Supporting Information

Title: A novel self-assembled fluorescent organic nanoprobe and its application for detection of sulfite in food samples and living system

Tang Gao, Xiaozheng Cao, Peng Ge, Jie Dong, Shuqi Yang, Huan Xu, Yong Wu, Feng Gao, Wenbin Zeng*

1. Synthesis

4-(1,4,5-triphenyl-1H-imidazol-2-yl)benzaldehyde (TIB). Terephthalaldehyde (1.34 g, 10.00 mmol) and aniline (930 mg, 10.00 mmol) were dissolved in acetic acid (100 mL) and stirred for 1 h at room temperature. Benzil (2.10 g, 10.00 mmol) and ammonium acetate (5.40 g, 70.00 mmol) were added subsequently. The mixture was heated at 120 °C overnight. After termination of the reaction, the solution was poured into copious amounts of water. After neutralization, the mixture was filtered and washed with water. The organic compounds were reprecipitated in methanol from dichloromethane solution, which was dried over anhydrous MgSO₄ and concentrated. Silica gel column purification with EtOAc: CHCl₃:n- hexane (1:10:50, v/v/v) gave a yellowish green powder (1.62 g, yield = 40.5%). ¹HNMR (500 MHz, CDCl₃): δ = 9.98 (s, 1H), 7.76 - 7.78 (d, 2H, J = 10.0 Hz), 7.62 - 7.65 (m, 4H), 7.36 - 7.23 (m, 9H), 7.16 (m, 2H), 7.09 - 7.11 (d, 2H, J = 10.0 Hz). ¹³C NMR (125 MHz, CDCl₃): δ = 191.70, 145.34, 135.47, 130.23, 129.39, 128.78, 128.37, 128.26, 126.91. HRMS (m/z): Calcd for C₂₈H₂₀N₂O, 400.1576; found [M+H]⁺, 401.1654.

2-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)benzylidene)malononitrile (TIBM). To a solution of 4-(1,4,5-triphenyl-1H-imidazol-2-yl)benzaldehyde (800 mg, 2.00 mmol) and malononitrile (132 mg, 2.0 mmol) in EtOH (20 mL) was added 2–3 drops of piperidine. The solution was further stirred at rt for 3–5 hours to afford yellow precipitates, which were filtered off, and washed with EtOH. After recrystallization from EtOH, the yellow product was obtained (761.6 mg, yield = 85%). ¹HNMR (500 MHz, CDCl₃): δ = 7.80-7.79(d, 1H, J = 8.4 Hz), 7.69(s, 1H), 7.65 - 7.61(m, 4H), 7.42 - 7.34(m, 3H), 7.29 - 7.23(m, 6H), 7.17 - 7.12(dd, 4H, J = 6.7 Hz, J = 6.9 Hz). ¹³C NMR (125 MHz, CDCl₃): δ = 159.26, 137.18, 133.20, 130.55, 129.57, 128.87, 127.49, 114.27, 113.14, 82.57, 77.74, 77.48, 77.23. HRMS (m/z): calcd for C₃₁H₂₀N₄, 448.1688; found [M +H]⁺, 449.1772.

2. Computational details

The molecule geometry, HOMO and LUMO energy levels were calculated by MOE (Molecular Operating Environment, 2014.10). Gaussian is the engine. STO-3G* was chosen as the basis set.

3.	Slovatoch	romism

		TBIM				
Solvent ^a	Δf^{b}	λ_{abs}^{c}	$\lambda_{em}{}^d$	Δv^{e}	$\Phi_{\mathrm{F}}{}^{\mathrm{f}}$	
		(nm)	(nm)	(cm ⁻¹)	(%)	
Сус	-0.0016	420	494	3567	19	
Tol	0.0132	421	515	4335	17	
Dio	0.0223	405	538	6104	12	
THF	0.2096	412	566	6604	14	
DCM	0.2172	420	572	6327	14	
DMSO	0.2630	400	581	7789	6.0	
BuOH	0.2644	383	592	9218	4.5	
MeCN	0.3055	402	616	8642	1.9	
CH ₃ OH	0.3087	388	631	9926	3.4	

Table S1. Photophisical properties of TIBM in various solvents.

^a Abbreviations: Cyc, Cyclohexane; Tol, Toluene; Dio, Dioxane; Et₂O, ethylether; THF, Tetrahydrofuran; DCM, Dichloromethane; DMSO, Dimethyl sulfoxide; BuOH, n-Butanol; MeCN, Acetonitrile. ^b Δ f=(ϵ -1)/(2ϵ +1)-(n^2 -1)/($2n^2$ +1) accounts for the spectral shifts due to reorientation of the solvent molecules, called the orientation polarizability, where ϵ is solvent dielectric constant and n is index of refraction. ^c λ abs, absorption maximum wavelength. ^d λ em, emission maximum wavelength. ^e $\Delta \nu$, Stokes shift. ^f Φ F, fluorescence quantum yield.

Figure. S1 Absorption spectra of TIBM in different solvents.

Figure. S2 Computer calculated absorption spectra of TIBM.

Figure. S3 Plot of Stokes shift (Δf) of TIBM versus Δv in different solvent.

Figure. S4 Absorption spectra of TIBM in CH₃CN solution in the presence of increasing amount of water.

Figure. S5 (a) Absorption spectra of **TIBM** in aqueous solution and in the presence of 0.3 mM CTAB; (b) Fluorescence emission spectra of **TIBM** in aqueous and in the presence of 0.3 mM CTAB, inset: fluorescence images of **TIBM** in aqueous solution and in the presence of 0.3 mM CTAB under portable UV light excitation.

Figure. S6 Fluorescence emission spectra of TIBM (10 μ M) in the absence and presence of SO₃²⁻ (10 μ M).

Figure. S7 Absorption spectral changes of CTAB-FONs (10 μ M) upon addition of SO₃²⁻(0 – 10 μ M) in buffered at pH 7.4 (PBS, 10 mM).

Figure. S8 Plots of emission intensity against the concentration of SO_3^{2-} .

Figure. S9 The fluorescence intensity of CTAB-FONs (10 μ M) in the presence of sulfite (10 μ M) as a function of pH in PBS (10 mM) solutions.

probes	λ_{ex} $/\lambda_{em}$	Detection medium	Detection	Response	Reference
	(nm)		limit	time	
C C C C C C C C C C C C C C C C C C C	563/580	water-ethanol	8.9 ×	10 min	18
N ^N ~O		(80/20,v/v)	10 ⁻⁷ M		
		buffered at pH 4.8			
N /	350/428	DMSO:PBS = 1:1,	7.6 ×	30 s	23
СНО		v/v, pH = 5	10 ⁻⁸ M		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	490/520	1% (v/v) CH3CN)	10 × 10 ⁻⁶	25 min	27
		20 mM HEPES	М		
		buffer $pH = 7.4$			
CN CN	446/578	20% DMF buffer	5.8 ×	30 s	29
		solution (HEPES,	10 ⁻⁵ M		
		pH = 7.4)			
0	410/465	20 mM PBS pH	0.2 ×	60 min	30
		=7.4	10 ⁻⁶ M		
F					
	415/460	MeOH buffer	NA	20 min	34
s		(Na ₂ HPO ₄ /citric			
		acid, 30 mM, 1:1			
HOCOOEt		v/v)			
	340/468	phosphate buffer	2.76 ×	20 min	35
N -		pH 7.4, 30 mM,	10 ⁻⁶ M		
		containing 30%			
IJ		ethanol			
	420/	PBS bu ffer pH	7.4 ×	15 s	This
	575	7.4	10 ⁻⁹ M		work
	1	1			

Table S1. Comparison of fluorescent probes for the detection of SO_3^{2-}

Figure. S10 HPLC chromatograms of CTAB-FONs without sulfite (bottom); CTAB-FONs with sulfite treatment in PBS for 1 min at 25 °C (top).

Figure. S11 HRMS of reaction product of CTAB-FONs with SO₃²⁻.

Figure. S13 ¹³C NMR (125 MHz, CDCl₃) of TIB

Figure. S14 HRMS spectra of TIB

Figure S15. ¹H NMR (500 MHz,CDCl₃) of TIBM

Figure. S17 HRMS spectra of TIBM