPAL 

(after 600 h reaction time; conversion value: 31%). 
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Figure S21. HPLC chromatogram of the ammonia elimination from rac-1a catalyzed by F137V-PcPAL 

(after 24 h reaction time; conversion value: 50%). 

 

 

Figure S22. HPLC chromatogram of the ammonia elimination from rac-1b catalyzed by F137V-PcPAL 

(after 274 h reaction time; conversion value: 50%). 
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Figure S23. HPLC chromatogram of the ammonia elimination from rac-1c catalyzed by F137V-PcPAL 

(after 134 h reaction time; conversion value: 50%). 

 

 

Figure S24. HPLC chromatogram of the ammonia elimination from rac-1d catalyzed by F137V-PcPAL 

(after 300 h reaction time; conversion value: 50%). 
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5.3. HPLC methods to determine the enantiomeric excess (ee) of D-1a-d  

The chiral HPLC separation of the rac-1a-d was developed using Chiralpak Zwix (+) chiral column 

and MeOH (6% CH3COOH + 50 mM DEA): MeCN: H2O 49:49:2 (v/v/v) as mobile phase, at a flow 

rate of 1 mL min-1. 

 

Table S4. Retention times of the enantiomers of rac-1a-d obtained on Chiralpak Zwix (+) chiral column 

Compound Retention time (min) 

tr L tr D 

rac-1a 6.34 7.51 

rac-1b 7.36 8.90 

rac-1c 6.71 8.27 

rac-1d 7.97 10.13 

 

 

 

Figure S25. HPLC chromatogram of rac-1a obtained on Chiralpak Zwix (+) chiral column 
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Figure S26. HPLC chromatogram of rac-1b obtained on Chiralpak Zwix (+) chiral column 

 

 

Figure S27. HPLC chromatogram of rac-1c obtained on Chiralpak Zwix (+) chiral column 
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Figure S28. HPLC chromatogram of rac-1d obtained on Chiralpak Zwix (+) chiral column 
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5.4 Chiral HPLC analysis of the final products from wt-PcPAL-catalyzed kinetic 

resolutions of rac-1a-d 
 

Samples were taken from the enzymatic reactions after different time intervals as described in 

the main manuscript (Experimental part; ammonia elimination reactions from rac-1a-d) followed 

by the HPLC analysis using the chiral separation method indicated above. 

The peaks appearing at Rt= 2.9-3.2 min, represent the elution front, which contain the produced 

acrylic derivatives 2a-d.  

 

 
Figure S29 .HPLC analysis of the ammonia elimination from rac-1a catalyzed by wt-PcPAL on 

Chiralpak Zwix (+) chiral column (after 274 h reaction time; ee >98%). 
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Figure S30. HPLC analysis of the ammonia elimination from rac-1b catalyzed by wt-PcPAL on 

Chiralpak Zwix (+) chiral column (after 504 h reaction time; ee= 41%). 

 

 
Figure S31. HPLC analysis of the ammonia elimination from rac-1c catalyzed by wt-PcPAL on 

Chiralpak Zwix (+) chiral column (after 600 h reaction time; ee= 55%). 
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Figure S32. HPLC analysis of the ammonia elimination from rac-1d catalyzed by wt-PcPAL on 

Chiralpak Zwix (+) chiral column (after 600 h reaction time; ee= 41%).



36 

 

5.5 Chiral HPLC analysis of the final products from F137V-PcPAL-catalyzed kinetic 

resolutions of rac-1a-d 
 

 
Figure S33. HPLC analysis of the ammonia elimination from rac-1a catalyzed by F137V-PcPAL on 

Chiralpak Zwix (+) chiral column (after 24h reaction time; ee >99%). 

 

 
Figure S34. HPLC analysis of the ammonia elimination from rac-1b catalyzed by F137V-PcPAL on 

Chiralpak Zwix (+) chiral column (after 274 h reaction time; ee >99%). 
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Figure S35. HPLC analysis of the ammonia elimination from rac-1c catalyzed by F137V-PcPAL on 

Chiralpak Zwix (+) chiral column (after 134 h reaction time; ee >99%). 

 
 

 
Figure S36. HPLC analysis of the ammonia elimination from rac-1d catalyzed by F137V-PcPAL on 

Chiralpak Zwix (+) chiral column (after 300 h reaction time; ee >99%).  
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In order to rule out that the asymmetrical peak form is caused by the presence of impurities, besides the 

LC-MS analysis of rac-1a-d (see Supporting information, chapter 3.2), which supports the high purity level 

of the compounds, we also analyzed commercially available L-styrylalanine L-1a using the developed 

chiral method. The obtained asymmetrical peak, similar with those obtained from the enzymatic 

reactions or from the separation of rac-1a-d supports that the peak shape of the chiral HPLC 

chromatograms may be due to variable binding poses to the chiral stationary phase.  

 

Figure S37. HPLC chromatogram of L-1a obtained on Chiralpak Zwix (+) chiral column 

 

5.6. Investigation of the ammonia addition onto styrylacrylates 2a-d by the PcPAL 

variants   

 

The enzymatic ammonia addition reactions were performed in triplicate as follows:  

The 6M NH3-solutions (1 mL, pH 10, adjusted with CO2), containing styrylacrylates 2a-d at a final 

concentration of 5 mM, and purified PcPAL (50 µg of F137V-, F137A-, F137G-, or wt-PcPAL), were 

incubated at 30 °C with shaking at 250 rpm. Conversions were monitored using reverse phase 

high performance liquid chromatography (HPLC) as described earlier in section 5.1. Samples (30 

μL) were taken from the reaction mixtures after 24 h time intervals, quenched by adding an 

equal volume of MeOH, vortexed and centrifuged (13400 rpm, 12100 g, 2 min). The supernatant 
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was used directly for HPLC analysis after transferring through a 0.22 μm nylon membrane filter. 

Despite monitoring the reactions over 20 days, no product (L-1a-d) formation could be detected 

by HPLC. In order to rule out enzyme deactivation during the 20 days reaction monitoring, fresh 

batch of enzyme was added to the mixture after each 48 h period. 

6. SDS-PAGE and size-exclusion chromatogram from the purification 

steps of F137V-PcPAL 

 

Fig S37. SDS-PAGE gel containing samples from the purification steps of F137V-PcPAL: 1: before 
induction; 2: after induction; 3: supernatant of cells; 4: cell lysate 5: supernatant after 
centrifugation of the lysate; 6: flow-through from the Ni-NTA column; 7: low salt washing step 
(from Ni-NTA); 8: high salt washing step (from Ni-NTA); 9: fraction eluted with 25mM of imidazole 
(from Ni-NTA); 10: fraction eluted with 400 mM of imidazole (from Ni-NTA); 11: fraction  eluted 
at 18-20 mL from the Superdex 200 10/300 GL column, 12: fraction eluted at 10-12 mL from the 
Superdex 200 10/300 GL column, 13: marker. 
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Fig S38. Chromatogram obtained by size-exclusion chromatography of F137V-PcPAL using a 
Superdex 200 10/300 GL column 

7. Theoretical methods and derivations 

7.1. Molecular modeling principles 
 

Besides the practical work, we tried to rationalize the experimental data with additional 

theoretical work. Our research philosophy comprised of a straightforward, physics-based 

approach. We aimed to acquire the ligand pose/conformation sets of the important biocatalytic 

sequence members and corresponding energy values in silico. These computational data were 

used to approximate changes on the potential energy surface and thus characterize certain 

phenomena of the catalysis. Furthermore, the enumeration of the possible ligand conformations 

could reveal energetically preferred, but unproductive states which can slow down or block the 

catalytic process.  

Following this principle, three major properties were calculated. One was the ligand binding 

energy (bΔE), calculated with a modified MM-GBSA methodology, appreciated as one of the most 

useful and meaningful theoretical quantities, from the standpoint of experimental work. To 

approximate the Gibbs energy of activation, two descriptors were used. One was associated with 



41 

 

the acidity of the β-proton (cBΔE), and the other one was associated with the steric strain (SterΔE). 

Moreover, these energy differences were transformed relative to the same property of L-Phe or 

(E)-cinnamate with wt-PcPAL that makes these values not just more intelligible, but enables us to 

compare intermediate states with different connectivity with molecular mechanics.9 However, 

one should be warned that the absolute values of these calculated properties should not be 

compared directly to experimental values, and should be even scaled in some cases. 

For such investigations an atomistic model of the enzyme – representing its structure at the 

assay conditions, with special attention paid to the active site – and knowledge about the 

reaction mechanism is needed. Unfortunately, the only crystal structure determined for PcPAL 

so far did not contain a substrate or substrate analogue.7 Moreover, the essential Y110-

containing loop in this structure was not in the active conformation.8 Thus, a structure with a 

catalytically active loop conformation required partial homology modeling8,10 and refinement of 

the Y110-loop region. 

Next, the enzyme-substrate complexes within the active site were constructed.  Committing to 

these assumptions, the corresponding covalent N-MIO and preceding substrate-binding, non-

covalent intermediate states of all studied substrates were created introducing our induced-fit 

covalent docking protocol which was previously applied in the case of another MIO enzyme, 

Pantoea agglomerans PAM.9 This protocol enumerates the possible ligand poses in the active 

site while accounting for the conformational change of the enzyme too. Moreover, explicit 

solvation of the complexes was performed with the aid of Grand canonical Monte Carlo 

simulations. Lastly, the final, refined enzyme-substrate complexes were energetically evaluated 

with Schrödinger’s Prime function. Docking did not indicate significant, energetically preferred 

unproductive states with any substrate and PcPAL mutant combinations in the case of the 

substrate-binding, non-covalent intermediate directly leading to the subsequent covalent N-MIO 

state. Thus this intermediate state wasn’t considered problematic and is not discussed 

throughout this text. 

 

7.2. Molecular modeling methods 
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For molecular modeling studies, the tetrameric partial homology model of PcPAL10 was used as a 

starting structure. The crude model was completed and adjusted using the Protein Preparation 

Wizard11 in two steps: i) hydrogen atoms were added and bond orders were assigned, and ii) the 

hydrogen bond network, tautomeric states, side chain conformations of selected amino acids, 

and ionization states were determined and optimized corresponding to the experimental assay 

conditions. In all four active centers, Y110 was set deprotonated and Y351 protonated. Protein 

pKa were predicted using PROPKA.12 Next, residues 103-126 of the catalytically essential Y110 

containing loop and further residues within 3 Å distance were subjected to loop modeling. This 

step consisted of two repetitions of side chain prediction of the previously mentioned residues 

with Cα-Cβ vectoring incorporated, thus simulating also the small scale movement of the 

backbone (implicit water solvation model: VSGB, number of steps:2) using Prime.13 The final 

model was minimized with Prime13 [RMSG: 0.1 kcal mol-1 Å-1, algorithm: TNCG, implicit water 

solvation model: VSGB). 

The refined and completed structure served as a starting point to create an overall protein 

model corresponding to the experimental assay conditions. The buffer solution solvated model 

was created by the Desmond program suite.14 The buffer solvated model was then equilibrated 

with a slightly modified default equilibration protocol, applying harmonic constraints to the 

Cartesian coordinates of buried hydrogen atoms and all protein heavy atoms. A spherical model 

of the active site with a radius of 27 Å, centered on the exocyclic methylene carbon of the MIO 

prosthetic group of chain C, was cut off and capped with acetyl and N-methylamino groups. 

N-MIO type covalent complexes of substrates rac-1a-d and 2a-d were constructed by our 

induced-fit covalent docking protocol. This involved the creation of initial conformations of 

compounds by docking with Glide15 into a modified and artificially enlarged active site in which 

the residues L134, F137, L138, L256, V259, and I460 were exchanged to Ala residues, further the 

MIO prosthetic group was reduced to Ala + Gly and three water molecules in the active site were 

removed. 

After having docked into the enlarged active site, all side chains and the MIO group were 

restored. Residue 137 was in all cases changed from Ala to the residue corresponding to the 

actual enzyme mutant. For compounds D- and L-1a-d, a covalent bond between the nitrogen 
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atom of the amino group and the exocyclic carbon of MIO was created, for compounds 2a-d, the 

MIO group was restored as an aminated NH2-MIO group, and Y110 was set protonated. The 

ligands and the residues in close proximity were minimized, and finally, redundant 

conformations were eliminated with MacroModel.16 After this step, side chain conformations of 

residues L134, F137, L138, L256, V259, I460, and N260 were predicted with Prime (with Cα-Cβ 

vectoring, implicit water solvation model: VSGB, number of steps:2). Next, water molecules in 

the active center and its immediate vicinity were predicted and placed with Grand Canonical 

Monte Carlo simulation using Desmond.14 Finally, a minimization of all ligands and the same set 

of atoms in the 6 Å proximity resulted in the final models and energies using Prime. The OPLS3 

force field was applied in all molecular mechanics calculations and simulations. 

Binding energy values (bΔE) were calculated with a modified MM-GBSA methodology. The 

standard MM-GBSA method involves the minimization, incorporating also implicit solvation, of 

the ligand-receptor complex, followed by the subsequent minimization of the receptor and the 

ligand individually after separation. Finally, the MM-GBSA score (bΔE) is calculated according to 

Eq. S1, 

 

where the three terms are the final energies of the previously mentioned minimizations, 

respectively, and X137 refers to the F137V mutant (X=V) or wild-type (X=F) PcPAL enzyme. Our 

modifications involved i) the substitution of the ligand energy term in Eq.S1 with a value 

obtained after mixed Monte Carlo/low-mode conformational search with MacroModel16 

[solvation model: VSGB, number of steps: 2000, energy window: 31 kJ mol-1] and a re-

optimization with Prime [used with the same settings as before], ii) the substitution of the 

receptor energy term in Eq. S1 uniformly for all ligands with the corresponding apoenzyme 

structure’s energy, and iii) the solvation of the N-MIO intermediate complexes were done with 

explicit solvation rather than implicit solvation with the aid of Grand Canonical Monte Carlo 

simulation using Desmond.14 This mixed use of implicit and explicit solvation is undesired in 

    
                                (S1) 
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general, however the application of implicit solvation to the minimization of the complexes 

introduces unacceptably large errors, and in addition, the favorable cancellation of errors made 

the mixed scheme convenient to provide relevant molecular structures and energies. 

Values of the descriptor SterΔE were calculated according to Eq. S1, with the small change that 

the term Eligand was obtained with minimization without the application of any solvation model. 

Values of descriptor cB
RΔE were calculated according to Eq. S2, 

 

 

where L-Phe;wt-PcPAL in the subscript refers to the same quantity calculated with L-Phe in the 

wt-PcPAL active center, EcB is the single point energy of the model of the conjugated base, and 

EN-MIO is the single point energy of the N-MIO model, both calculated at the B3LYP/6-311+G(dp) 

level with the GD3 dispersion correction model using the program suite MRCC (www.mrcc.hu).17 

For the N-MIO model, the previously described enzyme-substrate models were used such as the 

atoms of the enzyme were deleted, and the dangling substrate-MIO bond was capped with a 

methyl group. For the conjugated base model, the pro-S β-proton was removed from the N-MIO 

model, and the remaining one was adjusted to help the β-carbon of the alanyl substructure to 

form sp2 hybrid state arrangement. 

Quantities SterΔE and bΔE (denoted here as Y in general) were also evaluated relative to the 

corresponding values of L-Phe or (E)-cinnamate with wt-PcPAL throughout the text, according to 

Eq.S3. 

 

F137X
YΔE has the purpose to incorporate the change when the mutation F137V is introduced, and it 

is calculated according to Eq. S4. 

     
                                          (S2) 

    
     

        
    

                  
      (S3) 

    
                                                        (S4) 
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For the necessary relativization of the previously discussed quantities, see ref.9. 

 

7.3. Derivation and reasoning of Eq. 3 from the main text 
 
At substrate saturation, when the concentration of the free enzyme is negligible, we assumed 

that four species of enzyme–substrate intermediate complexes (EL-psc, EL-psc, EL-u, and ED), can be 

present in thermal equilibrium (not considering allosteric inhibition). As discussed previously, 

from the L-enantiomer two types of catalytically active enzyme–substrate complexes can be 

formed (the s-cis or s-trans 2a-d yielding L-1a-d–N-MIO states, abbreviated as EL-psc, EL-pst) and an 

unproductive one (the unproductive L-1a-d–N-MIO states, abbreviated as EL-u), while another 

unproductive complex could be formed from the D-enantiomers (the unproductive D-1a-d–N-

MIO states, abbreviated as Ed). Thus, according to Eq. S5, the catalytic activity is the sum of the 

activities of EL-psc and EL-pst, 

 

 

where [E*] is the total concentration of all the enzyme species. After dividing by [E*], the 

fractions of the concentrations of EL-psc and EL-pst can be rewritten as molar fractions. Further, 

substituting the Eyring equation (Eq. S6) yields Eq. S7, 

 

 

where T is the temperature, kB is the Boltzmann constant, h is the Planck constant, ΔG# is the 

corresponding Gibbs energy of activation, and x is the corresponding molar fraction. To 

approximate the Gibbs energy of activation, it was decomposed into two parts, into an electronic 
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term that is treated with quantum chemical calculations, and a term specific for the steric stress 

that is treated with molecular mechanics calculations (Eq. S8).  

 

 

 

Numerous evidences suggest that the elimination step happens with an E1cB mechanism. Thus, 

Hammond’s postulate was applied, and a descriptor – associated with the acidity of the pro-S β-

proton (cB
RΔE) – in a linear relationship was used to calculate ΔE#

Electronic (Eq. S9). In the case of steric 

strain, a simple rule was applied stating that N-MIO type enzyme–substrate complexes with 

better interaction energies are able to “provide the energy needed for activation proportionally 

easier”, thus ΔE#
Steric is linearly dependent on Ster

RΔE (Eq. S10). This assumption is supported by the 

fact that the active center is very compact in the N-MIO intermediate form also almost entirely 

desolvating the substrate.  

Because L-1a-d are congeneric – and thus it is expected to exhibit fairly similar properties in 

many cases –, it was assumed that irrespectively of the true dependence of the activation energy 

terms on the descriptors, linear dependence should give a satisfactory description. However, 

using both constants b and d from Eq. S9 and Eq. S10, respectively, in a non-linear estimation 

would lead eventually to overfitting, thus, as a compromise, b was considered equal to d. 

 

Finally, substituting Eq. S8, Eq. S9, and Eq. S10 into Eq. S7, bringing the molar fractions into the 

exponents, and applying that b=d, Eq. S11 (Eq. 3 in the main text) is obtained, where a and b are 

constants. 

 

 

Non-linear estimation of the constants in Eq. S11 gave statistically significant regression 

(R2=0.82, p=0.002, F=21.8, df=6) and parameters (a=90.632, p=0.023; b=0.0791, p=0.014). The 
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temperature was taken to be 303 K. In a few cases, multiple psc and/or pst conformations were 

obtained (3a with wt- and F137V-PcPAL, 4a with F137V-PcPAL). In these cases, only the two 

lowest energy active conformations were taken into account. Strictly speaking, they were two 

psc conformations in the case of 3a with F137V-PcPAL, but they were used in the non-linear 

estimation nevertheless. Data in Table 4. of the main text show the exact lowest energy psc and 

pst conformations of 3a with F137V-PcPAL. 

Descriptor values and molar fractions were obtained for 4-fluoro-, 4-trifluoromethyl-, 4-bromo, 

and 4-cyanostyrylalanine with the same procedure as discussed earlier. Predicted kcat values 

(kcat,pred) were determined according to Eq. S12. Statistical analysis was conducted with the use 

of Statistica.18 
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