Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Palladium-catalyzed tandem addition/cyclization in aqueous medium:

synthesis of 2-arylindoles

Shuling Yu, Kun Hu, Julin Gong, Linjun Qi, Jianghe Zhu, Yetong Zhang, Tianxing Cheng* and Jiuxi Chen*

College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.

E-mail: jiuxichen@wzu.edu.cn; chengtx_wzu@163.com

Table of Contents

1. Copies of ¹ H and ¹³ CNMR spectra of 3a-3x	S1
--	----

1. Copies of ¹H and ¹³CNMR spectra of **3a-3x**

Figure S1. ¹H NMR of 3a (500 MHz, CDCl₃) and ¹³C NMR of 3a (125 MHz, CDCl₃).

Figure S2. ¹H NMR of 3b (500 MHz, CDCl₃) and ¹³C NMR of 3b (125 MHz, CDCl₃).

Figure S3. ¹H NMR of 3c (500 MHz, CDCl₃) and ¹³C NMR of 3c (125 MHz, CDCl₃).

Figure S4. ¹H NMR of 3d (500 MHz, CDCl₃) and ¹³C NMR of 3d (125 MHz, CDCl₃).

Figure S5. ¹H NMR of 3e (500 MHz, CDCl₃) and ¹³C NMR of 3e (125 MHz, CDCl₃).

Figure S6. ¹H NMR of 3f (500 MHz, DMSO-*d*₆) and ¹³C NMR of 3f (125 MHz, DMSO-*d*₆).

Figure S7. ¹H NMR of 3g (500 MHz, CDCl₃) and ¹³C NMR of 3g (125 MHz, CDCl₃)

Figure S8. ¹H NMR of 3h (500 MHz, CDCl₃) and ¹³C NMR of 3h (125 MHz, CDCl₃).

Figure S9. ¹H NMR of 3i (500 MHz, CDCl₃) and ¹³C NMR of 3i (125 MHz, CDCl₃).

Figure S10. ¹H NMR of 3j (500 MHz, CDCl₃) and ¹³C NMR of 3j (125 MHz, CDCl₃).

Figure S11. ¹H NMR of 3k (500 MHz, DMSO-d₆) and ¹³C NMR of 3k (125 MHz, DMSO-d₆).

Figure S12. ¹H NMR of 3l (500 MHz, DMSO-*d*₆) and ¹³C NMR of 3l (125 MHz, DMSO-*d*₆).

Figure S13. ¹H NMR of 3m (500 MHz, DMSO-*d*₆) and ¹³C NMR of 3m (125 MHz, DMSO-*d*₆).

Figure S14. ¹H NMR of 3n (500 MHz, DMSO-*d*₆) and ¹³C NMR of 3n (125 MHz, DMSO-*d*₆).

Figure S15. ¹H NMR of 30 (500 MHz, DMSO-*d*₆) and ¹³C NMR of 30 (125 MHz, DMSO-*d*₆)

Figure S16. ¹H NMR of **3p** (500 MHz, DMSO-*d*₆) and ¹³C NMR of **3p** (125 MHz, DMSO-*d*₆).

Figure S17. ¹H NMR of 3q (500 MHz, DMSO-*d*₆) and ¹³C NMR of 3q (125 MHz, DMSO-*d*₆).

Figure S18. ¹H NMR of 3r (500 MHz, DMSO-*d*₆) and ¹³C NMR of 3r (125 MHz, DMSO-*d*₆).

Figure S19. ¹H NMR of 3s (500 MHz, DMSO-*d*₆) and ¹³C NMR of 3s (125 MHz, DMSO-*d*₆).

Figure S20. ¹H NMR of 3t (500 MHz, DMSO-*d*₆) and ¹³C NMR of 3t (125 MHz, DMSO-*d*₆)

Figure S21. ¹H NMR of 3u (500 MHz, DMSO-*d*₆) and ¹³C NMR of 3u (125 MHz, DMSO-*d*₆)

Figure S22. ¹H NMR of 3v (500 MHz, DMSO-d₆) and ¹³C NMR of 3v (125 MHz, DMSO-d₆)

Figure S23. ¹H NMR of 3w (500 MHz, DMSO-d₆) and ¹³C NMR of 3w (125 MHz, DMSO-d₆)

Figure S24. ¹H NMR of 3x (500 MHz, DMSO-d₆) and ¹³C NMR of 3x (125 MHz, DMSO-d₆)

Figure S27. ¹H NMR of 6a (500 MHz, CDCl₃) and ¹³C NMR of 6a (125 MHz, CDCl₃)

Figure S28. ¹H NMR of 7a (500 MHz, DMSO-d₆) and ¹³C NMR of 7a (125 MHz, CDCl₃)

Figure S29. ¹H NMR of 8b (500 MHz, DMSO-*d*₆) and ¹³C NMR of 8b (125 MHz, DMSO-*d*₆)