Copper-Catalysed Enantioselective Michael Addition of Malonic Esters to β-Trifluoromethyl-α,β-Unsaturated Imines

Miguel Espinosa,^a Jorge Herrera, Gonzalo Blay,^{*a} Luz Cardona, M.Carmen Muñoz,^b and José R. Pedro^{*a}

a Departament de Química Orgànica, Facultat de Química, Universitat de València, C/Dr. Moliner, 50, E-46100 Burjassot (València), Spain

b Departament de Física Aplicada, Universitat Politècnica de València, Camí de Vera s/n, E-46022-València, Spain

SUPPLEMENTARY INFORMATION

Table of Contents:

General Experimental Methods	S2
General procedure for the enantioselective conjugate addition and characterisation data for compounds 3	S2
Synthetic transformations of compound 3a	S21
References	S22
NMR spectra and chiral analysis chromatograms for compounds 3	S23
Ortep plot for the X-ray structure of compounds 2a and 3a	S52
Table S-1. Enantioselective conjugate addition of dimethyl malonate to imine 2a catalysed by trivalent metal-pyBOX complexes.	S53

General Experimental Methods

Reactions were carried out under nitrogen in round bottom flasks oven-dried overnight at 120 °C. Commercial reagents were used as purchased. Dichloromethane was distilled from CaH₂. 4 Å molecular sieves (8-12 mesh, beads Aldrich 208604) were dried at the flame under vacuum (oil pump) and stored in a closed flask and used before a week. Reactions were monitored by TLC analysis using Merck Silica Gel 60 F-254 thin layer plates. Flash column chromatography was performed on Merck silica gel 60, 0.040-0.063 mm. Melting points were determined in capillary tubes. NMR spectra were run at 300 MHz for ¹H and at 75 MHz for ¹³C NMR using residual nondeuterated solvent (CHCl₃) as internal standard (δ 7.26 and 77.0 ppm, respectively), and at 282 MHz for ¹⁹F NMR using CFCl₃ as internal standard. Chemical shifts are given in ppm. The carbon type was determined by DEPT experiments. High resolution mass spectra (ESI) were recorded on a Q-TOF spectrometer equipped with an electrospray source with a capillary voltage of 3.3 kV (ESI). Specific optical rotations were measured using sodium light (D line 589 nm). Chiral HPLC analyses were performed in a chromatograph equipped with a UV diode-array detector using chiral stationary phase columns from Daicel or from Phenomenex. N-Tosyl unsaturated imines 2 were prepared according to the procedure described by A. D. Smith.¹

General procedure for the enantioselective conjugate addition of methyl malonate to β -trifluoromethyl α , β -usaturated *N*-sulfonylimines 2

Cu(OTf)₂ (4.5 mg, 0.0125 mmol) was dried in a Schlenk tube under vacuum. **BOX7** (4.4 mg, 0.0125 mmol) was added and the tube was filled with nitrogen. CH₂Cl₂ (0.55 mL) was added via syringe and the mixture was stirred for 30 min. A solution of imine **2** (0.125 mmol) dissolved in dry CH₂Cl₂ (0.5 mL), was added via syringe, followed by 4 Å MS (110 mg) and dimethyl malonate (34 μ L, 0.3 mmol). The mixture was stirred at room temperature for the indicated time and chromatographed on silica gel eluting with hexane/EtOAc mixtures to give compounds **3**.

Racemic compounds for comparative purpose were prepared by following the same procedure, using La(OTf)₃-pyBOX (rac) at 40 °C.

Dimethyl (*S*,*E*)-2-(1,1,1-trifluoro-4-((4-methylphenyl)sulfonamido)-4-phenylbut-3-en-2-yl)malonate (3a)

Major *E*-diastereomer: White solid, m.p. 159-161 °C (hexane-EtOAc); $[\alpha]_D^{20}$ -54.0 (*c* 1.0, CHCl₃) for the mixture of diastereomers; white solid, M.p. 153.4-160.2 °C (hexane-

EtOAc); ¹H NMR (300 MHz, CDCl₃) δ 7.76 (2H, d, J = 8.4 Hz, Ar), 7.40-7.27 (5H, m, Ar), 7.10 (2H, m, Ar), 6.21 (1H, s, NH), 5.57 (1H, d, J = 10.8 Hz, =CH), 3.73 (3H, s, MeO), 3.68 (1H, d, J = 8.4 Hz, CHCO₂Me), 3.64 (1H, m, CHCF₃), 3.63 (3H, s, MeO), 2.45 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 166.7 (C), 166.4 (C), 144.2 (C), 141.3 (C), 135.9 (C), 134.0 (C), 129.6 (CH), 129.5 (CH), 128.7 (CH), 128.6 (CH), 127.7 (CH), 125.4 (C, q, $J_{C-F} = 264.8$ Hz), 102.9 (CH, q, $J_{C-F} = 2.4$ Hz), 52.93 (CH₃), 52.90 (CH₃), 51.0 (CH), 42.7 (CH, q, $J_{C-F} = 27.9$ Hz), 21.5 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ = -70.1 (s, CF₃) ppm; HRMS (ESI) m/z 486.1197, C₂₂H₂₃F₃NO₆S requires 486.1193.

Minor Z-diastereomer: ¹H NMR (300 MHz, CDCl₃) δ 7.95 (s, 1H), 7.59 (2H, d, J = 8.4 Hz, Ar), 7.41 (2H, dd, J = 8.1, 1.5 Hz, Ar), 7.36-7.26 (3H, m, Ar), 7.22 (2H, d, J = 8.4 Hz, Ar), 5.22 (1H, d, J = 11.1 Hz, =CH), 3.81 (3H, s, MeO), 3.76-3.48 (2H, m, CH-CF₃, CHCO₂Me), 3.68 (3H, s, MeO), 2.39 (s, 3H); ¹⁹F NMR (282 MHz, CDCl₃) $\delta = -69.8$ (s, CF₃) ppm.

Dimethyl (*S*,*E*)-2-(1,1,1-trifluoro-4-((4-methylphenyl)sulfonamido)-4-(*p*-tolyl)but-3-en-2-yl)malonate (3b)

Major *E*-diastereomer: White solid, m.p. 138-146 °C (hexane-EtOAc); $[\alpha]_D^{20}$ -38.6 (*c* 0.95, CHCl₃) for the mixture of diastereomers; ¹H NMR (300 MHz, CDCl₃) δ 7.75 (2H, d, *J* = 8.4 Hz, Ar), 7.32 (2H, d, *J* = 8.4 Hz, Ar), 7.13 (2H, d, *J* = 8.1 Hz, Ar), 6.97 (2H, d, *J* = 8.1 Hz, Ar), 6.18 (1H, s, NH), 5.52 (1H, d, *J* = 10.8 Hz, =CH), 3.72 (3H, s, MeO), 3.67 (1H, d, *J* = 8.1 Hz, CHCO₂Me), 3.64 (1H, m, CHCF₃), 3.63 (3H, s, MeO), 2.45 (3H, s, Me-Ar), 2.33 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 166.8 (C), 166.5 (C), 144.2 (C), 141.3 (C), 139.5 (C), 135.9 (C), 131.2 (C), 129.6 (CH), 129.5 (CH), 128.4 (CH), 127.7 (CH), 125.4 (C, q, *J*_{C-F} = 249.7 Hz), 102.6 (CH, q, *J*_{C-F} = 2.0 Hz), 52.94 (CH₃), 52.91 (CH₃), 51.0 (CH), 42.7 (CH, q, *J*_{C-F} = 27.9 Hz), 21.5 (CH₃), 21.3 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ = -70.2 (s, CF₃) ppm; HRMS (ESI) *m/z* 500.1356 (M+H)⁺ C_{23H₂₅F₃NO₆S requires 500.1349.}

Minor Z-diastereomer: ¹H NMR (300 MHz, CDCl₃), representative signals taken from the ¹H NMR of the diastereomer mixtures, δ 7.91 (1H, s, NH), 7.86 (2H, d, *J* = 8.1 Hz, Ar), 7.60 (2H, d, *J* = 8.1 Hz, Ar), 7.25 (2H, d, *J* = 8.1 Hz, Ar), 7.22 (2H, d, *J* = 8.1 Hz, Ar), 5.16 (1H, d, *J* = 10.8 Hz, =CH), 3.82-3.60 (2H, m, CH-CF₃, CHCO₂Me), 3.76 (3H, s, MeO), 3.67 (3H, s, MeO), 2.43 (3H, s, Me-Ar), 2.39 (3H, s, Me-Ar); ¹⁹F NMR (282 MHz, CDCl₃) δ = -69.9 (s, CF₃) ppm.

Dimethyl (*S*,*E*)-2-(4-(4-chlorophenyl)-1,1,1-trifluoro-4-((4-methylphenyl)sulfonamido)-but-3-en-2-yl)malonate (3c)

Chiral HPLC analysis: Lux Amylose-1, hexane-*i*PrOH 95:05, 1 mL/min, *E*-diastereomer: *major enantiomer* (*S*) tr = 38.4 min, *minor enantiomer* (*R*) tr = 47.9 min; *Z*-diastereomer: *major enantiomer* tr = 48.4 min, *minor enantiomer* tr = 33.9 min.

Major E-diastereomer: White solid, m.p. 142-150 °C (hexane-EtOAc); $[\alpha]_D^{20}$ -21.3 (*c* 0.95, CHCl₃) for the mixture of diastereomers; ¹H NMR (300 MHz, CDCl₃) δ 7.70 (2H, d, *J* = 8.4 Hz, Ar), 7.34-7.24 (4H, m, Ar), 7.04 (2H, d, *J* = 8.7 Hz, Ar), 6.42 (1H, s, NH), 5.52 (1H, d, *J* = 10.8 Hz, =CH), 3.72 (3H, s, MeO), 3.67 (1H, d, *J* = 8.4 Hz, CHCO₂Me), 3.64 (3H, s, MeO), 3.55 (1H, m, CHCF₃), 2.44 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 166.6 (C), 166.5 (C), 144.3 (C), 140.4 (C), 135.9 (C), 135.6 (C), 132.3 (C), 130.2 (CH), 129.7 (CH), 129.0 (CH), 127.6 (CH), 125.4 (C, q, *J*_{C-F} = 278 Hz), 104.23 (CH, q, *J*_{C-F} = 2.5 Hz), 53.04 (CH₃), 52.99 (CH₃), 50.9 (CH), 42.6 (CH, q, *J*_{C-F} = 28.0 Hz), 21.6 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ = -70.1 (s, CF₃) ppm; HRMS (ESI) *m/z* 520.0795 (M+H)⁺, C₂₂H₂₂ClF₃NO₆S requires 520.0803.

Minor Z-diastereomer: ¹H NMR (300 MHz, CDCl₃), representative signals taken from the ¹H NMR of the diastereomer mixtures, δ 8.01 (1H, s, NH), 7.57 (2H, d, J = 8.4 Hz, Ar), 7.40-7.19 (6H, m, Ar), 5.19 (1H, d, J = 11.4 Hz, =CH), 3.80 (3H, s, MeO), 3.76 (1H, d, J = 7.2 Hz, CHCO₂Me), 3.68 (3H, s, MeO), 3.51 (1H, m, CHCF₃), 2.39 (3H, s, Me-Ar); ¹⁹F NMR (282 MHz, CDCl₃) δ = -69.8 (s, CF₃) ppm.

Dimethyl (*S,E*)-2-(4-(4-bromophenyl)-1,1,1-trifluoro-4-((4-methylphenyl) sulfonamido)but-3-en-2-yl)malonate (3d)

Chiral HPLC analysis: Chiralpak IC, hexane-*i*PrOH 95:05, 1 mL/min, *E*-diastereomer: *major enantiomer* (*S*) tr = 47.9 min, *minor enantiomer* (*R*) tr = 57.1 min; *Z*-diastereomer: *major enantiomer* tr = 31.9 min, *minor enantiomer* tr = 40.2 min.

Major *E***-diastereomer**: Yellow solid, m.p. 130-133 °C (hexane-EtOAc); $[\alpha]_D^{20}$ -12.8 (*c* 1.02, CHCl₃) for the mixture of diastereomers; ¹H NMR (300 MHz, CDCl₃) δ 7.71 (2H, d, *J* = 8.4 Hz, Ar), 7.45 (2H, d, *J* = 8.4 Hz, Ar), 7.31 (2H, d, *J* = 8.4 Hz, Ar), 7.04 (2H, d, *J* = 8.4 Hz, Ar), 6.29 (1H, s, NH), 5.53 (1H, d, *J* = 10.8 Hz, =CH), 3.73 (3H, s, MeO), 3.68 (1H, d, *J* = 8.4 Hz, CHCO₂Me), 3.65 (3H, s, MeO), 3.55 (1H, m, CHCF₃), 2.45 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 166.6 (C), 166.5 (C), 144.4 (C), 140.4 (C), 135.9 (C), 132.8 (C), 132.0 (CH), 130.4 (CH), 129.7 (CH), 127.6 (CH), 125.4 (C, q, *J*_{C-F} = 278 Hz), 124.0 (C), 104.3 (CH, q, *J*_{C-F} = 2.3 Hz), 53.07 (CH₃), 53.01

(CH₃), 50.9 (CH), 42.6 (CH, q, $J_{C-F} = 28.0$ Hz), 21.6 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) $\delta = -70.0$ (s, CF₃) ppm; HRMS (ESI) *m*/*z* 564.0295 (M+H)⁺, C₂₂H₂₂BrF₃NO₆S requires 564.0298.

Minor Z-diastereomer: ¹H NMR (300 MHz, CDCl₃), representative signals taken from the ¹H NMR of the diastereomer mixtures, δ 8.01 (1H, s, NH), 7.58 (2H, d, *J* = 8.4 Hz, Ar), 7.41 (2H, d, *J* = 8.4 Hz, Ar), 7.31 (2H, d, *J* = 8.4 Hz, Ar), 7.25 (2H, d, *J* = 8.4 Hz, Ar), 5.21 (1H, d, *J* = 11.4 Hz, =CH), 3.80 (3H, s, MeO), 3.77 (1H, d, *J* = 7.2 Hz, CHCO₂Me), 3.68 (3H, s, MeO), 3.52 (1H, m, CHCF₃), 2.40 (3H, s, Me-Ar); ¹⁹F NMR (282 MHz, CDCl₃) δ = -69.8 (s, CF₃) ppm.

Dimethyl (*S*,*E*)-2-(1,1,1-trifluoro-4-((4-methylphenyl)sulfonamido)-4-(4-nitrophenyl)but-3-en-2-yl)malonate (3e)

Chiral HPLC analysis: Chiralpak IC, hexane-*i*PrOH 90:10, 1 mL/min, *E*-diastereomer: *major enantiomer* (*S*) tr = 60.4 min, *minor enantiomer* (*R*) tr = 69.2 min; *Z*-diastereomer: *major enantiomer* tr = 50.2 min, *minor enantiomer* tr = 94.8 min.

Major E-diastereomer: Orange oil; $[\alpha]_D^{20}$ 1.1 (*c* 1.0, CHCl₃) for the mixture of diastereomers; ¹H NMR (300 MHz, CDCl₃) δ 8.14 (2H, d, *J* = 9.0 Hz, Ar), 7.68 (2H, d, *J* = 8.1 Hz, Ar), 7.37.34-7,28 (4H, m, Ar), 6.80 (1H, s, NH), 5.58 (1H, d, *J* = 11.1 Hz, =CH), 3.73 (3H, s, MeO), 3.68 (1H, d, *J* = 8.4 Hz, CHCO₂Me), 3.65 (3H, s, MeO), 3.49 (1H, m, CHCF₃), 2.45 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 166.5 (C), 166.4 (C), 148.2 (C), 144.6 (C), 140.1 (C), 139.6 (C), 135.7 (C), 130.2 (CH), 129.7 (CH), 127.6 (CH), 125.2 (C, q, *J*_{C-F} = 279 Hz), 123.8 (C), 106.5 (CH, q, *J*_{C-F} = 2.1 Hz), 53.2 (CH₃), 53.1 (CH₃), 50.7 (CH), 42.6 (CH, q, *J*_{C-F} = 28.2 Hz), 21.6 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ = -69.9 (s, CF₃) ppm; HRMS (ESI) *m*/z 531.1034 (M+H)⁺, C₂₂H₂₂ClF₃N₂O₈S requires 531.1043.

Minor Z-diastereomer: ¹H NMR (300 MHz, CDCl₃), representative signals taken from the ¹H NMR of the diastereomer mixture, δ 8.19 (1H, s, NH), 8.14 (2H, d, *J* = 9.0 Hz, Ar), 7.60 (4H, m, Ar), 7.25 (2H, d, *J* = 8.0 Hz, Ar), 5.40 (1H, d, *J* = 10.8 Hz, =CH), 3.83 (3H, s, MeO), 3.80 (1H, d, *J* = 5.7 Hz, CHCO₂Me), 3.69 (3H, s, MeO), 3.49 (1H, m, CHCF₃), 2.40 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 168.2 (C), 166.9 (C), 148.2 (C), 144.4 (C), 143.2 (C), 140.0 (C), 136.5 (C), 129.7 (CH), 128.7 (CH), 126.9 (CH), 125.2 (C, q, *J*_{C-F} = 279 Hz), 123.3 (C), 114.8 (CH, q, *J*_{C-F} = 2.1 Hz), 54.0 (CH₃), 53.4 (CH₃), 50.7 (CH), 41.8 (CH, q, *J*_{C-F} = 29.0 Hz), 21.4 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ = -69.9 (s, CF₃) ppm; ¹⁹F NMR (282 MHz, CDCl₃) δ = -69.6 (s, CF₃) ppm.

Dimethyl (*S*,*E*)-2-(1,1,1-trifluoro-4-(4-methoxyphenyl)-4-((4-methylphenyl) sulfonamido)but-3-en-2-yl)malonate (3f)

Chiral HPLC analysis: Chiralpak IC, hexane-*i*PrOH 90:10, 1 mL/min, *E*-diastereomer: *major enantiomer* (*S*) tr = 44.2 min, *minor enantiomer* (*R*) tr = 63.8 min; *Z*-diastereomer: *major enantiomer* tr = 38.0 min, *minor enantiomer* tr = 50.9 min.

Major E-diastereomer: Yellow oil; $[\alpha]_D^{20}$ -16.3 (*c* 1.0, CHCl₃) for the mixture of diastereomers; ¹H NMR (300 MHz, CDCl₃) δ 7.75 (2H, d, *J* = 8.1 Hz, Ar), 7.32 (2H, d, *J* = 8.1 Hz, Ar), 7.03 (2H, d, *J* = 8.7 Hz, Ar), 6.84 (2H, d, *J* = 8.7 Hz, Ar), 6.16 (1H, s, NH), 5.48 (1H, d, *J* = 10.8 Hz, =CH), 3.79-3.66 (2H, m, CH-CF₃, CHCO₂Me), 3.80 (3H, s, MeO), 3.73 (3H, s, MeO), 3.64 (3H, s, MeO), 2.45 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 166.8 (C), 166.5 (C), 160.3 (C), 144.1 (C), 141.2 (C), 136.0 (C), 130.0 (CH), 129.6 (CH), 127.7 (CH), 125.6 (C, q, *J*_{C-F} = 279 Hz, CF₃), 114.1 (CH), 102.7 (C, q, *J*_{C-F} = 27.8 Hz, CF₃), 55.2 (CH₃), 52.96 (CH₃), 52.91 (CH₃), 51.1 (CH), 42.6 (CH, q, *J*_{C-F} = 27.8 Hz, CF₃), 21.6 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ = -70.2 (s, CF₃) ppm; HRMS (ESI) *m/z* 516.1294 (M+H)⁺, C₂₃H₂₅F₃NO₇S requires 516.1298.

Minor Z-diastereomer: ¹H NMR (300 MHz, CDCl₃), representative signals taken from the ¹H NMR of the diastereomer mixture, δ 7.60 (2H, d, *J* = 8.1 Hz, Ar), 7.23 (2H, d, *J* = 8.1 Hz, Ar), 6.93 (2H, d, *J* = 9.0 Hz, Ar), 6.79 (2H, d, *J* = 9.0 Hz, Ar), 5.09 (1H, d, *J* = 11.4 Hz, =CH), 2.43 (3H, s, Me-Ar); ¹⁹F NMR (282 MHz, CDCl₃) δ = -69.9 (s, CF₃) ppm.

Dimethyl (*S*,*E*)-2-(1,1,1-trifluoro-4-((4-methylphenyl)sulfonamido)-4-(*m*-tolyl)but-3-en-2-yl)malonate (3g)

Major *E*-diastereomer: White solid, m.p. 117-120 °C (hexane-EtOAc); $[\alpha]_D^{20}$ -40.7 (*c* 1.0, CHCl₃) for the mixture of diastereomers; ¹H NMR(300 MHz, CDCl₃) δ 7.75 (2H, d, J = 8.1 Hz, Ar), 7.32 (2H, d, J = 8.1 Hz, Ar), 7.21-7.13 (2H, m, Ar), 6.89 (1H, d, J = 7,5 Hz, Ar), 6.81 (1H, s, Ar), 6.18 (1H, s, NH), 5.55 (1H, d, J = 10.8 Hz, =CH), 3.76-3.67 (2H, m, CH-CF₃, CHCO₂Me), 3.73 (3H, s, MeO), 3.63 (3H, s, MeO), 2.45 (3H, s, Me-Ar), 2.28 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 166.8 (C), 166.5 (C), 144.2 (C), 141.4 (C), 138.5 (C), 136.0 (C), 134.0 (C), 130.2 (CH), 129.6 (CH), 129.1 (CH), 128.7 (CH), 127.7 (CH), 125.6 (CH), 125.4 (C, q, $J_{C-F} = 255$ Hz), 102.9 (CH, q, $J_{C-F} = 2.0$ Hz), 52.93 (CH₃), 52.91 (CH₃), 51.1 (CH), 42.6 (CH, q, $J_{C-F} = 27.9$ Hz), 21.5 (CH₃), 21.3 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) $\delta = -70.2$ (s, CF₃) ppm; HRMS (ESI) *m/z* 500.1354 (M+H)⁺, C₂₃H₂₅F₃NO₆S requires 500.1349.

Minor Z-diastereomer: ¹**H NMR** (300 MHz, CDCl₃), representative signals taken from the ¹H NMR of the diastereomer mixture, δ 7.90 (1H, s, NH), 7.58 (2H, d, *J* = 8.4 Hz, Ar), 7.35-6.75 (6H, m, Ar), 5.22 (1H, d, *J* = 11.4 Hz, =CH), 3.82-3.60 (2H, m, CH-CF₃, CHCO₂Me), 3.80 (3H, s, MeO), 3.68 (3H, s, MeO), 2.43 (3H, s, Me-Ar), 2.26 (3H, s, Me-Ar); ¹⁹F NMR (282 MHz, CDCl₃) δ = - 69.8 (s, CF₃) ppm.

Dimethyl (*S*,*E*)-2-(4-(3-chlorophenyl)-1,1,1-trifluoro-4-((4-methylphenyl) sulfonamido)but-3-en-2-yl)malonate (3h)

Chiral HPLC analysis: Lux Amylose-1, hexane-*i*PrOH 80:20, 1 mL/min, *E*-diastereomer: *major enantiomer* (*S*) tr = 7.2 min, *minor enantiomer* (*R*) tr = 11.1 min; *Z*-diastereomer: *major enantiomer* tr = 9.5 min, *minor enantiomer* tr = 8.2 min.

Major *E*-diastereomer: yellow solid, m.p. 100-107 °C (hexane-EtOAc); $[\alpha]_D^{20}$ -20.8 (*c* 0.96, CHCl₃) for the mixture of diastereomers; ¹H NMR (300 MHz, CDCl₃) δ 7.71 (2H, d, *J* = 8.4 Hz, Ar), 7.32 (2H, d, *J* = 8.4 Hz, Ar), 7.31-7.17 (2H, m, Ar), 7.05 (1H, dt, *J* = 7.2, 1.5 Hz, Ar), 6.93 (1H, t, *J* = 1.5 Hz, Ar), 6.34 (1H, s, NH), 5.58 (1H, d, *J* = 10.8 Hz, =CH), 3.74 (3H, s, MeO), 3.68 (1H, d, J = 8.1 Hz, CHCO₂Me), 3.64 (3H, s, MeO), 3.56 (1H, m, CHCF₃), 2.45 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 166.6 (C), 166.4 (C), 144.4 (C), 140.1 (C), 135.8 (C), 135.5 (C), 134.5 (C), 130.0 (CH), 129.7 (CH), 129.6 (CH), 128.8 (CH), 127.6 (CH), 127.0 (CH), 125.4 (C, q, *J*_{C-F} = 280 Hz), 104.9 (CH, q, *J*_{C-F} = 2.0 Hz), 53.03 (CH₃), 52.98 (CH₃), 50.9 (CH), 42.6 (CH, q, *J*_{C-F} = 28.0 Hz), 21.5 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ = -70.0 (s, CF₃) ppm; HRMS (ESI) *m*/z 520.0801 (M+H)⁺, C₂₂H₂₂ClF₃NO₆S requires 520.0803.

Minor Z-diastereomer: ¹H NMR (300 MHz, CDCl₃), representative signals taken from the ¹H NMR of the diastereomer mixture, δ 8.00 (1H, s, NH), 7.57 (2H, d, *J* = 8.4 Hz, Ar), 7.33-7.20 (6H, m, Ar), 5.26 (1H, dd, *J* = 10.8, 0.6 Hz, =CH), 3.81 (3H, s, MeO), 3.78 (1H, d, *J* = 6.3 Hz, CHCO₂Me), 3.69 (3H, s, MeO), 3.56 (1H, m, CH-CF₃), 2.39 (3H, s, Me-Ar); ¹⁹F NMR (282 MHz, CDCl₃) δ = -69.7 (s, CF₃) ppm.

Dimethyl (*S,E*)-2-(1,1,1-trifluoro-4-((4-methylphenyl)sulfonamido)-4-(3nitrophenyl)but-3-en-2-yl)malonate (3i)

NO₂ Chiral HPLC analysis: Lux Amylose-1, hexane-*i*PrOH 95:05, 2 mL/min, *E*-diastereomer: *major enantiomer* (S) tr = 42.9 min, *minor enantiomer* (R) tr = 78.2 min; Z-diastereomer: *major enantiomer* tr = 50.6 min, *minor enantiomer* tr = 30.9 min.

Major E-diastereomer: Yellow oil; $[\alpha]_D^{20}$ -9.5 (*c* 0.97, CHCl₃) for the mixture of diastereomers; ¹H NMR (300 MHz, CDCl₃) δ 8.18 (1H, m, Ar), 7.82 (1H, ddd, *J* = 7.8, 1.8, 1.2 Hz, Ar), 7.76 (1H, t, *J* = 1.8 Hz, Ar), 7.65 (2H, d, *J* = 8.0 Hz, Ar), 7.54 (1H, t, *J* = 8.0 Hz, Ar), 7.30 (2H, d, *J* = 8.0 Hz, Ar), 6.62 (1H, s, NH), 5.63 (1H, d, *J* = 11.1 Hz, =CH), 3.76 (3H, s, MeO), 3.67 (1H, d, *J* = 7.4 Hz, CHCO₂Me), 3.65 (3H, s, MeO), 3.48 (1H, m, CHCF₃), 2.44 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 166.5 (C), 166.4

(C), 148.1 (C), 144.7 (C), 139.5 (C), 135.7 (C), 135.2 (CH), 135.1 (C), 129.8 (CH, overlaped signals), 127.5 (CH), 125.3 (C, q, $J_{C-F} = 279$ Hz), 124.2 (CH), 124.1 (CH), 106.9 (CH, q, $J_{C-F} = 2.0$ Hz), 53.17 (CH₃), 53.12 (CH₃), 50.7 (CH), 42.6 (CH, q, $J_{C-F} = 28.2$ Hz), 21.5 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) $\delta = -69.9$ (s, CF₃) ppm; HRMS (ESI) m/z 531.1036 (M+H)⁺, C₂₂H₂₂ClF₃N₂O₈S requires 531.1043.

Minor Z-diastereomer: ¹H NMR (300 MHz, CDCl₃), representative signals taken from the ¹H NMR of the diastereomer mixture, δ 8.19 (1H, s, NH), 8.16 (1H, m, Ar), 8.11 (1H, t, *J* = 1.9 Hz, Ar), 7.63-7.53 (3H, m, Ar), 7.50 (1H, t, *J* = 8.1 Hz, Ar), 7.23 (2H, d, *J* = 8.0 Hz, Ar), 5.38 (1H, dd, *J* = 10.8, 0.6 Hz, =CH), 3.83 (3H, s, MeO), 3.81 (1H, d, *J* = 6.3 Hz, CHCO₂Me), 3.71 (3H, s, MeO), 3.58 (1H, m, CH-CF₃), 2.39 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 168.2 (C), 167.0 (C), 148.0 (C), 144.4 (C), 139.8 (C), 138.5 (C), 136.6 (C), 134.1 (CH), 129.7 CH), 129.2 (CH), 126.9 (CH), 125.3 (C, q, *J*_{C-F} = 279 Hz), 123.9 (CH), 122.7 (CH), 113.8 (CH, q, *J*_{C-F} = 2.4 Hz), 54.0 (CH₃), 53.4 (CH₃), 50.7 (CH), 41.9 (CH, q, *J*_{C-F} = 28.29 Hz), 21.4 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ = -69.6 (s, CF₃) ppm.

Dimethyl (*S*,*E*)-2-(1,1,1-trifluoro-4-(3-methoxyphenyl)-4-((4-methylphenyl) sulfonamido)but-3-en-2-yl)malonate (3j)

Major E-diastereomer: Yellow solid, m.p. 102-105 °C (hexane-EtOAc); $[\alpha]_{D}^{20}$ -40.3 (*c* 0.95, CHCl₃) for the mixture of diastereomers; ¹H NMR (300 MHz, CDCl₃) δ 7.82 (2H, d, *J* = 8.4 Hz, Ar), 7.38 (2H, d, *J* = 8.4 Hz, Ar), 7.28-7.25 (1H, m, Ar), 6.93 (1H, ddd, *J* = 8.4, 2.4, 1.2 Hz, Ar), 6.71-6.69 (2H, m, Ar), 6.31 (1H, s, NH), 5.65 (1H, d, *J* = 10.8 Hz, =CH), 3.88 (1H, d, *J* = 8.7 Hz, CHCO₂Me), 3.80 (3H, s, MeO), 3.79 (3H, s, MeO), 3.76-3.75 (1H, m, CH-CF₃), 3.70 (3H, s, MeO), 2.50 (3H, s, Me-Ar); ¹³C NMR(75 MHz, CDCl₃) δ 166.8 (C), 166.6 (C), 159.6 (C), 144.2 (C), 141.1 (C), 135.9 (C), 135.3 (C), 129.9 (CH), 129.6 (CH), 127.7 (CH), 125.4 (C, q, *J*_{C-F} = 257.3 Hz), 120.6 (CH), 115.7 (CH), 113.6 (CH), 102.9 (CH, q, *J*_{C-F} = 2.0 Hz), 55.2 (CH₃), 52.95 (CH₃), 52.94 (CH₃), 51.0 (CH), 42.6 (CH, q, *J*_{C-F} = 27.9 Hz), 21.5 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ = -70.2 (s, CF₃) ppm; HRMS (ESI) *m*/z 516.1294 (M+H)⁺, C_{23H25F3}NO₇S requires 516.1298.

Minor Z-diastereomer: ¹H NMR (300 MHz, CDCl₃), representative signals taken from the ^{1H} NMR of the diastereomer mixture, δ 7.99 (1H, s, NH), 7.65 (2H, d, J = 8.4 Hz, Ar), 7.37-7.32 (1H, m, Ar), 7.06 (dt, J = 7.8, 1,2 Hz, Ar), 6.75-6.65 (2H, m, Ar), 5.31 (1H, d, J = 11.4 Hz, =CH), 3.89-3.67 (2H, m, CH-CF₃, CHCO₂Me), 3.86 (3H, s, MeO), 3.80 (3H, s, MeO), 3.75 (3H, s, MeO), 2.45 (3H, s, Me-Ar); ¹⁹F NMR (282 MHz, CDCl₃) $\delta = -69.8$ (s, CF₃) ppm.

Dimethyl (*S*,*E*)-2-(1,1,1-trifluoro-4-(2-methoxyphenyl)-4-((4-methylphenyl)-sulfonamido)but-3-en-2-yl)malonate (3k)

Major *E*-diastereomer: Yellow solid, m.p. 129-133 °C (hexane-EtOAc); $[\alpha]_D^{20}$ -32.2 (*c* 0.92, CHCl₃) for the mixture of diastereomers; ¹H NMR(300 MHz, CDCl₃) δ 7.72 (2H, d, *J* = 8.4 Hz, Ar), 7.28-7.25 (2H, m, Ar), 7.03-7.00 (2H, m, Ar), 6.89 (1H, dt, *J* = 7.5, 1.2 Hz, Ar), 6.82 (1H, dd, *J* = 8.4, 1.2 Hz, Ar), 6.18 (1H, s, NH), 5.69 (1H, d, *J* = 10.8 Hz, =CH), 3.75 (3H, s, MeO), 3.69-3.55 (2H, m, CH-CF₃, CHCO₂Me), 3.65 (3H, s, MeO), 3.60 (3H, s, MeO), 2.42 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 166.8 (C), 166.6 (C), 156.7 (C), 143.8 (C), 138.8 (C), 136.1 (C), 131.2 (C), 131.0 (C), 129.3 (CH), 128.9 (CH), 127.9 (CH), 127.1 (CH), 125.0 (C, q, *J*_{C-F} = 258.8 Hz), 120.6 (CH), 111.0 (CH), 113.6 (CH), 105.6 (CH, q, *J*_{C-F} = 2.0 Hz), 55.1 (CH₃), 52.9 (CH₃), 51.1 (CH), 42.8 (CH, q, *J*_{C-F} = 27.8 Hz), 21.5 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ = -70.2 (s, CF₃) ppm; HRMS (ESI) *m*/*z* 516.1302 (M+H)⁺, C₂₃H₂₅F₃NO₇S requires 516.1298.

Minor Z-diastereomer: ¹H NMR (300 MHz, CDCl₃), representative signals taken from the ¹H NMR of the diastereomer mixture, δ 7.81 (2H, d, *J* = 8.1 Hz, Ar), 7.38-6.49 (7H, m, Ar, NH), 5.44 (1H, d, *J* = 10.8 Hz, =CH), 3.82-3.60 (2H, m, CH-CF₃, CHCO₂Me), 3.83 (3H, s, MeO), 3.73 (3H, s, MeO), 3.55 (3H, s, MeO), 2.31 (3H, s, Me-Ar); ¹⁹F NMR (282 MHz, CDCl₃) δ = -69.5 (s, CF₃) ppm.

Dimethyl (*S*,*E*)-2-(1,1,1-trifluoro-4-((4-methylphenyl)sulfonamido)-4-(naphthalen-2-yl)but-3-en-2-yl)malonate (3l)

Chiral HPLC analysis: Lux Amylose-1, hexane-*i*PrOH 80:20, 1 mL/min, *E*-diastereomer: *major enantiomer* (*S*) tr = 11.3 min, *minor enantiomer* (*R*) tr = 13.8 min; *Z*-diastereomer: major enantiomer tr = 12.3 min, *minor enantiomer* tr = 9.4 min

Major *E*-diastereomer: Yellow solid, m.p. 98-103 °C (hexane-EtOAc); $[\alpha]_D^{20}$ 1.0 (*c* 0.96, CHCl₃) for the mixture of diastereomers; ¹H NMR (300 MHz, CDCl₃) δ 7.80-7.74 (5H, m, Ar), 7.59-7.58 (1H, m, Ar), 7.53-7.49 (2H, m, Ar), 7.30 (2H, d, *J* = 8.1 Hz Ar), 7.14 (1H, dd, *J* = 8.1, 1.8 Hz, Ar), 6.38 (1H, s, NH), 5.65 (1H, d, *J* = 10.8 Hz, =CH), 3.82-3.69 (2H, m, CH-CF₃, CHCO₂Me), 3.76 (3H, s, MeO), 3.60 (3H, s, MeO), 2.44 (3H, s, Me-Ar); ¹³C NMR (75 MHz, CDCl₃) δ 166.7 (C), 166.5 (C), 144.2 (C), 141.4 (C), 136.0 (C), 133.3 (C), 132.8 (C), 131.2 (C), 129.6 (CH), 128.64 (CH), 128.57 (CH), 128.3 (CH), 127.7 (CH), 127.1 (CH), 126.6 (CH), 125.5 (CH), 125.4 (C, q, *J*_{C-F} = 264.8 Hz), 123.7 (CH), 104.0 (CH, q, *J*_{C-F} = 2.0 Hz), 53.0 (CH₃), 52.9 (CH₃), 51.1 (CH), 42.7

(CH, q, $J_{C-F} = 28.5 \text{ Hz}$), 21.5 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) $\delta = -70.0$ (s, CF₃) ppm; HRMS (ESI) m/z 536.1346 (M+H)⁺, C₂6H₂5F₃NO₆S requires 536.1349.

Minor Z-diastereomer: ¹H NMR (300 MHz, CDCl₃), representative signals taken from the ¹H NMR of the diastereomer mixture, δ 8.05 (1H, s, NH), 7.87-6.94 (11H, m, Ar), 5.37 (1H, d, J = 11,1 Hz, =CH), 3.82 (3H, s, MeO), 3.80-3.60 (2H, m, CH-CF₃, CHCO₂Me), 3.68 (3H, s, MeO), 2.34 (3H, s, Me-Ar); ¹⁹F NMR (282 MHz, CDCl₃) $\delta = -69.6$ (s, CF₃) ppm.

Synthetic transformations of compound 3a

Dimethyl 2-((2*S*,4*R*)-1,1,1-trifluoro-4-((4-methylphenyl)sulfonamido)-4-phenylbutan-2-yl)malonate (4a)

 $\begin{array}{c|c} \mathsf{CF}_3 & \mathsf{NHTs} \\ \mathsf{MeO}_2\mathsf{C} & \mathsf{Ph} \\ \mathsf{MeO}_2\mathsf{C} & \mathsf{Aa} \end{array} \qquad \begin{array}{c} \mathsf{To \ a \ sample \ of \ compound \ } (S,E)-\mathbf{3a} \ (52.0 \ \mathrm{mg}, \ 0.11 \ \mathrm{mmol}, \ E/Z \\ 96:4, \ \mathrm{ee} = 89\%/69\%), \ \mathrm{dissolved \ in \ dry \ } \mathsf{CH}_2\mathsf{Cl}_2 \ (3.3 \ \mathrm{mL}) \ \mathrm{under} \\ \mathrm{nitrogen \ atmosphere \ was \ added \ triethylsilane \ } (50 \ \mu\mathrm{L}, \ 0.428 \\ \mathrm{mmol}) \ \mathrm{followed \ by \ } \mathsf{BF}_3\cdot\mathsf{Et}_2\mathsf{O} \ (67 \ \mu\mathrm{L}, \ 0.471 \ \mathrm{mmol}). \ \mathsf{Afer} \\ \mathrm{stirring \ for \ } 48 \ \mathrm{h \ h \ at \ room \ temperature, \ the \ mixture \ was \ } \end{array}$

chromatographed on silica gel eluting with hexane:EtOAc (80:20) to give 48.1 mg (92%) of compound 4a, as a c.a. 88:12 of two diastereomers. Chiral HPLC analysis: Lux Amylose-1, hexane-*i*PrOH 90:10, 1 mL/min, (2S,4R) major diastereomer (ee = 87%), *major enantiomer* tr = 16.4 min, *minor enantiomer* tr = 15.0 min; (2S,4S) minor diastereomer unresolved tr = 8.3 min. Chiralpak IC, hexane-*i*PrOH 95:05, 2 mL/min, (2S,4R) major diastereomer, tr > 120 min; (2S,4S) minor diastereomer (ee = 89%) *major enantiomer* tr = 37.6 min, *minor enantiomer* tr = 35.8 min;

(2*S*,4*R*)-4a (major): colorless oil; $[\alpha]_D^{20}$ 7.8 (*c* 0.97, CHCl₃) for the diastereomer mixture; ¹H NMR (300 MHz, CDCl₃) δ 7.52 (2H, d, *J* = 8.1 Hz, Ar), 7.20-7.13 (3H, m, Ar), 7.10 (2H, d, *J* = 8.1 Hz, Ar), 7.02-7.6.90 (2H, m, Ar), 5.13 (1H, d, *J* = 8.1 Hz, NH), 4.47 (1H, q, *J* = 7.8 Hz, CHPh), 3.73 (3H, s, MeO), 3.69 (1H, d, *J* = 5.4 Hz, CHCO₂Me), 2.83 (1H, m, CHCF₃), 2.34 (3H, s, Me-Ar), 2.32-2.10 (2H, m, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 167.1 (C), 167.0 (C), 143.1 (C), 138.8 (C), 137.2 (C), 129.3 (CH), 128.6 (CH), 128.5 (C), 127.9 (CH), 127.0 (CH), 126.8 (CH), 126.6 (C, q, *J*_{C-F} = 278 Hz), 56.4 (CH), 53.1 (CH₃), 52.8 (CH₃), 49.9 (CH), 40.0 (CH, q, *J*_{C-F} = 26.8 Hz), 33.4 (CH₂), 21.4 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ = -68.5 (s, CF₃) ppm; HRMS (ESI) *m/z* 488.1357 (M+H)⁺, C₂₂H₂₅F₃NO₆S requires 488.1349.

(2*S*,4*S*)-4a (minor): ¹H NMR (300 MHz, CDCl₃), representative signals taken from the diastereomer mixture δ 7.58 (2H, d, *J* = 8.4 Hz, Ar), 7.40-6.90 (7H, m, Ar), 5.95 (1H, d, *J* = 6.9 Hz, NH), 4.45 (1H, m, CHPh), 3.81 (3H, s, MeO), 3.72 (3H, s, MeO), 2.83 (1H, m, CHCF₃), 2.34 (3H, s, Me-Ar), 2.32-2.10 (2H, m, CH₂); ¹⁹F NMR (282 MHz, CDCl₃) δ = -70.1 (s, CF₃) ppm.

Methyl (3*R*,4*S*,6*R*)-2-oxo-6-phenyl-1-tosyl-4-(trifluoromethyl)piperidine-3carboxylate.

A 25% solution of tetraethylammonium hydroxyde in MeOH (24 μ L, 0.14 mmol) was added to a solution of compound **4a** (28.0 mg, 0.037 mmol, ee = 87%) in dimethylsulfoxide (1.6 mL) under nitrogen, and the reaction flask was introduced in a bath at 80 °C. After 14 h, the reaction mixture was diluted with EtOAc (75 mL),

washed with water (5 \times 5 mL), brine (5 mL), and dried over MgSO₄. Purification by column chromatography eluting with hexane:EtOAc (80:20) gave 13.2 mg (78%) of compound **5a**. Chiral HPLC analysis: Lux Amylose-1, hexane-*i*PrOH 90:10, 1 mL/min,

major enantiomer tr = 24.0 min, *minor enantiomer* tr = 22.1 min. White solid, m.p. 177-179 °C (hexane-EtOAc); $[\alpha]_{D^{20}}$ -4.5 (*c* 1.0, CHCl₃, ee = 87%); ¹H NMR (300 MHz, CDCl₃) δ 7.56 (2H, d, *J* = 8.5 Hz, Ar), 7.40-7.32 (3H, m, Ar), 7.20-7.14 (4H, m, Ar), 5.93 (1H, t, J = 3.8 Hz, CH-Ph), 3.78 (3H, s, OMe), 3.65 (1H, d, *J* = 11.4 Hz, CHCO₂Me), 3.11 (1H, m, CHCF₃), 2.40 (3H, s, Me-Ar), 2.35-2.28 (2H, m, CH₂); ¹³C NMR (75 MHz, CDCl₃) δ 168.3 (C), 164.3 (C), 145.4 (C), 138.1 (C), 134.5 (C), 129.7 (CH), 129.0 (CH), 128.5 (C), 126.5 (CH), 125.6 (C, q, *J*_{C-F} = 278 Hz), 58.3 (CH), 53.4 (CH₃), 52.8 (CH₃), 50.2 (CH), 37.1 (CH, q, *J*_{C-F} = 28.5 Hz), 29.9 (CH₂), 21.7 (CH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ = -73.1 (s, CF₃) ppm; HRMS (ESI) *m/z* 456.1087 (M+H)⁺, C₂₁H₂₁F₃NO₅S requires 456.1077.

Determination of the relative stereochemistry of compounds 4a and 5a

The relative stereochemistry of compound 5a, and hence, of its precursor, the major diastereomer of compound 4a, was established considering the coupling constants of the ring-attached protons (see figure):

H6 5.93 ppm (t) $J_{6,5} = 3.8$ Hz (eq-eq), $J_{6,5'} = 3.8$ Hz (eq-ax) H3 3.65 ppm (d) $J_{3,4} = 11.4$ Hz (ax-ax),

Figure S1. Coupling constants in compound 5a

1 D. G. Stark, L. C. Morrill, P.-P. Yeh, A. M.Z. Slawin, T. J. C. O'Riordan, A. D. Smith, Angew. Chem.Int. Ed. 2013, 52, 11642.

166126

o. 210 mm, 1 mm Rebuileb		
Retention Time	Area	Area Percent
11,90	28064804	13,267
13,38	79174978	37,428
14,61	26352385	12,458
16,00	77944696	36,847

13: 250 nm, 4 nm Results

Retention Time	Area	Area Percent
32,13	40066660	20,800
39,20	55590059	28,859
48,33	55632362	28,881
50,45	41336988	21,460

Retention Time	Area	Area Percent
33,86	4277468	4,322
38,44	84913788	85,800
47,86	1448248	1,463
48,42	8327505	8,414

S-31

S-33

13: 250 nm, 4 nm Results

Retention Time	Area	Area Percent
37,96	23906621	15,390
44, 43	54493135	35,081
51,10	23247941	14,966
63,97	53687149	34,562

 13: 250 nm, 4 nm
 Area
 Area Percent

 Retention Time
 Area
 Area Percent

 37,98
 21218148
 14,931

 44,24
 111411062
 78,400

 50,93
 5991092
 4,216

 63,81
 3486368
 2,453

Retention Time	Area	Area Percent
7,04	85744726	75,785
7,83	7274374	6,429
9,49	17477257	15,447
10,71	2646307	2,339

5: 250 nm, 4 nm Results Retention Time	Area	Area Percent
21, 32	83433064	35,597
23,26	34464298	14,704
29,96	34604433	14,764
33,60	81878917	34,934

5: 250 nm, 4 nm Results Retention Time	Area	Area Percent
21,68	13274995	21,691
32,68	17429237	28,479
38,40	17140324	28,007
47,51	13356633	21,824

1: 280 nm, 4 nm Results Retention Time	Area	Area Percent
9,13	10055071	8,990
11,68	48362788	43,240
12,77	9063996	8,104
14,18	44365277	39,666

Retention Time	Area	Area Percent
9,44	1956733	5,608
11,29	28423861	81,464
12,25	3431501	9,835
13,75	1079387	3,094

Lux-Amylose 1

Chiralpak IC

13: 250 nm, 4 nm Results		
Retention Time	Area	Area Percent
19,48	8876376	49,765
21,42	8960049	50,235

Figure 2S. Ortep plot for the X-ray structure of compound **2a**. The thermal ellipsoids are drawn at the 50% probability level.

Figure 3S. Ortep plot for the X-ray structure of compound 3a. The thermal ellipsoids are drawn at the 50% probability level.

Table S-1. Enantioselective conjugate addition of dimethyl malonate **2** to imine **2a** catalyzed by trivalent metal complexes.^a

Entry	La(OTf) ₃	pyBOX	t (h)	Yield (%) ^[b]	dr (<i>E</i> : <i>Z</i>)	ee (%) (E/Z) ^c
1	La(OTf) ₃	pyBOX1	16h	>99	72:28	75/34
2	La(OTf) ₃	pyBOX2	43h	>99	78:23	-15/-2
3	La(OTf) ₃	pyBOX3	48	>99	77:23	45/-3
4	La(OTf) ₃	pyBOX4	40h	>99	82;18	-18/-9
5	La(OTf) ₃	pyBOX5	40h	>99	82:18	-28/-11
6	La(OTf) ₃	pyBOX6	37h	79	89:11	-16/5
7	La(OTf) ₃	pyBOX7	44h	86	73:27	-76/-39
8	Sc(OTf) ₃	pyBOX1	96	d		
9	Yb(OTf) ₃	pyBOX1	96	19	43:57	69/42
10	In(OTf) ₃	/pyBOX1	96	^d		

^a Reaction conditions: **2** (0.3 mmol), **11** (0.12 mmol), ligand (0.012 mmol, M(OTf)₃ (0.012 mmol), 4Å MS (110 mg), CH₂Cl₂ (1.1 mL). ^b Yield of isolated product. ^c Determined by HPLC with chiral stationary phases. ^d Little advance of the reaction was observed after the indicated time.