Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

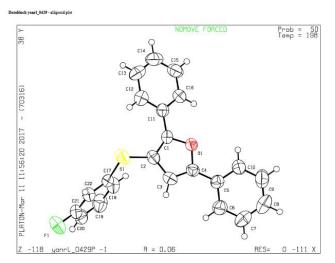
Method for Accessing Sulfanylfurans from Homopropargylic

Alcohols and Sulfonyl Hydrazides

Xiaodong Yang, Rulong Yan*

State Key Laboratory of Applied Organic Chemistry, Key laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China

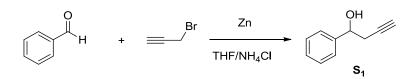
General remark	S2
The x-ray structure of 3ag	S2-S3
Experimental Section	S3-S5
The data of products	S5-S26
Reference	S26
NMR spectra	S27-S92


General remark

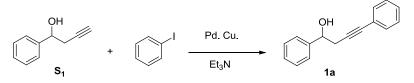
¹H NMR and ¹³C NMR spectra were recorded on 400MHz and 100MHz in CDCl₃ (BRUKER 400M or JNM-ECS 400M). All chemical shifts are given as δ value (ppm) with reference to tetramethylsilane (TMS) as an internal standard. All compounds were further characterized by HRMS; copies of their ¹H NMR and ¹³C NMR spectra are provided. Products were purified by flash chromatography on 200–300 mesh silica gels. All melting points were determined without correction. Unless otherwise noted, commercially available reagents and solvents were used without further purification.

The x-ray structure of **3ag**

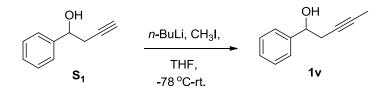
Crystal **3ag** Growth with the Volatilization Method


An amount of 20 mg **3ag** were dissolved in tetrahydrofuran (2 mL) on the brown small reagent bottle (5 mL), which acted as good solvent, and a layer of ether was injected on the surface of tetrahydrofuran, and the cap is covered with a thin film, white crystals will be presented after three days.

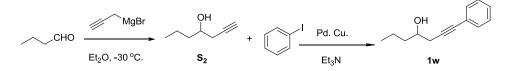
Datablock: yanrl_0429


Bond precision:	C-C = 0.0050 A	Wavelength=0.71073		
	a=5.7144(13) alpha=92.050(14)		c=12.5875(12) 3) gamma=90.37(2)	
Temperature: 198 K				
Space group Hall group		Repor 863.8 P -1 -P 1 C22 H	(3)	
Sum formula Mr	C22 H15 F O S 346.40	C22 H 346.4	15 F O S 0	
Dx,g cm-3 Z Mu (mm-1)	2 0.203	1.332 2 0.203		
	360.0 360.41 7,14,15	360.0		
Nref Tmin,Tmax	3398	3389 0.650	,1.000	
Correction method= # Reported T Limits: Tmin=0.650 Tmax=1.000 AbsCorr = MULTI-SCAN				
Data completeness= 0.997 Theta(max) = 26.022				
R(reflections) = 0.0619(1775) wR2(reflections) = 0.1656(3389)				
S = 1.061 Npar= 226				

General procedure for the synthesis of homopropargylic alcohols^[1-2]:


1) Aldehyde (1.0 equiv.) was dissolved in anhydrous THF. A sample was taken out for analysis and propargyl bromide (2.0 equiv.) was added. Another sample was taken out for analysis and saturated aqueous NH₄Cl was added. Portions of activated zinc dust (2.0 equiv.) were added slowly on at 0°C and the resulting suspension was stirred overnight at this temperature. The THF layer was separated from the aqueous layer, which was extracted with diethyl ether for 3 times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was directly used in the next step

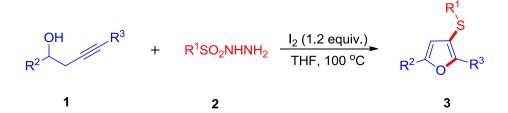
without further purification; the residue was purified by column chromatography (silica gel, appropriate mixture of *n*-hexane/ethyl acetate) to obtain S_1 .


2) To a dried schlenk flask was added Pd(PPh₃)₂Cl₂ (0.2 mmol), CuI (0.2 mmol), iodoarene (11.0 mmol), S₁ (10.0 mmol) and freshly distilled Et₃N under argon. The resulting mixture was stirred for 16 h at rt. 50 mL of EtOAc were added and the mixture filtered. After removal of solvent using rotary evaporator, the crude compound was purified by SiO₂ chromatography to give 1a-1u.

1v were prepared in the method^[3]

n-BuLi (2.5 M in hexanes, 6 mL, 15 mmol) was slowly added to a stirred solution of the propargyl alcohol (876 mg, 6 mmol) prepared in dry THF (20 mL) at -78 °C under Ar. After being stirred at -78 °C for 1 h, the reaction mixture was treated with CH₃I (1.12 mL, 18 mmol) and then allowed to warm to rt over night. The reaction mixture was then cooled to -78 °C again, quenched with sat NH₄Cl (aq) (10 mL) and extracted with Et₂O (3 * 20 mL). The combined organic phases were dried over Na₂SO4, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give 1t as yellow oil.

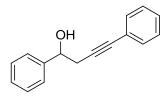
1w were prepared in the method^[4]



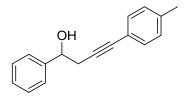
Under an argon atmosphere, magnesium turnings (0.67 g, 27.5 mmol) and mercury chloride (0.34 g, 1.3 mmol) were mixed in dry diethyl ether (40 mL) in a 250 mL round-bottom flask. To the solution, propargyl bromide (2.0 mL, 25 mmol) was then

added dropwise at 60 °C over about 1 h. The reaction was kept at the same temperature until the yellow solution turned cloudy. This solution was cooled to -30 °C and a solution of butyraldehyde (6 mmol) in Et₂O (12 ml) was added dropwise. After addition the reaction was moved to room temperature for further 30 min then quenched with sat. NH₄Cl (aq). The aqueous layer was extracted with ether and the extracts were combined with the above organic layer. The combined solution was dried over Na₂SO₄. After evaporation of the solvent the residue was purified by column chromatography (silica gel, appropriate mixture of *n*-hexane/ethyl acetate) to afford S₂.

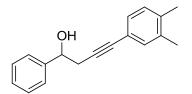
To a dried schlenk flask was added S_2 (10.0 mmol), Pd(PPh_3)₂Cl₂ (0.2 mmol), CuI (0.4 mmol), iodoarene (11.0 mmol) and freshly distilled Et₃N (50 ml) under argon. The resulting mixture was stirred for 16 h at rt. The reaction mixture was quenched with sat. NH₄Cl (aq) and 50 mL of ethyl acetate were added and the mixture filtered. After removal of solvent using rotary evaporator, the crude compound was purified by column chromatography on silica gel to give **1w**.


General procedure for synthesis of *S*-substituted furans from homopropargylic alcohols and sulfonylhydrazines:

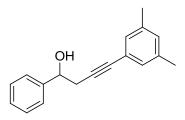
The homopropargylic alcohols (1, 0.3 mmol), sulfonylhydrazines (2, 0.45 mmol), iodine (0.36 mmol), were mixed in THF (2 mL) and this mixture was carried out under N₂ at 100 °C for 12 h. The reaction mixture was cooled to room temperature and then washed with saturated sodium thiosulfate (5 mL), extracted with ethyl acetate (15 ml×3). The combined organic phase was dried over anhydrous Na₂SO₄. The solvent was evaporated in vacuo and the crude product was purified by column


chromatography, eluting with petroleum ether/EtOAc (40:1) to afford the desired Sulfanylfurans **3**.

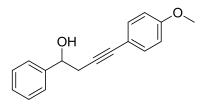
The data of products:


1,4-diphenylbut-3-yn-1-ol (1a)

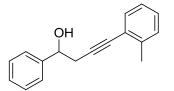
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.42-7.25 (m, 10 H), 4.92-4.89 (m, 1 H), 2.82 (d, *J* = 4.0 Hz, 2 H), 2.61 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 142.78, 131.72, 128.49, 128.31, 128.04, 127.96, 125.88, 123.33, 86.12, 83.24, 72.66, 30.61.


1-phenyl-4-(p-tolyl)but-3-yn-1-ol (1b)

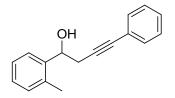
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.43-7.41 (m, 2 H), 7.38-7.34 (m, 2 H), 7.31-7.28 (m, 3 H), 7.08 (d, *J* = 8.0 Hz, 2 H), 4.94-4.90 (m, 1 H), 2.83 (d, *J* = 4.0 Hz, 2 H), 2.59 (d, *J* = 4.0 Hz, 1 H), 2.33 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 142.85, 138.16, 131.70, 131.63, 129.16, 129.08, 128.56, 127.98, 125.93, 120.27, 85.32, 83.43, 72.81, 30.77, 21.57.


4-(3,4-dimethylphenyl)-1-phenylbut-3-yn-1-ol (1c)

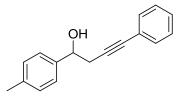
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.44-7.41 (m, 2 H), 7.38-7.36 (m, 2 H), 7.35-7.30 (m, 1 H), 7.17-7.10 (m, 1 H), 7.14-7.12 (m, 1 H) 7.04 (d, *J* = 8.0 Hz, 1 H), 4.93-4.91 (m, 1 H), 2.84-2.82 (m, 2 H), 2.57 (s, 1 H), 2.24 (s, 3 H), 2.21 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 142.85, 136.97, 136.66, 132.82, 129.67, 129.18, 128.53, 127.97, 125.92, 120.54, 84.99, 83.57, 72.77, 30.81, 19.82, 19.67.


4-(3,5-dimethylphenyl)-1-phenylbut-3-yn-1-ol (1d)

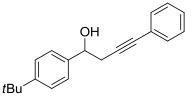
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.41$ (d, J = 4.0 Hz, 2 H), 7.37-7.34 (m, 2 H), 7.31-7.29 (m, 1 H), 7.02 (s, 2 H), 6.91 (s, 1 H), 4.92-4.84 (m, 1 H), 2.82 (d, J = 4.0 Hz, 2 H), 2.58-2.55 (m, 1 H), 2.26 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 142.84$, 137.91, 130.04, 129.47, 128.54, 127.98, 125.92, 122.94, 85.30, 83.63, 72.76, 30.77, 21.20.


4-(4-methoxyphenyl)-1-phenylbut-3-yn-1-ol (1e)

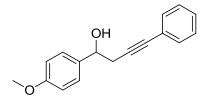
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.43-7.41 (m, 2 H), 7.37-7.32 (m, 2 H), 7.30-7.23 (m, 3 H), 6.80 (d, *J* = 8.8 Hz, 2 H), 4.93-4.89 (m, 1 H), 3.77 (s, 3 H) 2.83-2.81 (m, 2 H), 2.54 (d, *J* = 3.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 159.39, 142.79, 133.06, 128.44, 127.89, 125.83, 115.39, 113.90, 84.40, 83.08, 72.66, 55.28, 30.70.


1-phenyl-4-(o-tolyl)but-3-yn-1-ol (1f)

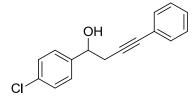
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.43$ (d, J = 8.0 Hz, 2 H), 7.37-7.28 (m, 3 H), 7.22-7.19 (m, 1 H), 7.17-7.10 (m, 2 H), 7.09-7.07 (m, 1 H), 4.95-4.91 (m, 1 H), 2.91 (d, J = 6.0 Hz, 2 H), 2.49 (d, J = 3.2 Hz, 1 H), 2.32 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 142.73$, 140.16, 132.02, 129.38, 128.48, 128.00, 127.94, 125.92, 125.50, 123.06, 89.75, 82.16, 72.70, 30.64, 20.71.


4-phenyl-1-(o-tolyl)but-3-yn-1-ol (1g)

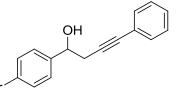
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.46$ (d, J = 8.0 Hz, 1 H), 7.31-7.29 (m, 2 H), 7.19-7.04 (m, 6 H), 5.09-5.06 (m, 1 H), 2.72 (d, J = 4.0 Hz, 2 H), 2.51 (s, 1 H), 2.28 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 140.92$, 134.75, 131.87, 131.74, 130.60, 130.42, 128.32, 126.38, 125.37, 125.42, 86.40, 83.06, 69.25, 29.51, 19.32.


4-phenyl-1-(p-tolyl)but-3-yn-1-ol (1h)

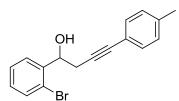
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.40-7.37 (m, 2 H), 7.32 (d, *J* = 8.0 Hz, 2 H), 7.29-7.27 (m, 3 H), 7.24-7.17 (m, 2 H), 4.94-4.92 (m, 1 H), 2.84 (d, *J* = 8.0 Hz, 2 H), 2.42 (d, *J* = 4.0 Hz, 1 H), 2.35 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 139.85, 137.72, 131.93, 131.59, 129.45, 128.99, 128.55, 128.13, 127.85, 126.02, 125.64, 123.39, 86.21, 83.21, 72.82, 30.69.


1-(4-(tert-butyl)phenyl)-4-phenylbut-3-yn-1-ol (1i)

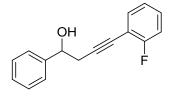
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.41-7.36 (m, 6 H), 7.29-7.27 (m, 3 H), 4.95-4.91 (m, 1 H), 2.86 (d, *J* = 6.4 Hz, 2 H), 2.40 (d, *J* = 3.6 Hz, 1 H), 1.32 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 150.92, 139.3, 131.68, 128.24, 127.97, 125.55, 125.39, 123.34, 86.26, 83.13, 72.45, 34.57, 31.36, 30.48.


1-(4-methoxyphenyl)-4-phenylbut-3-yn-1-ol (1j)

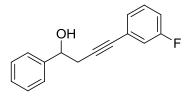
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.40-7.35 (m, 4 H), 7.29-7.27 (m, 3 H), 6.92-6.89 (m, 2 H), 4.93-4.89 (m, 1 H), 3.81(s, 3 H), 2.85-2.83 (m, 2 H), 2.41 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 159.38, 135.00, 131.79, 128.36, 127.20, 127.10, 113.95, 113.87, 86.21, 83.21, 72.48, 55.46, 30.67.


1-(4-chlorophenyl)-4-phenylbut-3-yn-1-ol (1k)

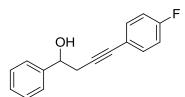
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.36-7.26 (m, 9 H), 4.90-4.87 (m, 1 H), 2.80 (d, *J* = 6.4 Hz, 2 H), 2.67 (d, *J* = 2.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 141.20, 133.59, 131.67, 128.58, 128.33, 128.15, 127.28, 123.11, 85.54, 83.51, 71.94, 30.58.


1-(4-bromophenyl)-4-phenylbut-3-yn-1-ol (11)

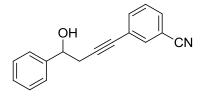
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.49$ (d, J = 8.4 Hz, 2 H), 7.38-7.36 (m, 2 H), 7.31-7.27 (m, 5 H), 4.93-4.87 (m, 1 H), 2.83-2.81 (m, 2 H), 2.53 (d, J = 3.6 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 141.68$, 131.67, 131.53, 128.32, 128.15, 127.59, 123.07, 121.75, 85.41, 83.57, 71.97, 30.56.


1-(2-bromophenyl)-4-(p-tolyl)but-3-yn-1-ol (1m)

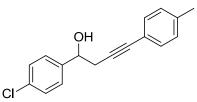
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.68-7.65 (m, 1 H), 7.55-7.53 (m, 1 H), 7.39-7.35 (m, 1 H), 7.31 (d, *J* = 8.0 Hz, 2 H), 7.19-7.17 (m, 1 H), 7.16-7.09 (m, 2 H), 5.32-5.28 (m, 1 H), 3.06-3.00 (m, 1 H), 2.79 (s, 3 H), 2.64-2.63 (m, 1 H), 2.34 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 141.55, 138.23, 132.82, 132.63, 131.81, 131.54, 129.27, 128.97, 127.56, 121.90, 120.13, 84.66, 83.67, 71.14, 29.02, 21.59.


4-(2-fluorophenyl)-1-phenylbut-3-yn-1-ol (1n)

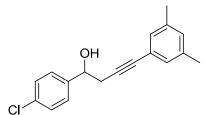
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.45-7.31$ (m, 7 H), 7.01- 6.96 (m, 2 H), 4.97-4.93 (m, 1 H), 2.95 (d, J = 6.4 Hz, 2 H), 2.47 (d, J = 2.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 162.32$ (d, J = 248 Hz, 1 C), 142.69, 133.50 (d, J = 8 Hz, 2 C), 128.49, 127.99, 125.80, 119.36, 119.33, 115.50 (d, J = 23 Hz, 2 C), 85.70 (d, J = 2 Hz, 1 C), 82.11, 72.63, 30.49.


4-(3-fluorophenyl)-1-phenylbut-3-yn-1-ol (10)

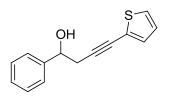
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.43-7.37 (m, 4 H), 7.35-7.31 (m, 1 H), 7.29-7.20 (m, 1 H), 7.15 (d, *J* = 8.0 Hz, 1 H), 7.06 (d, *J* = 2.4 Hz, 1 H) 7.01-6.97 (m, 1 H), 4.95-4.91 (m, 1 H), 2.85 (d, *J* = 8.0 Hz, 2 H), 2.60 (s, 1 H), 2.02 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 162.41 (d, *J* = 245 Hz, 1 C), 142.74, 129.90, 128.60, 128.12, 127.61, 125.92, 125.25 (d, *J* = 10 Hz, 1 C), 118.74, 118.63, 118.46 (d, *J* = 10 Hz, 1 C), 115.43 (d, *J* = 25 Hz, 1 C), 87.36, 82.04, 72.68 (d, *J* = 5 Hz, 1 C), 30.51.


4-(4-fluorophenyl)-1-phenylbut-3-yn-1-ol (1p)

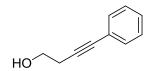
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.45-7.31$ (m, 7 H), 7.01- 6.96 (m, 2 H), 4.97-4.93 (m, 1 H), 2.85 (d, J = 6.4 Hz, 2 H), 2.47 (d, J = 2.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 162.32$ (d, J = 248 Hz, 1 C), 142.69, 133.50 (d, J = 8 Hz, 1 C), 128.49, 127.99, 125.80, 119.34 (d, J = 3 Hz, 1 C), 115.49 (d, J = 23 Hz, 2 C), 85.70 (d, J = 2 Hz, 1 C), 82.11, 72.63, 30.49.


3-(4-hydroxy-4-phenylbut-1-yn-1-yl)benzonitrile (1q)

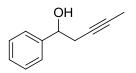
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.60$ (d, *J*=12.0 Hz, 1 H), 7.44-7.55(m, 2 H), 7.37-7.42 (m, 5 H), 7.31-7.34(m, 1 H), 4.95-4.98 (m, 1 H), 2.87-2.89 (m, 2 H), 2.46(s, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 142.64$, 135.82, 135.14, 135.04, 131.19, 129.17, 128.55, 125.95, 125.04, 118.22, 112.76, 89.20, 80.88, 72.74, 30.40.


1-(4-chlorophenyl)-4-(p-tolyl)but-3-yn-1-ol (1r)

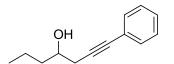
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.35-7.32 (m, 4 H), 7.27 (d, *J* = 8.0 Hz, 2 H), 7.10 (d, *J* = 8.0 Hz, 2 H),4.93-4.91 (m, 1 H), 2.82-2.80 (m, 2 H), 2.58 (s, 1 H), 2.34 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 141.27, 138.31, 133.63, 131.74, 131.49, 129.29, 129.02, 128.77, 128.51, 127.45, 127.20, 120.04, 84.72, 83.73, 72.16, 30.76, 21.59.


1-(4-chlorophenyl)-4-(3,5-dimethylphenyl)but-3-yn-1-ol (1s)

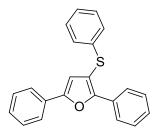
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.38-7.32 (m, 4 H), 7.01 (s, 2 H), 6.94 (s, 1 H), 4.92-4.88 (m, 1 H), 2.82-2.80 (m, 2 H), 2.54 (s, 1 H), 2.28 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 141.26, 137.96, 133.63, 130.20, 129.49, 129.38, 128.66, 127.31, 122.71, 84.70, 83.95, 72.35, 30.75, 21.20.


1-phenyl-4-(thiophen-2-yl)but-3-yn-1-ol (1t)

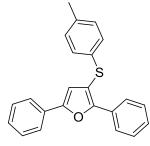
Yellow solid. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.44-7.31 (m, 5 H), 7.20-7.14 (m, 2 H), 6.95-6.93 (m, 1 H), 4.94-4.92 (m, 1 H), 2.87 (d, *J* =6.0 Hz, 1 H), 2.54 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 142.64, 131.64, 128.51, 128.00, 126.85, 126.53, 125.80, 95.23, 90.23, 72.55, 30.86.


4-phenylbut-3-yn-1-ol (1u)

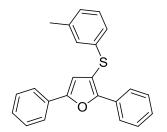
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.43-7.40 (m, 2 H), 7.29-7.28 (m, 3 H), 3.82-4.79 (m, 2 H), 2.70-2.67 (m, 2 H), 2.11 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 131.67, 128.27, 127.95, 123.35, 86.40, 82.46, 61.17, 23.82.


1-phenylpent-3-yn-1-ol (1**v**)

Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.38-7.32 (m, 4 H), 7.30-7.27 (m, 1 H), 4.81-4.78 (m, 1 H), 2.58-2.54 (m, 2 H), 2.51 (s, 1 H), 1.81-1.79 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 142.81, 128.35, 127.71, 125.68, 78.63, 75.23, 72.58, 29.96, 3.49.

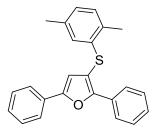

1-phenylhept-1-yn-4-ol (1w)

Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.42-7.40 (m, 2 H), 7.29-7.27 (m, 3 H), 3.87-3.81 (m, 1 H), 2.67-2.51 (m, 2 H), 2.06 (d, *J* = 4.4 Hz, 1 H), 1.61-1.34 (m, 4 H), 0.97-0.94 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 131.67, 128.26, 127.91, 123.43, 86.26, 83.01, 69.97, 38.55, 28.44, 18.88, 14.03.

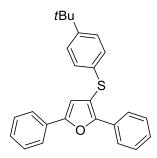

2,5-diphenyl-3-(phenylthio)furan (3aa)

colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.09-8.07$ (m, 2 H), 7.73-7.71 (m, 2 H), 7.43-7.39 (m, 4 H), 7.33-7.24 (m, 6 H), 7.17-7.14 (m, 1 H), 6.71 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 153.60$, 152.84, 136.77, 130.10, 129.99, 129.13, 128.81, 128.72, 128.54, 128.18, 127.98, 125.97, 125.86, 123.91, 112.68, 111.63; HRMS calcd for C₂₂H₁₆OS [M+H]⁺329.0995; found: 329.0999.

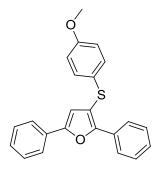
2,5-diphenyl-3-(p-tolylthio)furan (3ab)


Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.07$ (d, J = 7.2 Hz, 2 H), 7.69 (d, J = 7.2 Hz, 2 H), 7.42-7.36 (m, 4 H), 7.31-7.29 (m, 2 H), 7.25-7.19 (m, 2 H), 7.07 (d, J = 8.0 Hz, 2 H), 6.66 (s, 1 H), 2.29 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 152.87$, 152.71, 136.08, 132.85, 130.23, 130.05, 129.94, 128.79, 128.54, 128.16, 128.03, 127.92, 125.90, 123.89, 112.76, 112.39, 21.00; HRMS calcd for C₂₃H₁₈OS [M+H]⁺343.1151; found: 343.1157.

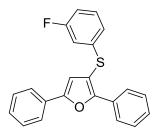
2,5-diphenyl-3-(m-tolylthio)furan (3ac)


Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.09-8.07$ (m, 2 H), 7.73-7.71 (m, 2 H), 7.42-7.27 (m, 6 H), 7.22-7.07 (m, 3 H), 6.96 (d, J = 8.0 Hz, 1 H), 6.71 (s, 1 H), 2.28 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 153.56$, 152.87, 139.11, 136.55, 130.24, 130.12, 128.96, 128.81, 128.16, 127.92, 127.05, 126.81, 126.00,

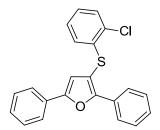
124.72, 123.99, 112.87, 112.76, 111.90, 21.49; HRMS calcd for $C_{23}H_{18}OS$ $[M+H]^+343.1151$; found: 343.1156.


3-((2,5-dimethylphenyl)thio)-2,5-diphenylfuran (3ad)

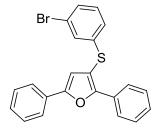
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.06-8.04$ (m, 2 H), 7.71-7.69 (m, 2 H), 7.41-7.39 (m, 4 H), 7.37-7.30 (m, 2 H), 7.28-7.22 (m, 1 H), 7.21 (s, 1 H), 7.05 (d, J = 8.0 Hz, 1 H), 6.61 (s, 1 H), 2.38 (s, 3 H), 2.19 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 152.98$, 152.87, 136.46, 135.04, 133.68, 130.35, 130.16, 128.83, 128.55, 128.42, 128.01, 127.07, 125.96, 123.99, 112.41, 112.27, 21.15, 19.86; HRMS calcd for C₂₄H₂₀OS [M+H]⁺357.1308; found: 357.1301.


3-((4-(tert-butyl)phenyl)thio)-2,5-diphenylfuran (3ae)

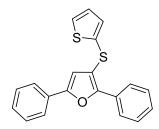
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.10$ (d, J = 8.0 Hz, 2 H), 7.71 (d, J = 8.0 Hz, 2 H), 7.43-7.40 (m, 4 H), 7.31-7.28 (m, 4 H), 7.24-7.22 (m, 2 H), 6.70 (s, 1 H), 1.28 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 153.2$, 152.80, 149.29, 133.12, 130.31, 128.88, 128.61,128.15, 128.00, 127.60, 126.30, 126.02, 123.98, 112.68, 112.44, 34.55, 31.38; HRMS calcd for C₂₆H₂₄OS [M+H]⁺385.1621; found: 385.1618.


3-((4-methoxyphenyl)thio)-2,5-diphenylfuran (3af)

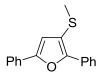
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.07$ (d, J = 7.2 Hz, 2 H), 7.68 (d, J = 7.2 Hz, 2 H), 7.45-7.40 (m, 4 H), 7.38-7.31 (m, 3 H), 7.28 (d, J = 7.6 Hz, 1 H) 6.84 (d, J = 8.8 Hz, 2 H), 6.59 (s, 1 H), 3.77 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 158.88$, 152.58, 151.53, 131.21, 130.36, 130.05, 128.76, 128.54, 127.86, 127.84, 126.39, 125.76, 123.87, 114.89, 114.59, 111.67, 55.38; HRMS calcd for C₂₃H₁₈O₂S [M+H]⁺359.1101; found: 359.1107.


3-((3-fluorophenyl)thio)-2,5-diphenylfuran (3ag)

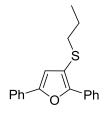
White solid. melting point: 84-86 °C. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.06$ (d, J = 7.2 Hz, 2 H), 7.73 (d, J = 7.2 Hz, 2 H), 7.44-7.40 (m, 4 H), 7.34-7.29 (m, 2 H), 7.24-7.18 (m, 1 H), 7.05-7.04 (m, 1 H), 7.03-6.93 (m, 1 H), 6.85-6.80 (m, 1 H), 6.75 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 163.19$ (d, J = 247 Hz, 1 C), 154.33, 153.11, 139.55 (d, J = 7 Hz, 1 C), 130.41, 130.32, 129.84, 128.84, 128.59, 128.44, 128.13, 136.05, 123.96, 122.31 (d, J = 3 Hz, 1 C), 113.66 (d, J = 24 Hz, 2 C), 112.74 (d, J = 4 Hz, 1 C), 110.18; HRMS calcd for C₂₂H₁₅FOS [M+H]⁺347.0901; found: 347.0905.


3-((2-chlorophenyl)thio)-2,5-diphenylfuran (3ah)

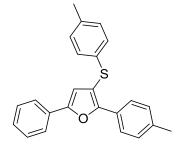
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.06-8.04$ (m, 2 H), 7.44-7.42 (m, 2 H), 7.40-7.32 (m, 5 H), 7.31-7.29 (m, 2 H), 7.08-7.01 (m, 3 H), 6.74 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 154.96$, 153.20, 136.42, 131.20, 129.85, 129.78, 129.65, 128.78, 128.62, 128.49, 128.14, 127.35, 127.00, 126.28, 126.04, 123.94, 113.00, 109.46; HRMS calcd for $C_{22}H_{15}ClOS [M+H]^+363.0605$; found: 363.0601.


3-((3-bromophenyl)thio)-2,5-diphenylfuran (3ai)

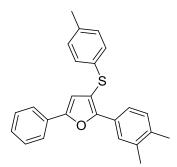
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.07-8.05$ (m, 2 H), 7.75-7.73 (m, 2 H), 7.45-7.32 (m, 8 H), 7.17-7.11 (m, 2 H), 6.74 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 154.35$, 153.21, 139.54, 130.49, 129.90, 129.37, 128.94, 128.86, 128.69, 128.53, 128.22, 126.12, 125.42, 124.04, 123.81, 123.23, 112.69, 110.21; HRMS calcd for $C_{22}H_{15}BrOS [M+H]^+407.0100$; found: 407.0108.


2,5-diphenyl-3-(thiophen-2-ylthio)furan (3ak)

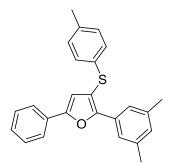
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.06$ (d, J = 7.2 Hz, 2 H), 7.67 (d, J = 7.2 Hz, 2 H), 7.49-7.40 (m, 2 H), 7.38-7.29 (m, 4 H), 7.27-7.26 (m, 1 H), 7.24-7.23 (m, 1 H), 7.10-6.99 (m, 1 H), 6.61 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 152.49, 150.23, 133.34, 132.88, 130.26, 129.98, 129.49, 128.72, 128.57,$ 127.88, 127.59, 125.82, 123.89, 116.19, 110.60; HRMS calcd for C₂₀H₁₄OS₂ [M+H]⁺335.0559; found: 335.0553.


3-(methylthio)-2,5-diphenylfuran (3al) Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.03-8.01$ (m, 2 H), 7.74-7.72 (m, 16

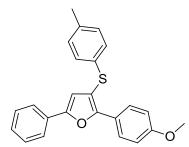
2 H), 7.46-7.39 (m, 5 H), 7.31-7.27 (m, 1 H), 6.78 (s, 1 H), 2.47 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 152.42, 149.49, 130.71, 128.78, 128.75, 128.50, 127.79, 127.37, 125.46, 123.84, 116.95, 109.75, 18.27; HRMS calcd for C₁₇H₁₄OS [M+H]⁺267.0838; found: 267.0839.


2,5-diphenyl-3-(propylthio)furan (**3am**)

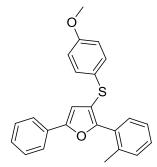
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.11-8.09$ (m, 2 H), 7.73-7.71 (m, 2 H), 7.45-7.38 (m, 4 H), 7.31-7.27 (m, 2 H), 6.76 (s, 1 H), 2.84-2.80 (m, 2 H), 1.71-1.61 (m, 2 H), 7.31-7.27 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 152.26$, 150.86, 130.78, 130.21, 128.77, 128.43, 127.76, 127.45, 125.64, 123.84, 115.64, 111.17, 107.23 37.45, 22.90, 13.33; HRMS calcd for C₁₉H₁₈OS [M+H]⁺295.1151; found: 295.1157.


5-phenyl-2-(p-tolyl)-3-(p-tolylthio)furan (3bb)

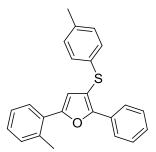
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.01$ (d, J = 8.4 Hz, 2 H), 7.74 (d, J = 7.2 Hz, 2 H), 7.45-7.41 (m, 2 H), 7.33-7.32 (m, 5 H), 7.11 (d, J = 8.0 Hz, 2 H), 6.71 (s, 1 H), 2.41 (s, 3 H), 2.33 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 153.42$, 152.36, 138.08, 135.89, 133.11, 130.13, 129.88, 129.22, 128.76, 127.91, 127.78, 127.47, 125.88, 123.81, 112.44, 111.69, 21.39, 20.98; HRMS calcd for C₂₄H₂₀OS [M+H]⁺357.1308; found: 357.1304.


2-(3,4-dimethylphenyl)-5-phenyl-3-(p-tolylthio)furan (3cb)

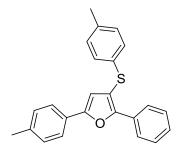
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.82$ (d, J = 8.0 Hz, 2 H), 7.71-7.69 (m, 2 H), 7.41-7.37 (m, 3 H), 7.29-7.27 (m, 1 H), 7.23-7.16 (m, 3 H), 7.10-7.07 (m, 2 H), 6.67 (s, 1 H), 2.29-2.28 (m, 9 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 153.54$, 152.36, 136.95, 135.97, 135.29, 130.26, 130.11, 129.66, 129.01, 128.69, 128.35, 127.88, 127.62, 127.06, 123.89, 112.60, 111.80, 21.09, 20.08, 19.80; HRMS calcd for C₂₅H₂₂OS [M+H]⁺371.1464; found: 371.1469.


2-(3,5-dimethylphenyl)-5-phenyl-3-(p-tolylthio)furan (3db)

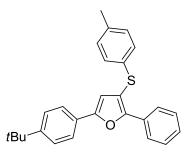
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.71-7.69 (m, 4 H), 7.41-7.36 (m, 2 H), 7.28 (d, *J* = 8.0 Hz, 1 H), 7.22 (d, *J* = 8.0 Hz, 2 H), 7.09 (d, *J* = 6.8 Hz, 2 H), 6.95 (s, 1 H), 6.64 (s, 1 H), 2.35 (s, 6 H), 2.30 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 152.99, 152.45, 138.00, 136.09, 133.00, 130.15, 130.09, 129.89, 129.84, 128.76, 128.47, 127.80, 123.87, 123.76, 112.78, 112.23, 21.51, 21.01; HRMS calcd for C₂₅H₂₂OS [M+H]⁺371.1464; found: 371.1468.


2-(4-methoxyphenyl)-5-phenyl-3-(p-tolylthio)furan (3eb)

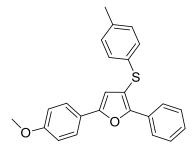
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.02-8.00$ (m, 2 H), 7.69-7.67 (m, 2 H), 7.40-7.36 (m, 2 H), 7.28-7.23 (m, 1 H), 7.17 (d, J = 8.4 Hz, 2 H), 7.06 (d, J = 8.0 Hz, 2 H), 6.93 (d, J = 9.2 Hz, 2 H), 6.67 (s, 1 H), 3.82 (s, 3 H), 2.28 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 159.54$, 153.65, 152.09, 135.75, 133.32, 130.17, 129.89, 128.77, 127.69, 127.59, 127.51, 123.74, 123.11, 113.99, 112.58, 110.36, 55.33, 20.97; HRMS calcd for C₂₄H₂₀O₂S [M+H]⁺373.1257; found: 373.1261.


3-((4-methoxyphenyl)thio)-5-phenyl-2-(o-tolyl)furan (3ff)

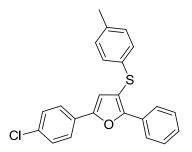
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.65 (d, *J* = 7.6 Hz, 2 H), 7.51 (d, *J* = 7.6 Hz, 1 H), 7.38 (d, *J* = 7.6 Hz, 2 H), 7.30-7.26 (m, 6 H), 6.82 (d, *J* = 8.8 Hz, 2 H), 6.65 (s, 1 H), 3.78 (s, 3 H), 2.47 (s, 3 H), ; ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 158.68, 154.01, 153.19, 137.50, 130.91, 130.75, 130.40, 130.26, 129.27, 128.99, 128.75, 127.75, 127.06, 125.48, 123.68, 115.35, 114.74, 110.29, 55.37, 20.89; HRMS calcd for C₂₄H₂₀O₂S [M+H]⁺373.1257; found: 373.1251.


2-phenyl-5-(o-tolyl)-3-(p-tolylthio)furan (3gb)

Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.08$ (d, J = 7.2 Hz, 2 H), 7.77 (d, J = 7.6 Hz, 1 H), 7.42-7.38 (m, 2 H), 7.32-7.27 (m, 2 H), 7.24-7.19 (m, 4 H), 7.07 (d, J = 8.0 Hz, 2 H), 6.59 (s, 1 H), 2.52 (s, 3 H), 2.29 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 152.85$, 152.46, 135.88, 134.73, 133.08, 131.37, 130.22, 129.92, 129.34, 128.55, 128.05, 127.96, 127.76, 126.87, 126.14, 125.91, 116.02, 111.93, 22.09, 20.98; HRMS calcd for C₂₄H₂₀OS [M+H]⁺357.1308; found: 357.1302.

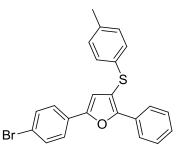

2-phenyl-5-(p-tolyl)-3-(p-tolylthio)furan (3hb)

Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.09-8.07$ (m, 2 H), 7.60 (d, J = 8.4 Hz, 2 H), 7.44-7.40 (m, 2 H), 7.32 (d, J = 7.6 Hz, 1 H), 7.23-7.19 (m, 4 H), 7.09 (d, J = 8.0 Hz, 2 H), 6.62 (s, 1 H), 2.38 (s, 3 H), 2.31 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 152.96$, 152.51, 137.87, 136.00, 132.93, 130.31, 129.90, 129.46, 128.50, 128.10, 127.89, 127.37, 125.83, 123.86, 112.59, 111.67, 21.35, 20.98; HRMS calcd for C₂₄H₂₀OS [M+H]⁺357.1308; found: 357.1314.



5-(4-(tert-butyl)phenyl)-2-phenyl-3-(p-tolylthio)furan (3ib)

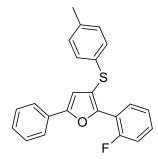
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.07$ (d, J = 7.2 Hz, 2 H), 7.64 (d, J = 8.4 Hz, 2 H), 7.44-7.39 (m, 4 H), 7.34-7.28 (m, 1 H), 7.20 (d, J = 8.4 Hz, 2 H), 7.07 (d, J = 8.0 Hz, 2 H), 6.63 (s, 1 H), 2.30 (s, 3 H), 1.34 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 152.93$, 152.66, 151.14, 135.93, 132.99, 130.31, 129.88, 128.50, 127.95, 127.89, 127.33, 125.83, 125.70, 123.72, 112.47, 111.85, 34.71, 31.26, 20.97; HRMS calcd for C₂₇H₂₆OS [M+H]⁺399.1777; found: 399.1782.



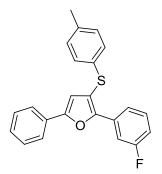
5-(4-methoxyphenyl)-2-phenyl-3-(p-tolylthio)furan (3jb) Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.02$ (d, J = 8.8 Hz, 2 H), 7.69 (d, J = 8.0 Hz, 2 H), 7.41-7.37 (m, 2 H), 7.27-7.24 (m, 1 H), 7.18 (d, J = 8.0 Hz, 2 H), 7.07 (d, J = 8.0 Hz, 2 H), 6.94 (d, J = 8.0 Hz, 2 H), 6.68 (s, 1 H), 3.83 (s, 3 H), 2.29 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 159.54$, 153.65, 152.09, 135.75, 133.31, 130.17, 129.89, 128.77, 127.69, 127.59, 127.51, 123.74, 123.11, 113.99, 112.58, 110.36, 55.33, 20.97; HRMS calcd for C₂₄H₂₀O₂S [M+H]⁺373.1257; found: 373.1251.

5-(4-chlorophenyl)-2-phenyl-3-(p-tolylthio)furan (3kb)

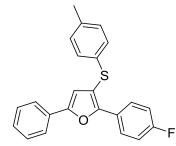
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.06$ (d, J = 7.2 Hz, 2 H), 7.60 (d, J = 8.4 Hz, 2 H), 7.43-7.39 (m, 2 H), 7.37-7.31 (m, 3 H), 7.21 (d, J = 8.4 Hz, 2 H), 7.08 (d, J = 8.0 Hz, 2 H), 6.63 (s, 1 H), 2.30 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 152.98$, 151.61, 136.27, 133.56, 132.60, 129.98, 129.02, 128.58, 128.38, 128.19, 125.91, 125.09, 124.92, 123.79, 113.13, 112.72, 21.03; HRMS calcd for C₂₃H₁₇ClOS [M+H]⁺377.0762; found: 377.0768.


5-(4-bromophenyl)-2-phenyl-3-(p-tolylthio)furan (3lb)

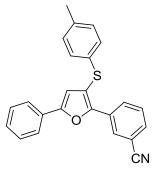
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.07-8.04$ (m, 2 H), 7.52-7.50 (m, 4 H), 7.43-7.36 (m, 2 H), 7.34-7.30 (m, 1 H), 7.21 (d, J = 8.4 Hz, 2 H), 7.10-7.07 (m, 2 H), 6.65 (s, 1 H), 2.23 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 153.02$, 151.61, 136.28, 132.55, 131.93, 129.96, 129.79, 128.94, 128.56, 128.38, 128.19, 125.91, 125.33, 121.69, 113.17, 112.80, 21.00; HRMS calcd for C₂₃H₁₇BrOS [M+H]⁺421.0256; found: 421.0250.


5-(2-bromophenyl)-2-(p-tolyl)-3-(p-tolylthio)furan (3mb)

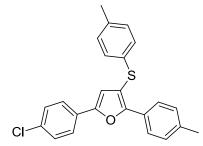
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.98$ (d, J = 8.0 Hz, 2 H), 7.89-7.87 (m, 1 H), 7.65-7.63 (m, 1 H), 7.40-7.36 (m, 1 H), 7.22-7.18 (m, 5 H), 7.15-7.11 (m, 1 H), 7.07 (d, J = 8.0 Hz, 2 H), 2.37 (s, 3 H), 2.29 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 153.82$, 149.70, 138.38, 135.78, 134.29, 133.15, 130.54, 129.89, 129.26, 128.71, 128.55, 127.63, 127.43, 127.23, 126.07, 119.67, 118.15, 111.13, 21.41, 20.97; HRMS calcd for C₂₄H₁₉BrOS [M+H]⁺435.0413; found: 435.0416.


2-(2-fluorophenyl)-5-phenyl-3-(p-tolylthio)furan (3nb)

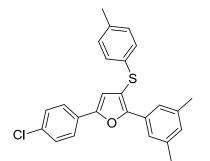
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.76-7.74$ (m, 3 H), 7.72-7.68 (m, 4 H), 7.40-7.29 (m, 4 H), 7.23-7.7.07 (m, 2 H), 6.68 (s, 1 H), 2.30 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 159.65$ (d, J = 244 Hz, 1 C), 154.12, 149.17, 136.16, 132.92, 130.42 (d, J = 3 Hz, 1 C), 130.31, 130.01, 129.87, 128.77, 128.52, 128.03, 123.94 (d, J = 5 Hz, 1 C), 118.13(d, J = 13 Hz, 1 C), 116.32 (d, J = 24 Hz, 2 C), 115.68, 111.04, 21.00; HRMS calcd for C₂₃H₁₇FOS [M+H]⁺361.1057; found: 361.1062.


2-(3-fluorophenyl)-5-phenyl-3-(p-tolylthio)furan (3ob)

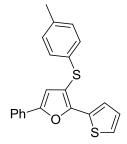
White solid. melting point: 93-95 °C. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.92-7.88$ (m, 1 H), 7.83-7.79 (m, 1 H), 7.71-7.68 (m, 2 H), 7.42-7.38 (m, 3 H), 7.36-7.34 (m, 1 H), 7.32-7.28 (m, 2 H), 7.23 (d, J = 8.0 Hz, 2 H), 7.10-7.08 (m, 1 H), 7.02-6.97 (m, 1 H), 6.65 (s, 1 H), 2.31 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 162.88$ (d, J = 244 Hz, 1 C), 153.06, 150.99, 136.46, 132.18, 130.09 (d, J = 9 Hz, 2 C), 130.00, 129.78, 128.82, 128.60, 128.15, 123.99, 121.37 (d, J = 3 Hz, 1 C), 114.71 (d, J = 22 Hz, 1 C), 114.46, 112.41 (d, J = 24 Hz, 1 C), 112.29, 21.00; HRMS calcd for C₂₃H₁₇FOS [M+H]⁺361.1057; found: 361.1050.


2-(4-fluorophenyl)-5-phenyl-3-(p-tolylthio)furan (3pb)

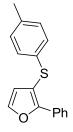
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.08-8.04$ (m, 2 H), 7.71-7.68 (m, 2 H), 7.42-7.38 (m, 2 H), 7.31-7.28 (m, 1 H), 7.19 (d, J = 8.0 Hz, 2 H), 7.12-7.07 (m, 4 H), 6.68 (s, 1 H), 2.30 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 162.39$ (d, J = 248 Hz, 1 C), 152.64, 152.19, 136.08, 132.66, 129.90 (d, J = 5 Hz, 1 C), 128.77, 127.91, 127.83 (d, J = 10 Hz, 2 C), 127.81, 126.49, 126.46, 123.82, 115.55 (d, J = 21 Hz, 2 C), 112.39, 112.14, 20.94; HRMS calcd for C₂₃H₁₇FOS [M+H]⁺361.1057; found: 361.1063.


3-(5-phenyl-3-(p-tolylthio)furan-2-yl)benzonitrile (3qb)

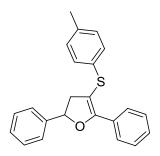
White solid. melting point: 75-77 °C. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.35$ (s, 1 H), 8.31 (d, J = 8.0 Hz, 1 H), 7.70-7.54 (m, 2 H), 7.52-7.48 (m, 2 H), 7.43-7.39 (m, 2 H), 7.33-7.30 (m, 1 H), 7.25-7.21 (m, 3 H), 7.10 (d, J = 8.0 Hz, 2 H), 6.65 (s, 1 H), 2.31 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 153.73$, 149.43, 136.86, 131.53, 131.40, 130.74, 130.12, 129.49, 129.44, 129.38, 128.95, 128.89, 128.45, 124.09, 118.72, 115.96, 112.89, 112.22, 21.02; HRMS calcd for C₂₄H₁₇NOS [M+H]⁺368.1204; found: 368.1209.


5-(4-chlorophenyl)-2-(p-tolyl)-3-(p-tolylthio)furan (3rb)

Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 7.95$ (d, J = 8.0 Hz, 2 H), 7.62-7.59 (m, 2 H), 7.36-7.34 (m, 2 H), 7.23-7.20 (m, 4 H), 7.18-7.08 (m, 2 H), 6.64 (s, 1 H), 2.37 (s, 3 H), 2.29 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 153.63$, 151.35, 138.35, 136.15, 133.48, 132.93, 130.06, 129.95, 129.39, 129.28, 129.01, 128.68, 128.12, 127.35, 125.96, 125.07, 112.87, 112.13, 21.51, 21.06; HRMS calcd for C₂₄H₁₉CIOS [M+H]⁺391.0918; found: 391.0923.


5-(4-chlorophenyl)-2-(3,5-dimethylphenyl)-3-(p-tolylthio)furan (3sb)

White solid. melting point: 112-113 °C. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.67 (s, 2 H), 7.65 (d, *J* = 8.8 Hz, 2 H), 7.39 (d, *J* = 8.4 Hz, 2 H), 7.27 (d, *J* = 6.4 Hz, 2 H), 7.12 (d, *J* = 8.0 Hz, 2 H), 7.00 (s, 1 H), 6.65 (s, 1 H), 2.39 (s, 3 H), 2.34 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 153.11, 151.35, 138.03, 136.27, 133.42, 132.72, 129.97, 129.90, 129.88, 128.96, 128.68, 128.62, 125.07, 123.75, 113.14, 112.53, 21.48, 21.00; HRMS calcd for C₂₅H₂₁ClOS [M+H]⁺405.1076; found: 405.1069.


5-phenyl-2-(thiophen-2-yl)-3-(p-tolylthio)furan (3tb)

Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.71-7.66 (m, 3 H), 7.42-7.38 (m, 3 H), 7.31-7.29 (m, 2 H), 7.20 (d, *J* = 8.0 Hz, 2 H), 7.07 (d, *J* = 7.6 Hz, 2 H), 6.70 (s, 1 H), 2.30 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 152.50, 150.44, 136.06, 132.58, 131.81, 131.33, 129.89, 128.79, 127.97, 127.33, 126.84, 125.93, 125.02, 123.84, 112.11, 111.47, 20.97; HRMS calcd for C₂₁H₁₆OS₂ [M+H]⁺349.0716; found: 349.0711.

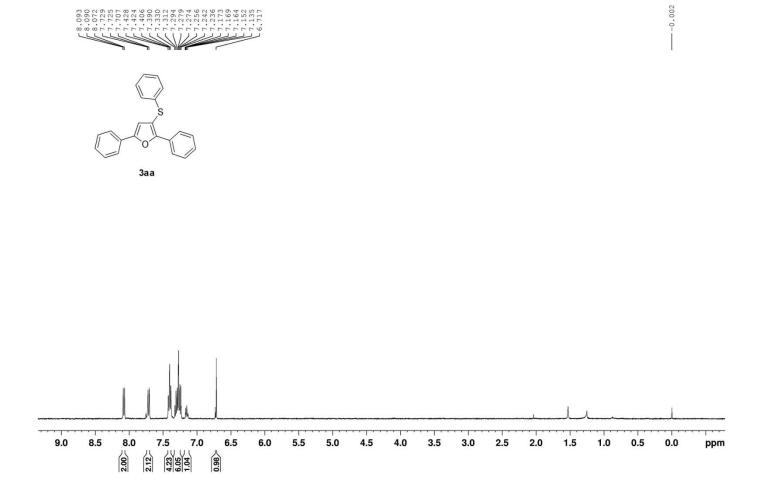
2-phenyl-3-(p-tolylthio)furan (3ub)

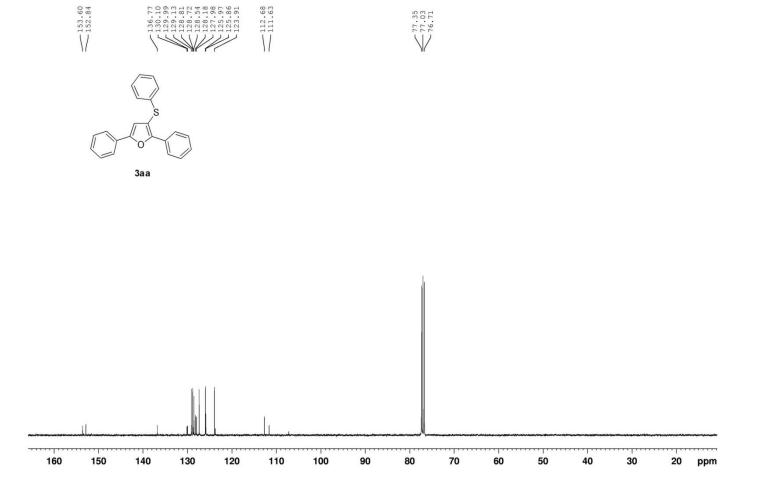
Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): δ = 7.99 (d, *J* = 7.6 Hz, 2 H), 7.47 (d, *J* = 1.6 Hz, 1 H), 7.41-7.37 (m, 2 H), 7.31-7.27 (m, 1 H), 7.15 (d, *J* = 8.0 Hz, 2 H), 7.07 (d, *J* = 8.4 Hz, 2 H), 6.42 (d, *J* = 2.0 Hz, 1H), 2.29 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): δ = 153.76, 141.68, 135.91, 133.07, 130.21, 129.85, 128.47, 128.05, 127.93, 125.95, 117.29, 110.39, 20.96; HRMS calcd for C₁₇H₁₄OS [M+H]⁺267.0838; found: 267.0842.

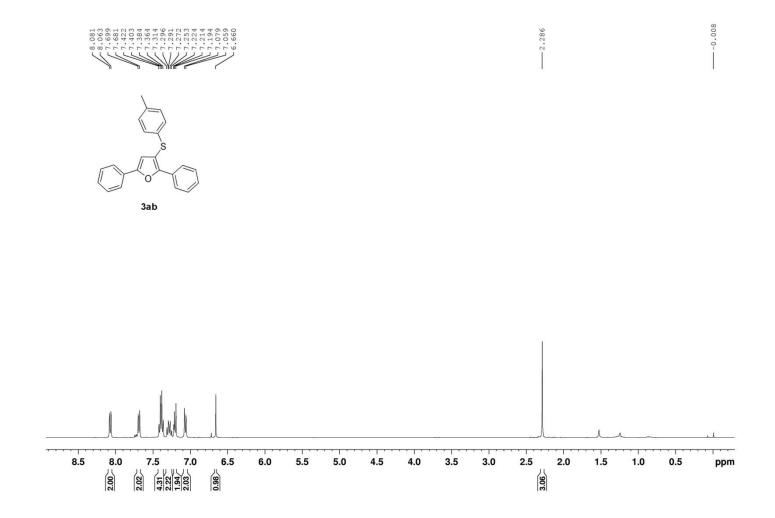
2,5-diphenyl-4-(p-tolylthio)-2,3-dihydrofuran (4ab)

Colorless oil. ¹H NMR (400 MHz, CDCl₃, ppm): $\delta = 8.04-8.01$ (m, 2 H), 7.41-7.32 (m, 7 H), 7.31-7.28 (m, 1 H), 7.18 (d, J = 8.4 Hz, 2 H), 7.06 (d, J = 8.0 Hz, 2 H), 5.71-5.66 (m, 1 H), 3.38-3.31 (m, 1 H), 2.91-2.85 (m, 1 H), 2.29 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃, ppm): $\delta = 157.19$, 142.33, 135.78, 132.25, 130.18, 129.83, 129.27, 128.64, 128.10, 127.88, 127.78, 127.62, 125.58, 98.48, 80.92, 44.15, 20.96; HRMS calcd for C₂₃H₂₀OS [M+H]⁺345.1307; found: 345.1303.

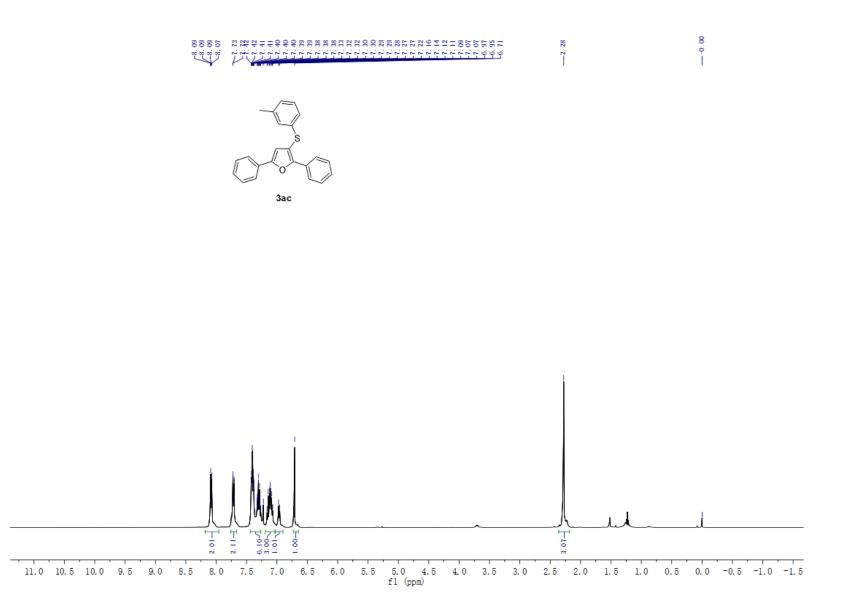
Refrence:

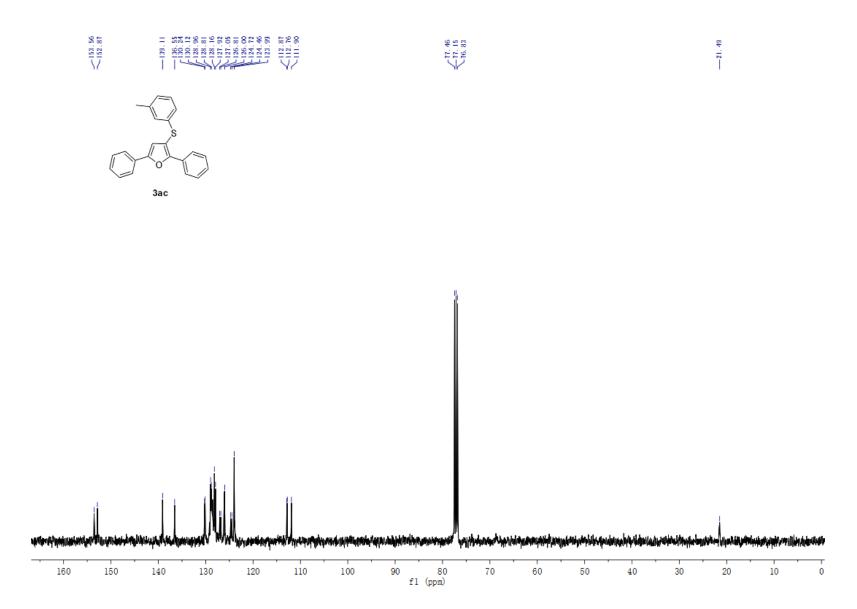

[1] P. Gao, Y. -W. Shen, R. Fang, X.-H. Hao, Z.-H. Qiu, F. Yang, X.-B. Yan, Q. Wang, X.-J.

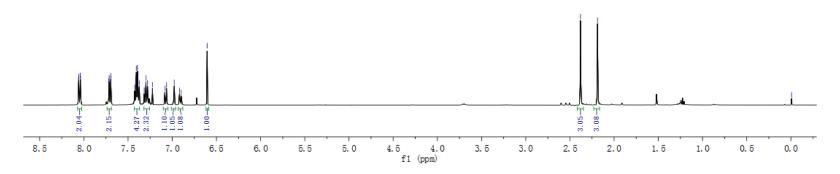

Gong, X.-Y. Liu and Y.-M. Liang, Angew. Chem., Int. Ed. 2014, 53, 7629.

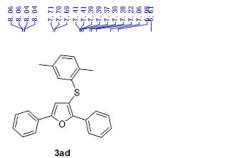

[2] D.-Q. Chen, P. Gao, P.-X. Zhou, X.-R. Song, Y.-F. Qiu, X.-Y. Liu and Y.-M. Liang, *Chem. Commun.* **2015**, *51*, 6637.

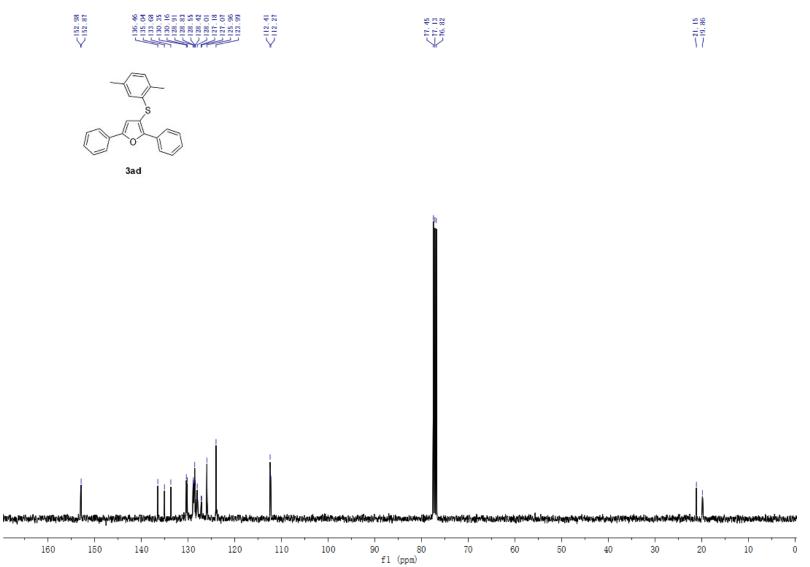
[3]. Y.-Z. Chen, L.-Z. Wu, M.-L. Peng, D. Zhang, L.-P. Zhang and C.-H. Tung, *Tetrahedron*. **2006**, *62*, 10688.

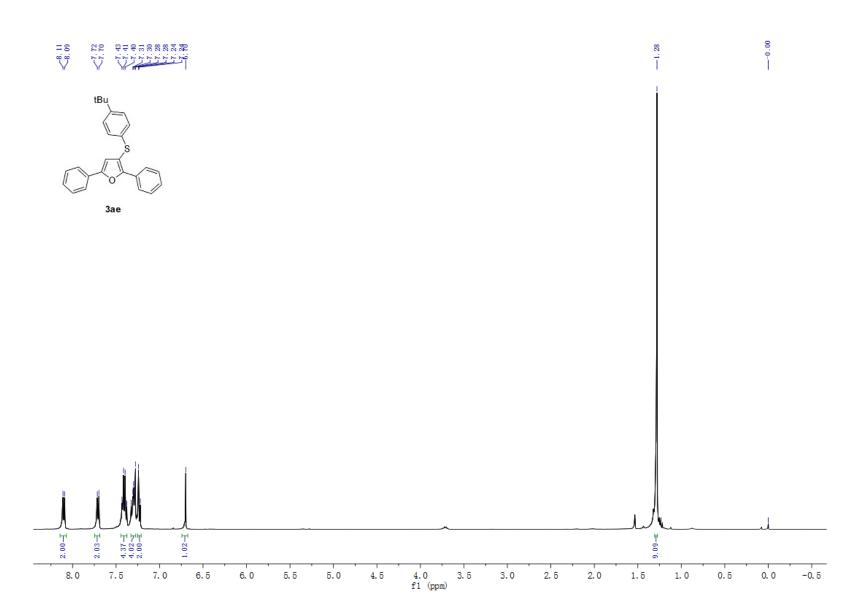

[4]. A. Arrault, F. Touzeau, G. Guillaumet, J.-Y. Mérour, Synthesis. 1999, 7, 1241.

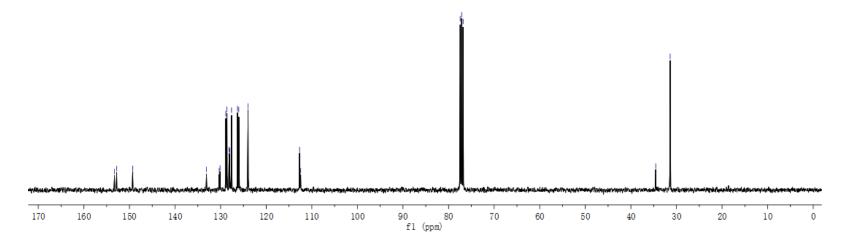


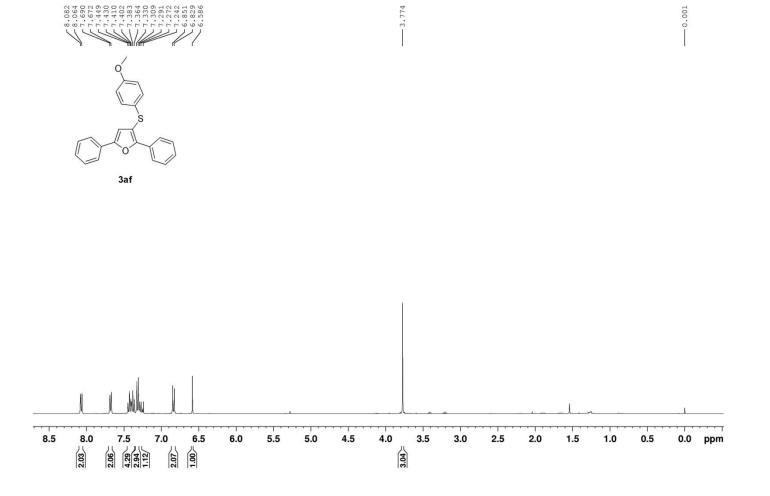


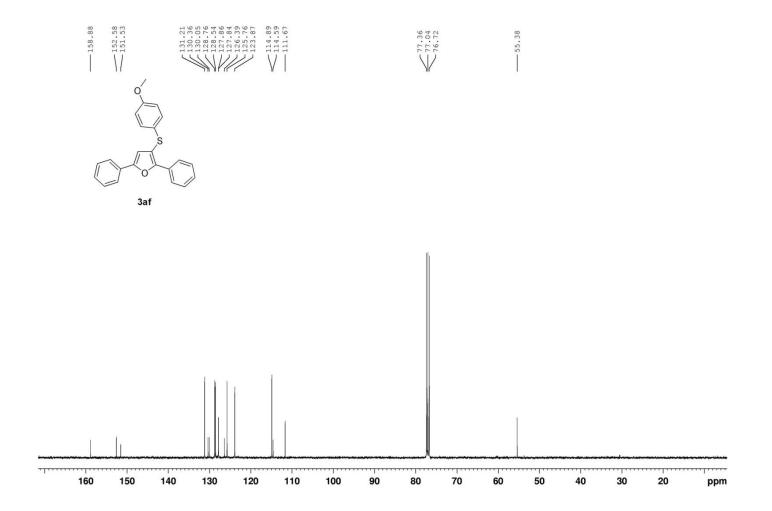


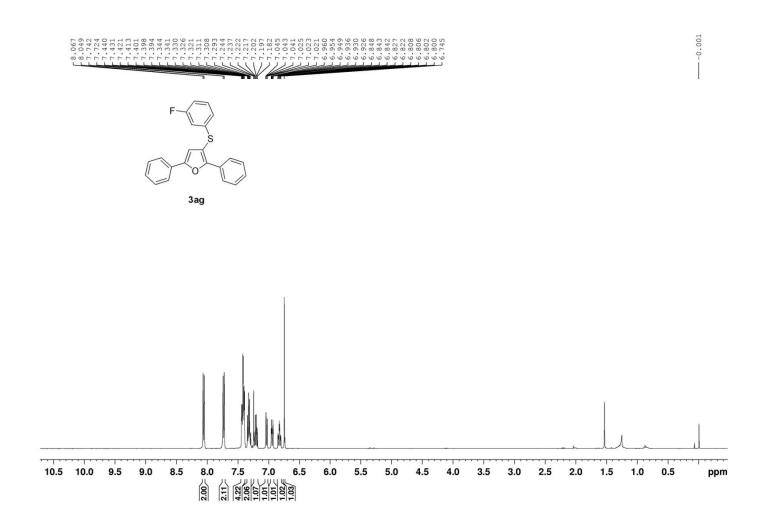




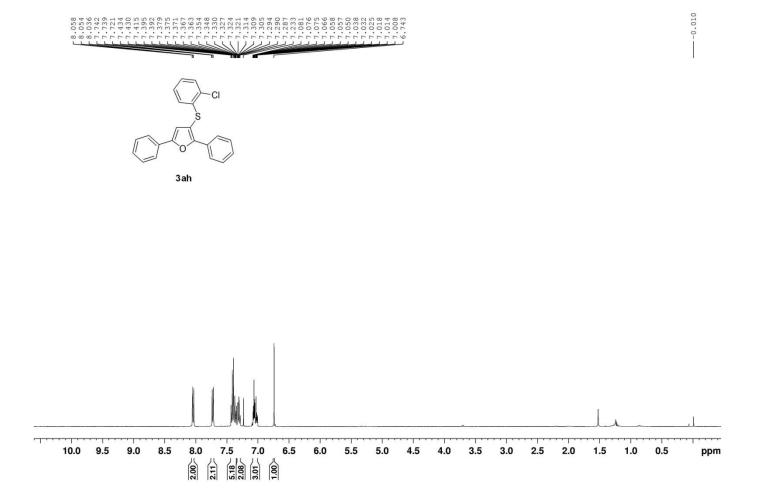

----0.01

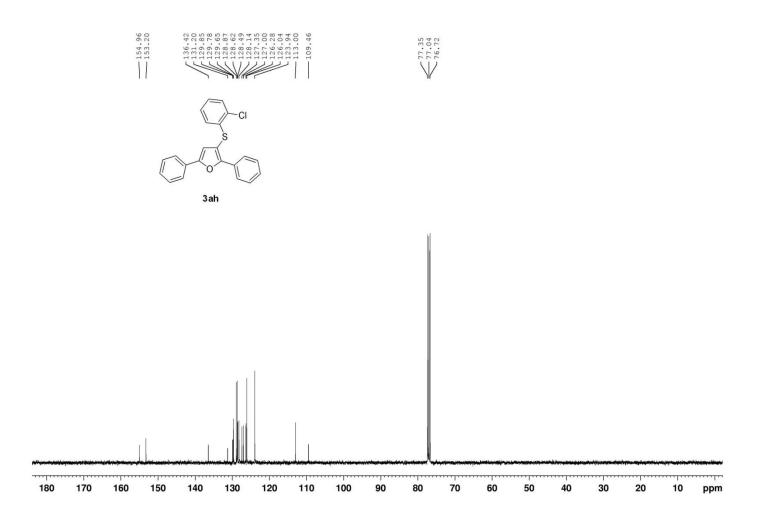


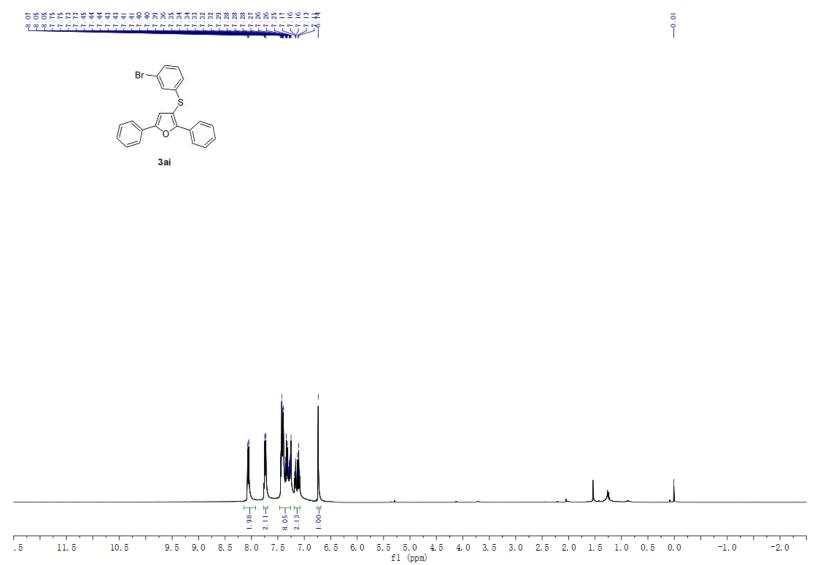


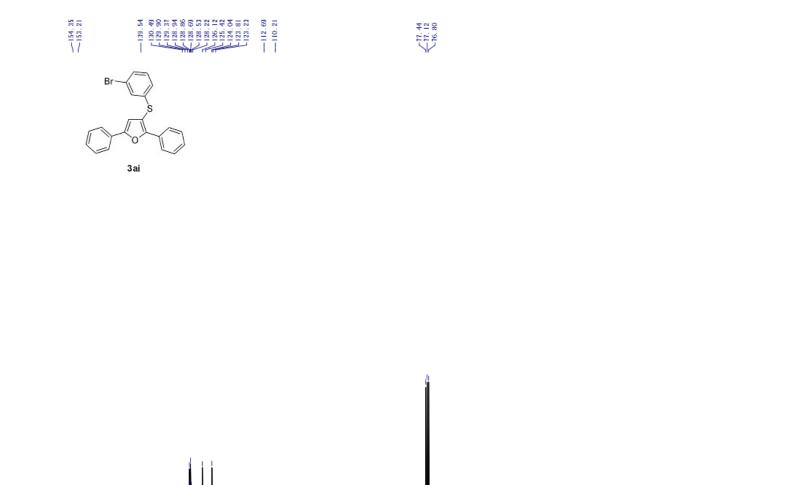


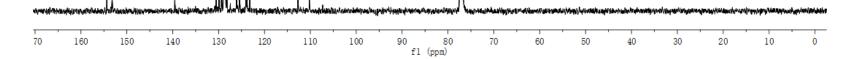


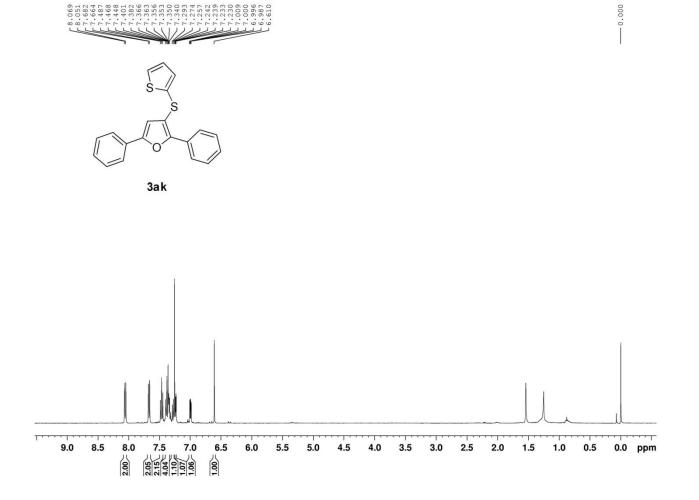


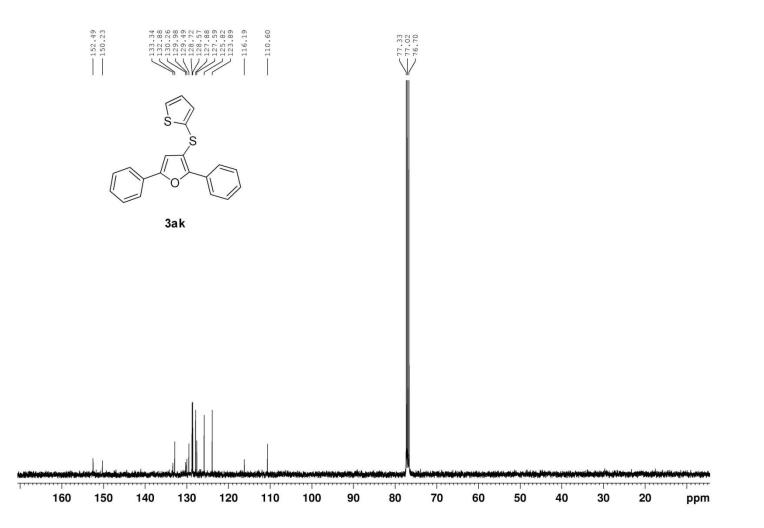


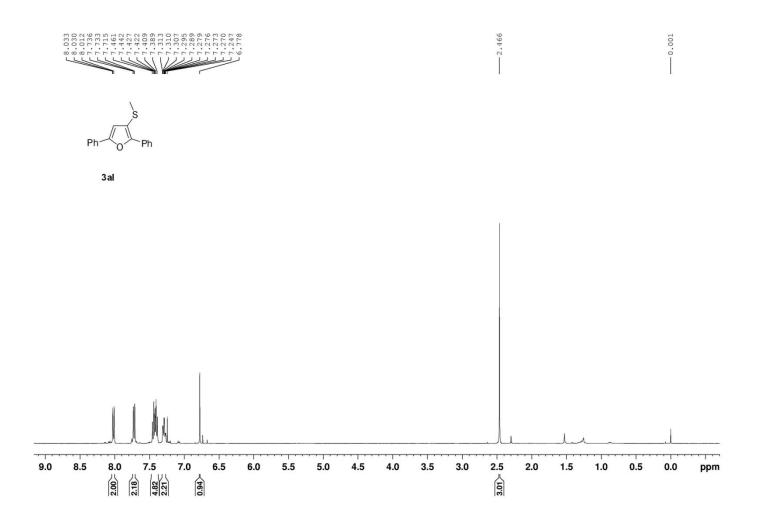


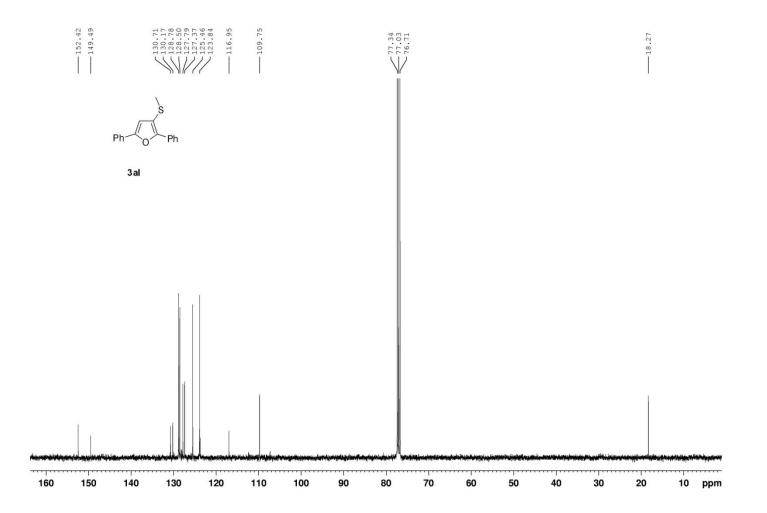


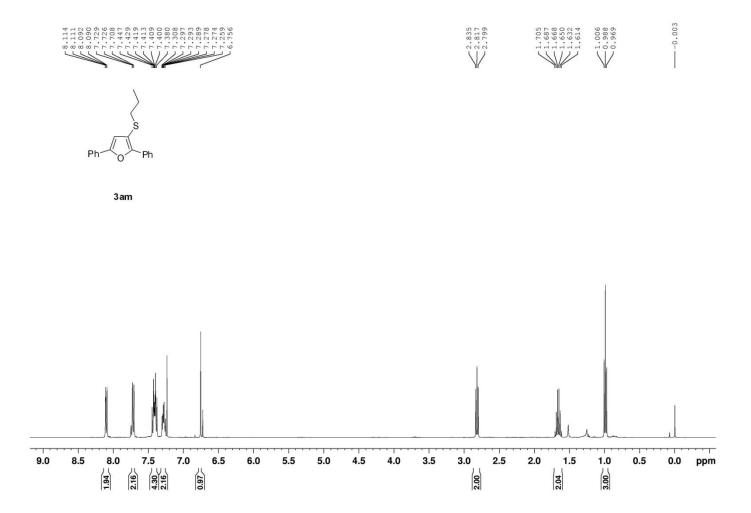


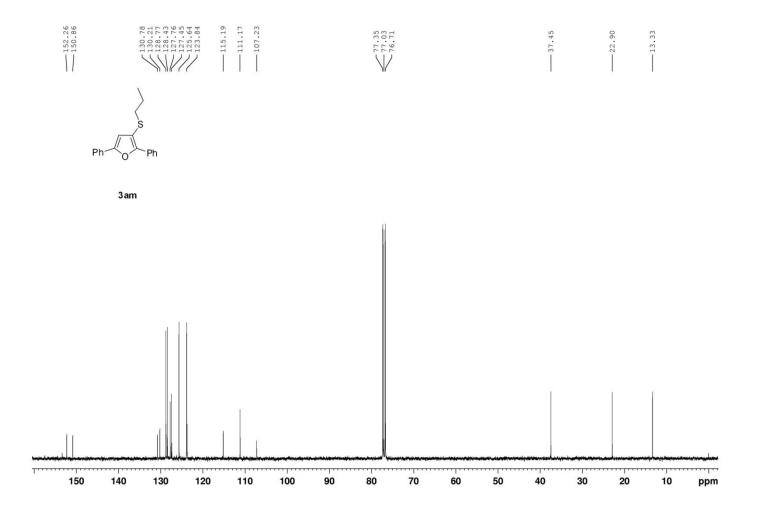


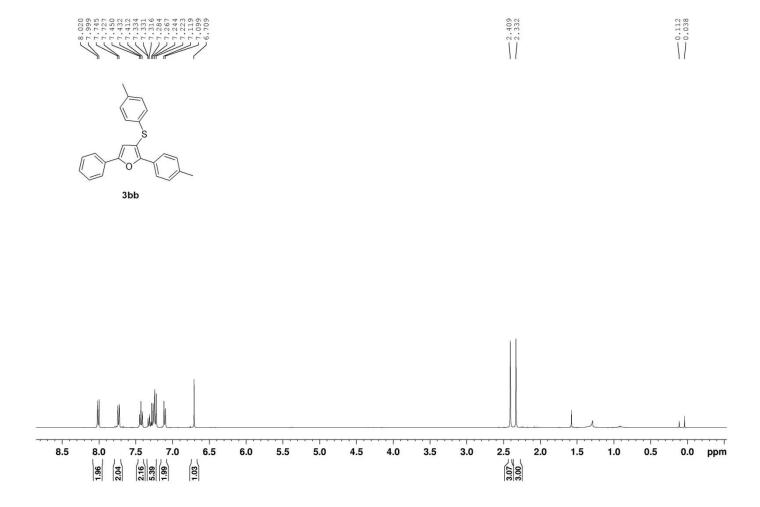




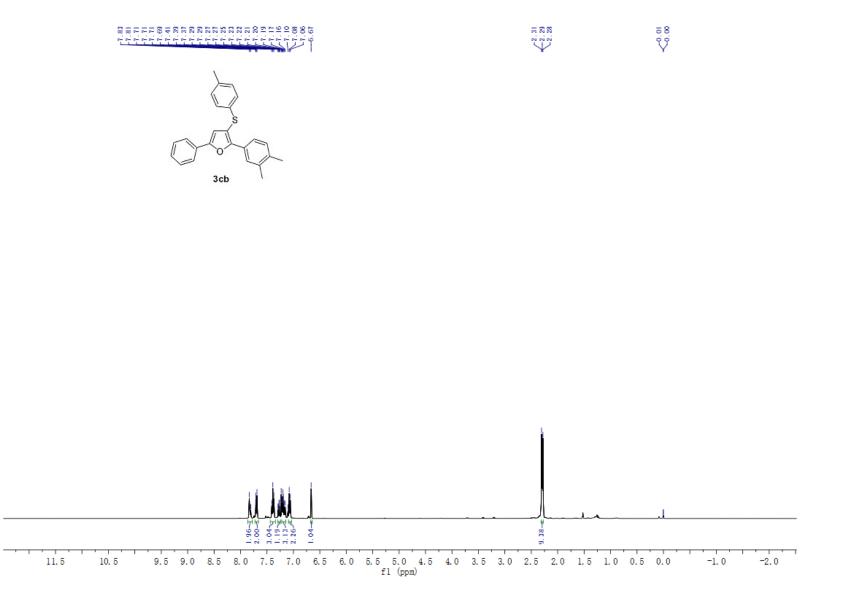


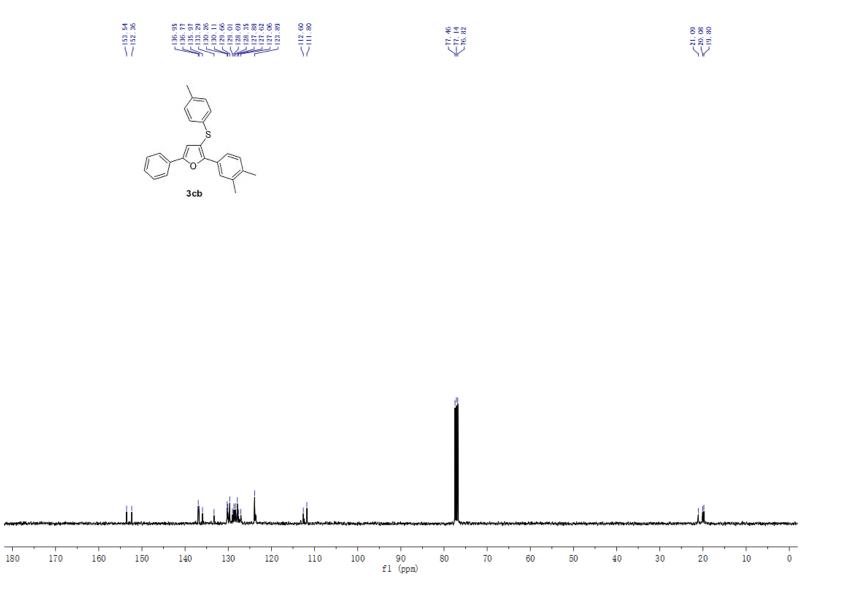


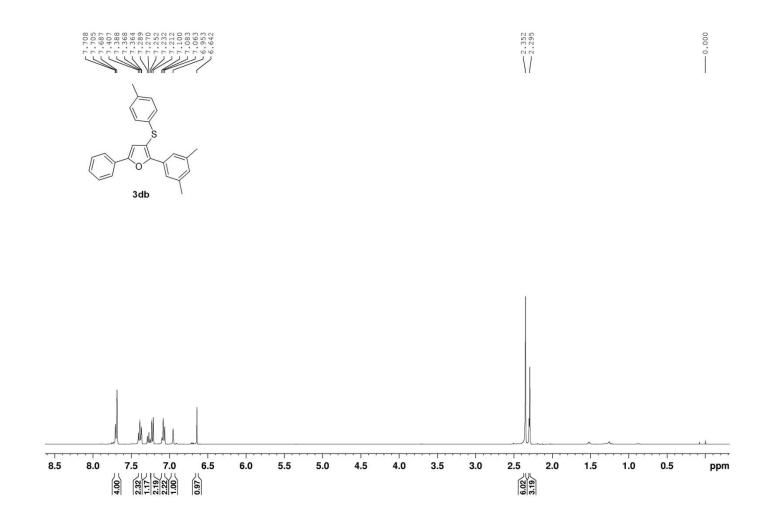


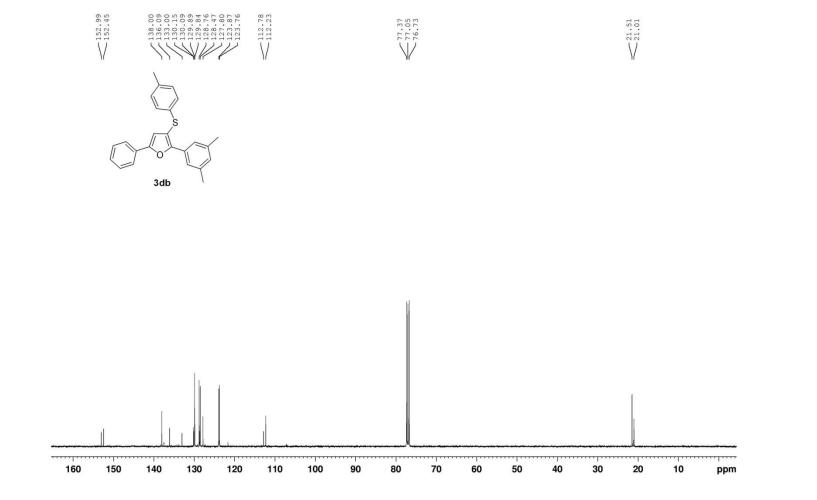


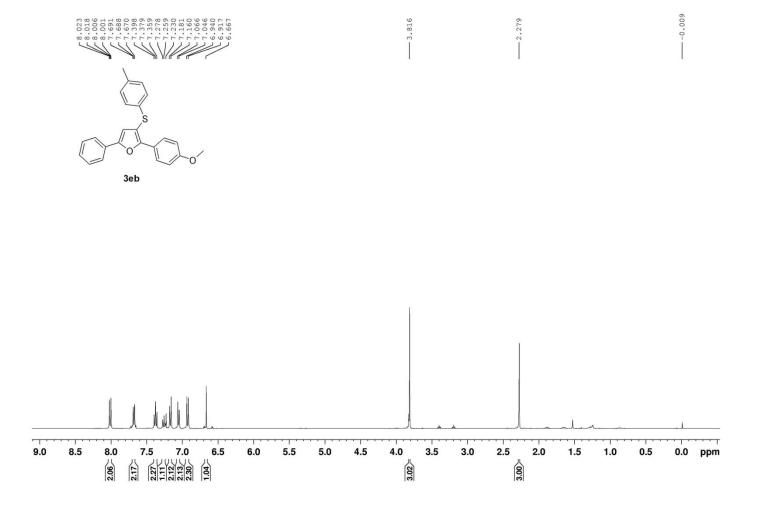


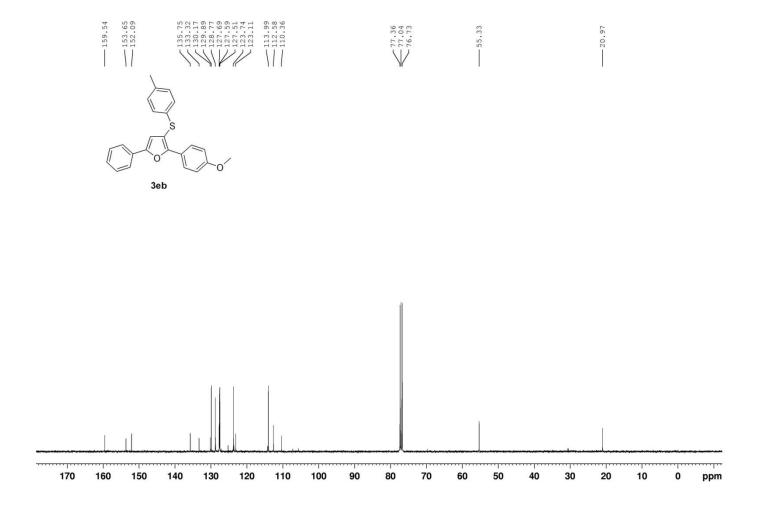


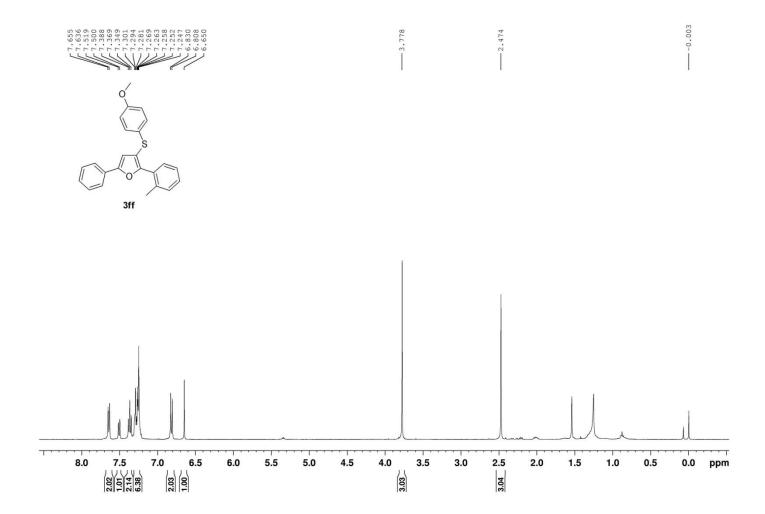


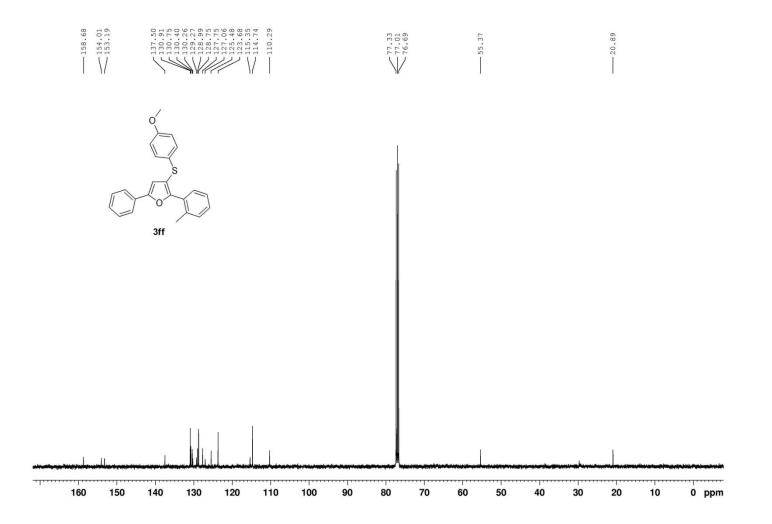


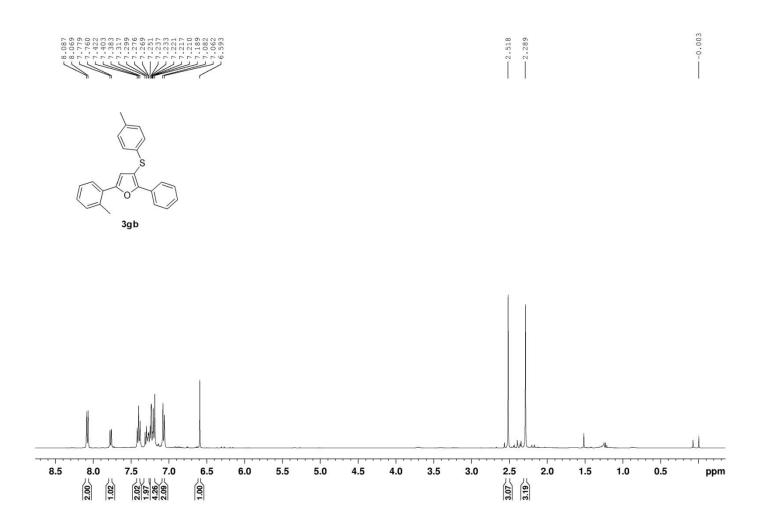


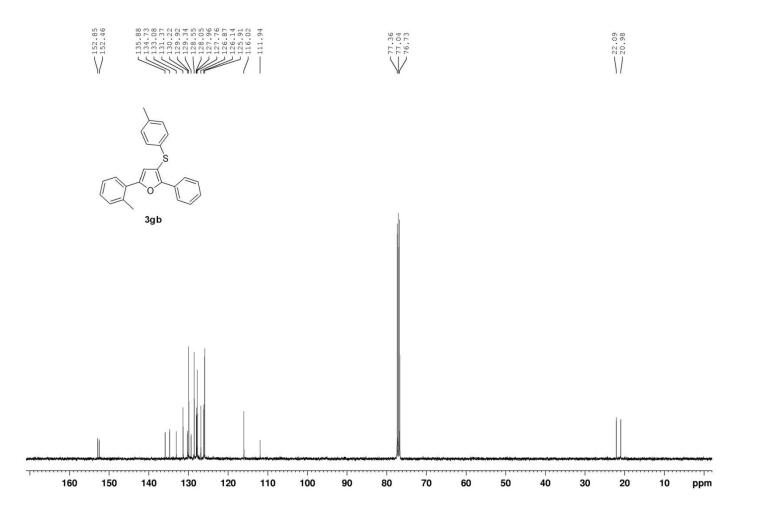


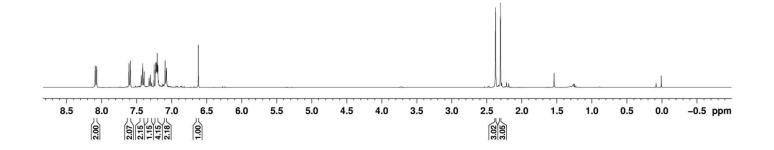


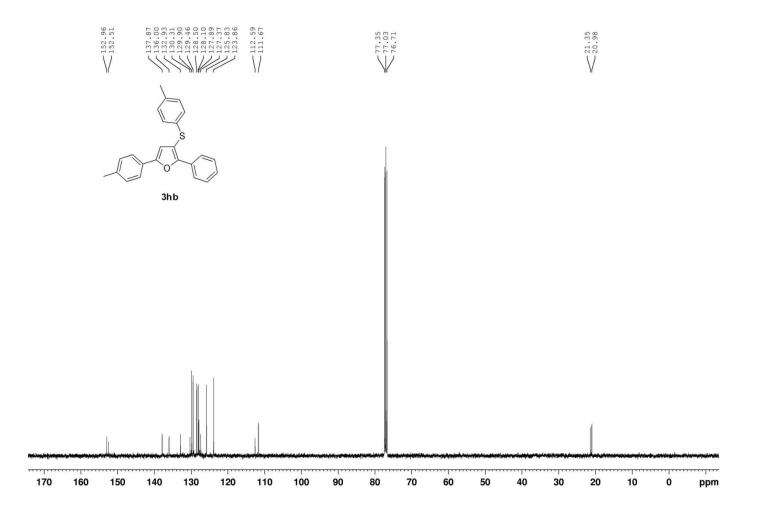


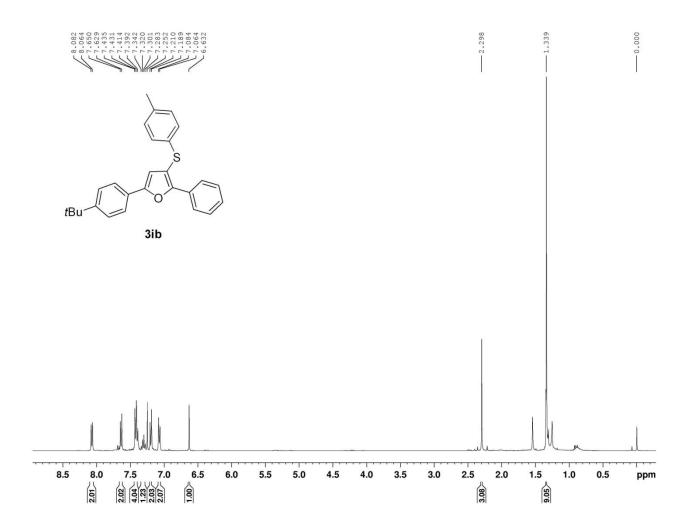


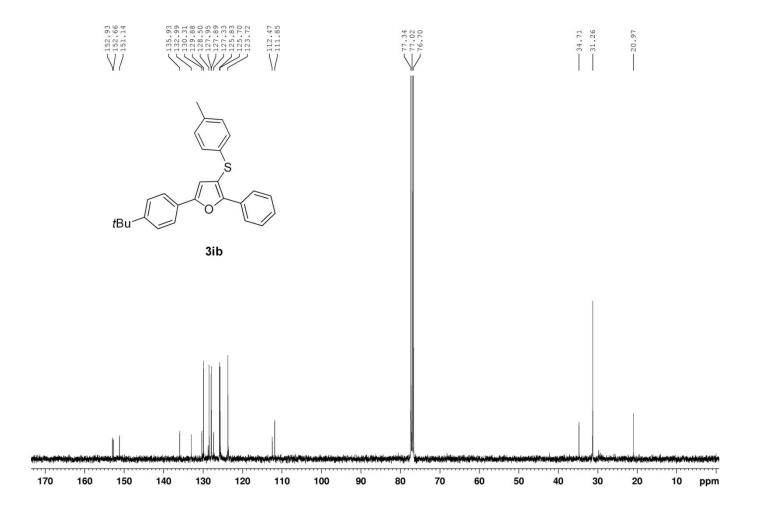


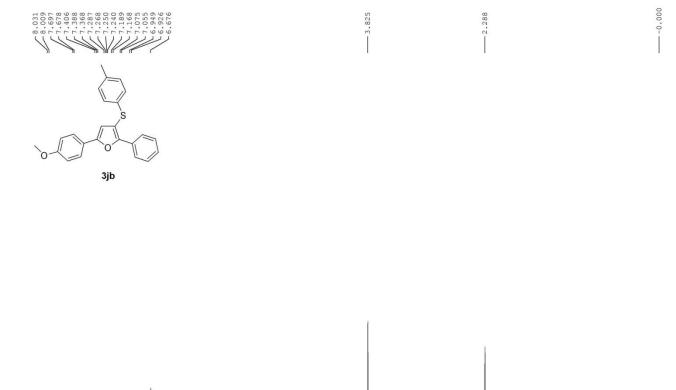


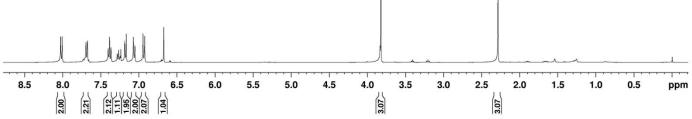


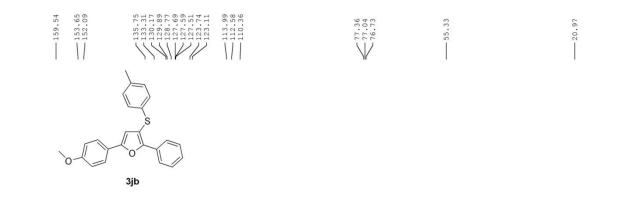


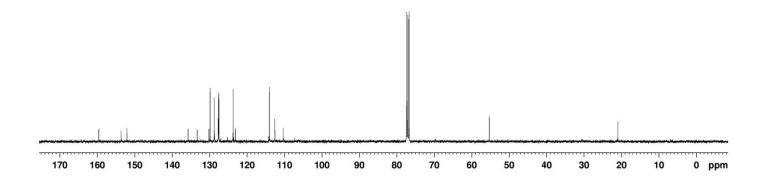


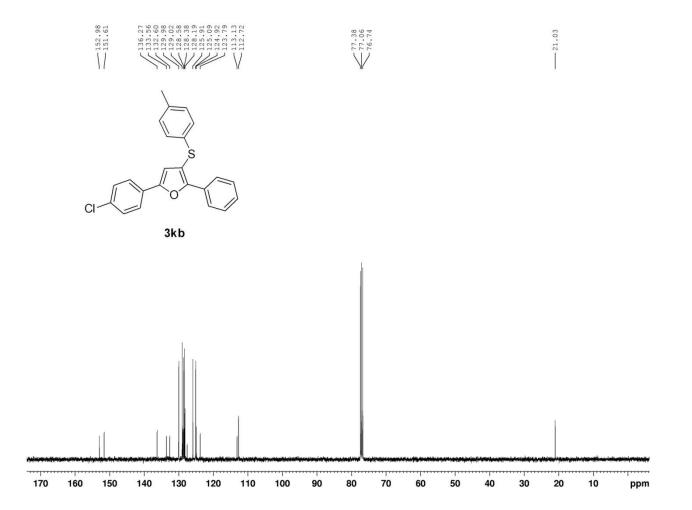


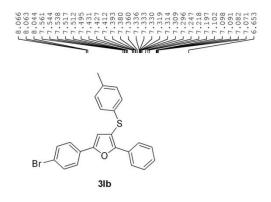


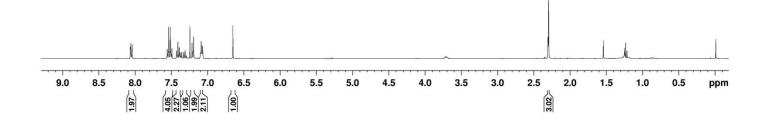


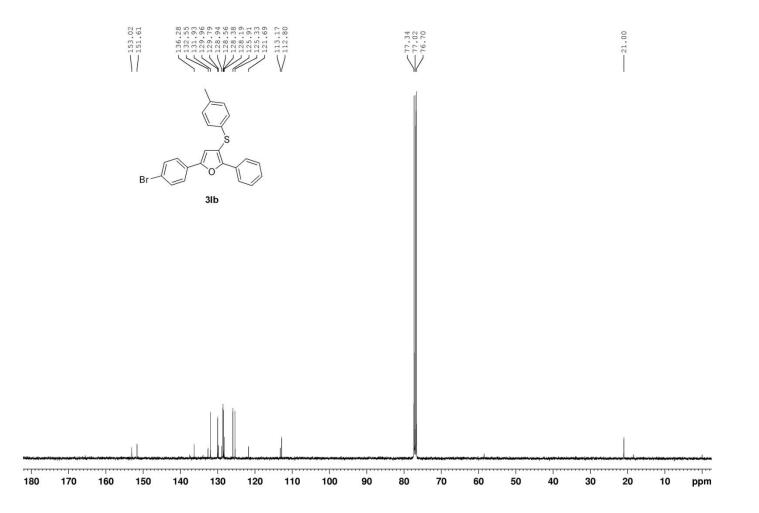


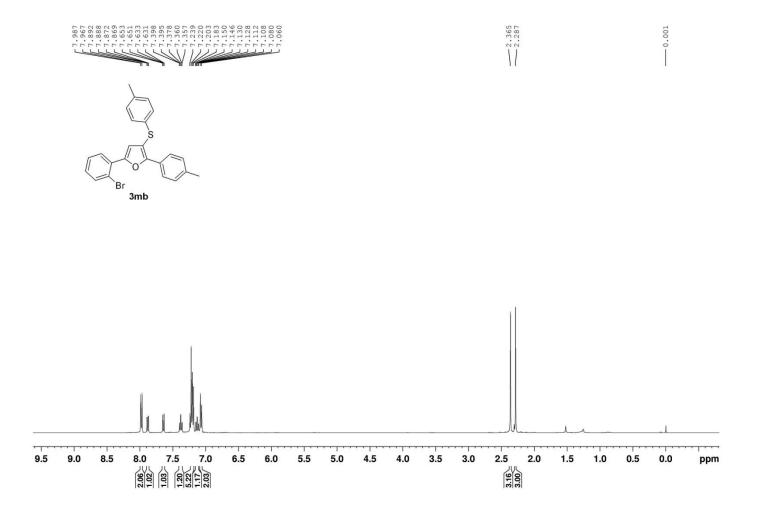


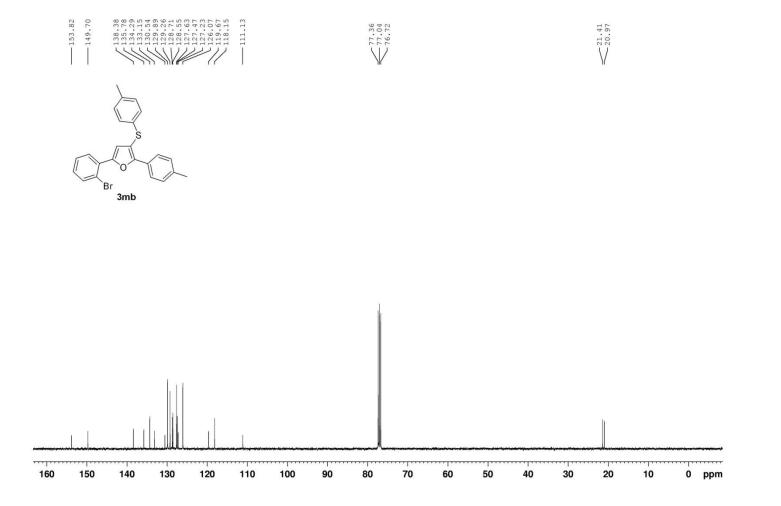


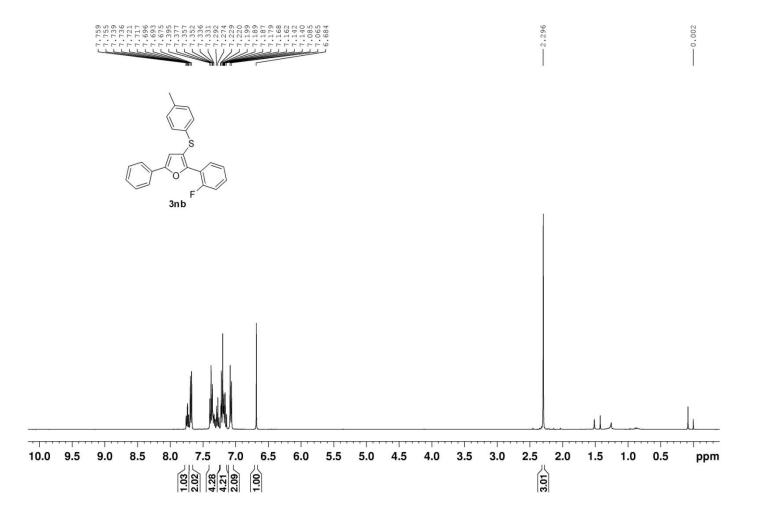


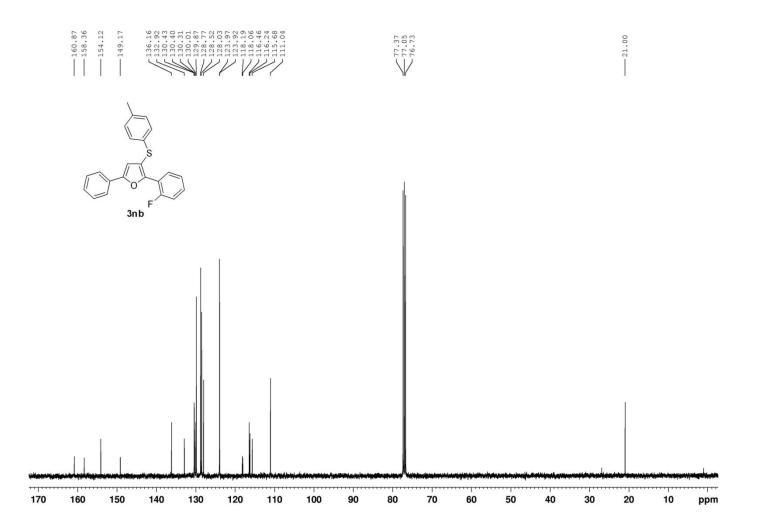


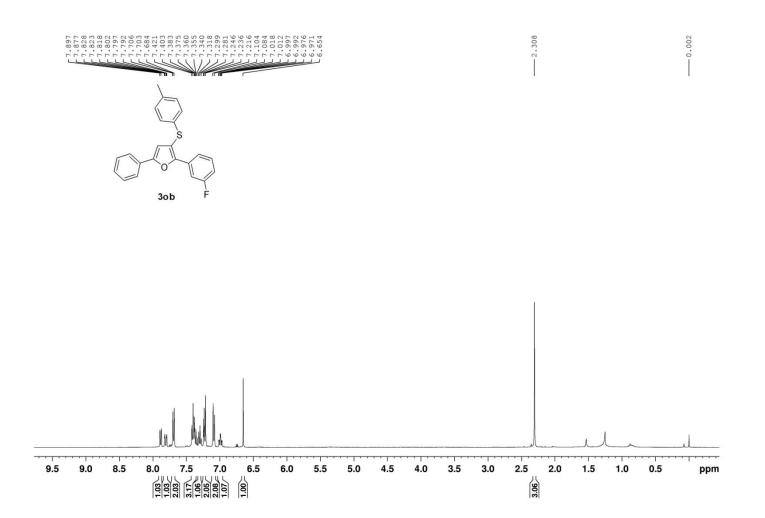


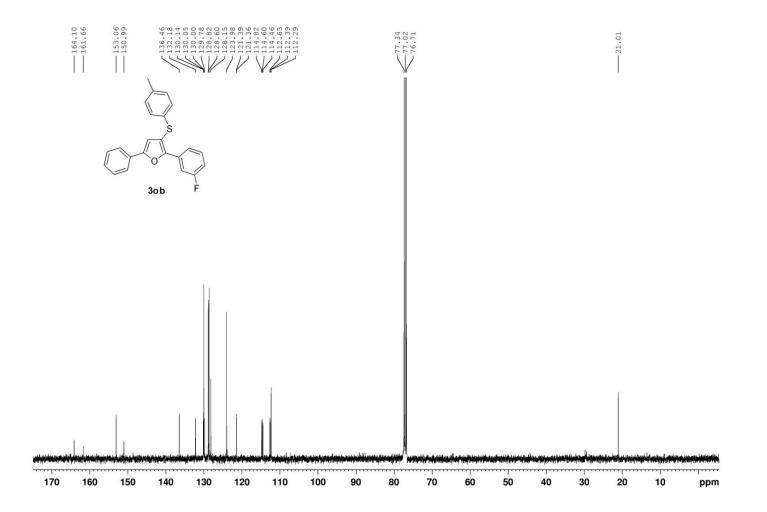


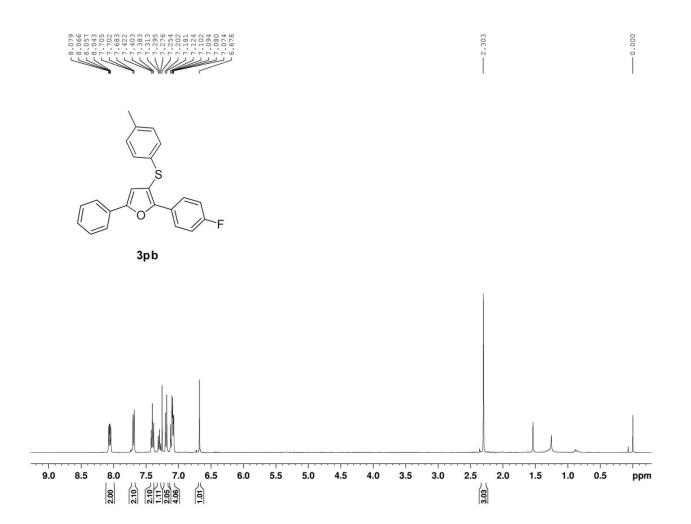


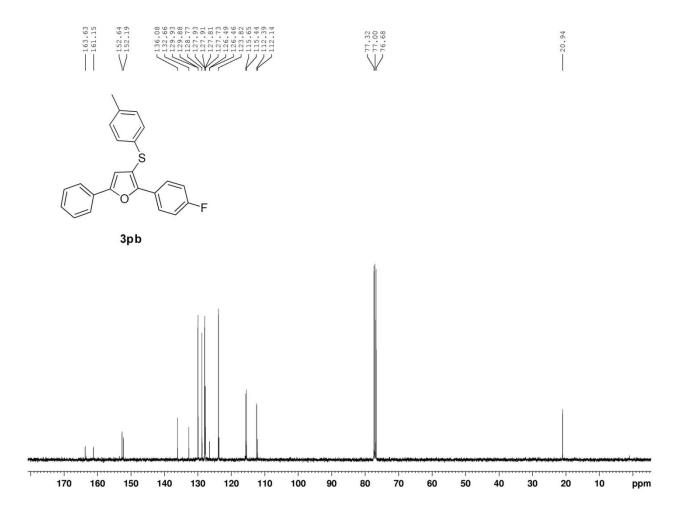

-0.008

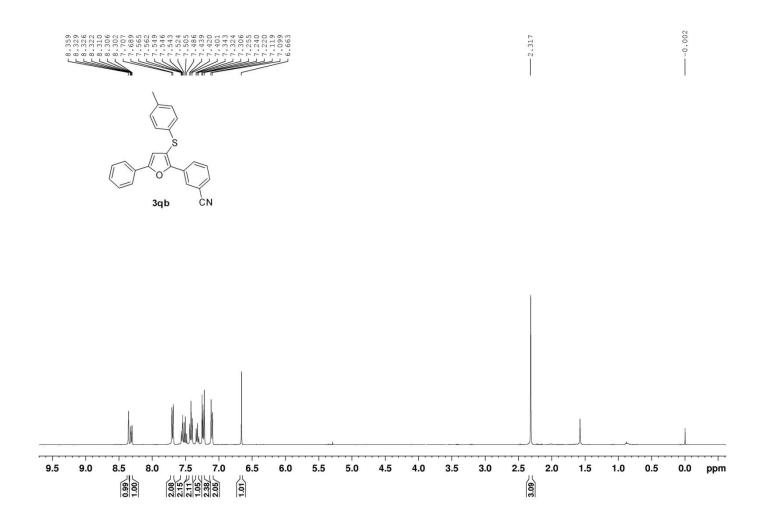

-2.299

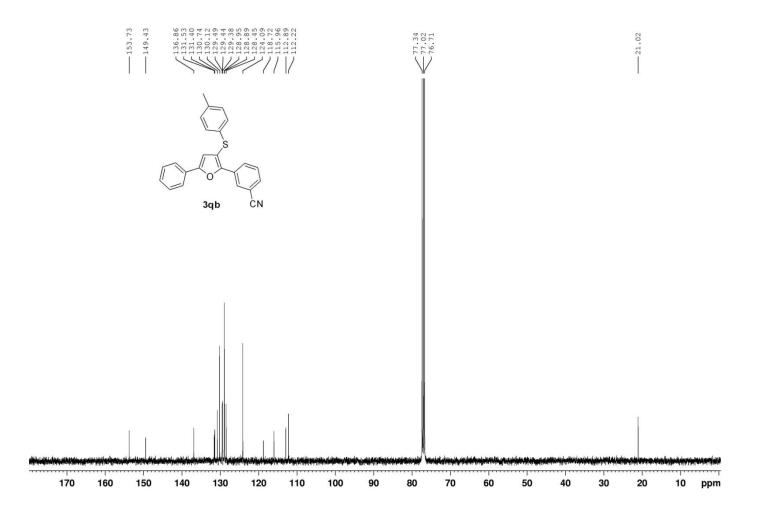


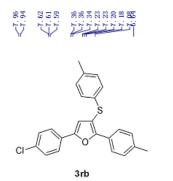


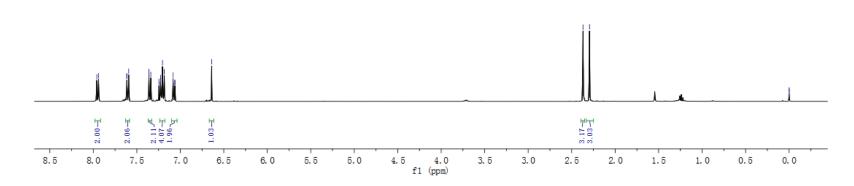


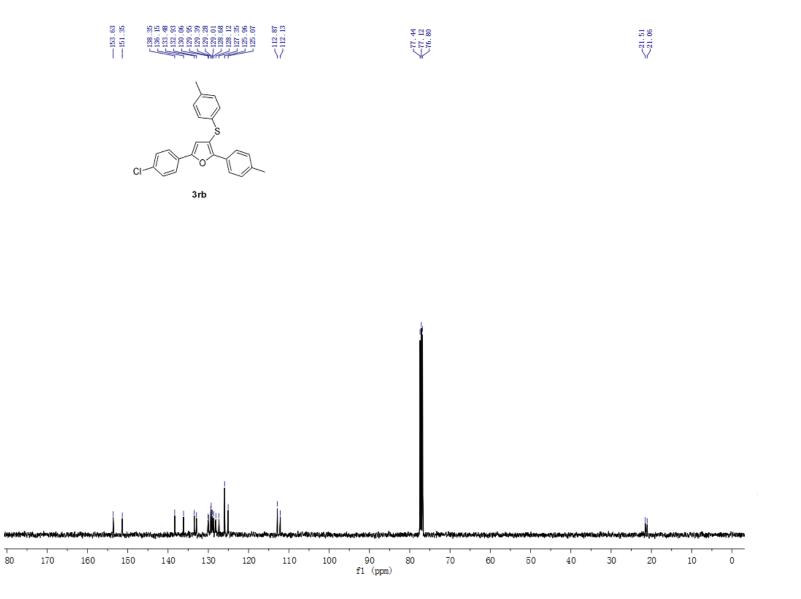


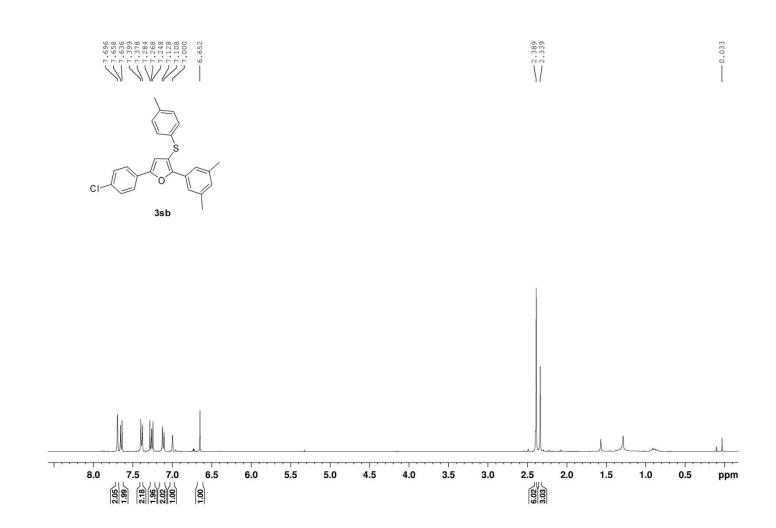


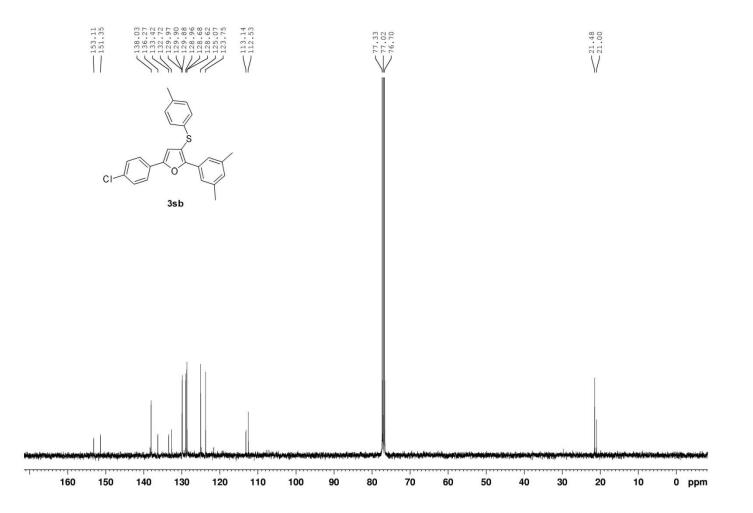


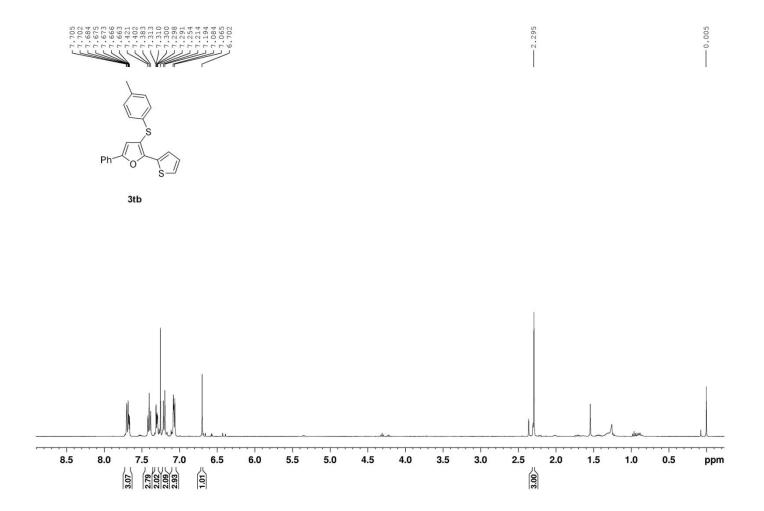


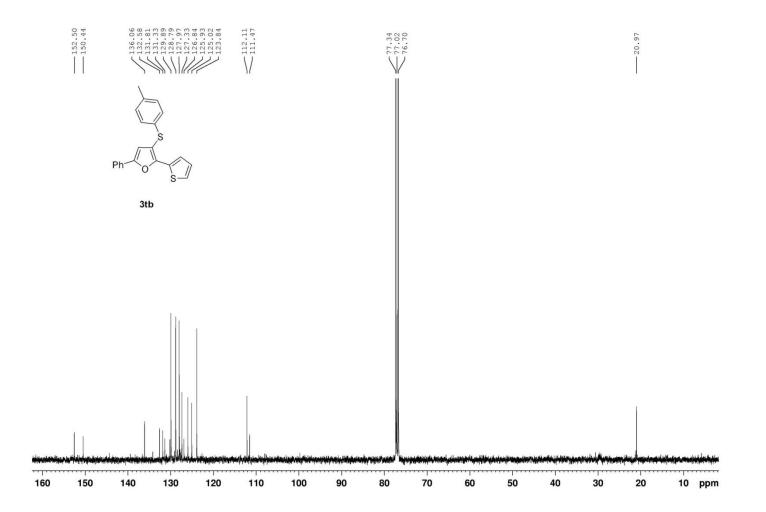











 $\overset{0.0}{$

