Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Regiocontrolled functionalization of 2,3-dihalogenoimidazo[1,2-*a*]pyridines by Suzuki and Sonogashira cross-coupling reactions

P.-O. Delaye,^a M. Pénichon,^a H. Allouchi,^a C. Enguehard-Gueiffier^b and A. Gueiffier^b

a) UMR INRA 1282 Infectiologie et Santé Publique, Recherche et Innovation en Chimie Médicinale, Université François Rabelais, 31 avenue Monge, 37200 Tours, France.

b) UMR INSERM 1069 Nutrition, Croissance et cancer, Université François Rabelais, 31 avenue Monge, 37200 Tours, France.

SUPPORTING INFORMATIONS

- 1) Generals considerations
- 2) Characterization data for products
- 3) Copies of NMR spectra for products

General considerations

All reagents were used directly as obtained commercially. Thin-layer chromatography (TLC) were performed using Merk[®] silica gel $60F_{254}$ plates. Column chromatography were preformed using Merck Geduran[®] Si 60 (40-63µm) silica. Melting points were determined on a capillary apparatus (Stuart, Staffordshire, United Kingdom) and are uncorrected. Microwave heating was performed using CEM[®] Explorer SP 12 S class apparatus (max power 300W). NMR experiments were performed at 300 mHz (¹H) and 75 mHz (¹³C) on a Bruker-Avance 300 MHz spectrometer. Assignment of carbons noted C* may be interchanged. Mass spectra were determined on a Hewlett Packard 5988A spectrometer or on a Shimadzu QP 2010 spectrometer by direct inlet at 70 eV. NMR data for compounds $2a^1$, $2b^2$, $3a^3$, $3b^4$, $3d^5$, $3f^4$ and $6a^6$ were previously described in literature.

2,3-diodoimidazo[1,2-*a*]pyridine (1a)

To a stirred solution of 2-iodoimidazo[1,2-*a*]pyridine (1.22g, 5mmol, 1eq) in CH₃CN (20mL) was added NIS (1.24g, 5.5mmol, 1.1eq) in one portion at room temperature. A white solid precipitated quickly. After 3h at room temperature the reaction was quenched with 30mL of water and extracted thrice with 30mL of CH₂Cl₂. The combined organic phases were washed with 50mL of Na₂S₂O₃ aqueous saturated solution, dried on Na₂SO₄ and evaporated to dryness. The pale yellow solid obtained (1.7g, 4,6mmol, yield: 92%) is used without further purification. ¹H NMR (CDCl₃) δ : 8.03 (d, 1H, *J* = 9Hz, H-5), 7.54 (d, 1H, *J* = 9Hz, H-8), 7.20 (ddd, 1H, *J* = 9.0Hz, 6.9Hz, 1.0Hz H-7), 6.89 (td, 1H, *J* = 9.0Hz, 0.6Hz, H-6). ¹³C NMR (CDCl₃) δ : 149.4 (C-8a), 127.0 (C-5), 125.7 (C-7), 117.2 (C-8), 113.9 (C-6), 104.6 (C-2), 73.0 (C-3). m.p.: 114-118°C. HRMS (ESI): *m/z* calculated for C₇H₄I₂N₂ [M+H]⁺ : 370.85366, found: 370.85389.

2-iodo-3-bromoimidazo[1,2-*a*]pyridine (1b)

To a stirred solution of 2-iodoimidazo[1,2-*a*]pyridine (1.75g, 7.2mmol, 1eq) in CH₃CN (30mL) was added NBS (1.4g, 7.9mmol, 1.1eq) in one portion at room temperature. A white solid precipitated quickly. After 3h at room temperature the reaction was quenched with 30mL of water and extract thrice with 30mL of CH₂Cl₂. The combined organic phases were washed with 50mL of Na₂S₂O₃ aqueous saturated solution, dried on Na₂SO₄ and evaporated to dryness. The crude mixture was purified by column chromatography (silica, eluent: CH₂Cl₂). **1b** is obtained as a gray solid (2.1g, 6.5mmol, yield: 90%). ¹H NMR (CDCl₃) δ : 8.06 (dt, 1H, *J* = 6.9Hz, 0.9Hz, H-5), 7.56 (dt, 1H, *J* = 9.3Hz, 0.9Hz, H-8), 7.21 (ddd, *J* = 9.0Hz, 6.9Hz, 1.2Hz, H-7), 6.91 (td, 1H, *J* = 6.9Hz, 0.9Hz, H-6). ¹³C NMR (CDCl₃) δ : 147.4 (C-8a), 125.3 (C-7), 124.3 (C-5), 117.3 (C-8), 113.7 (C-6), 101.9 (C-2*), 95.9 (C-3*). m.p.: 114-118°C. HRMS (ESI): *m/z* calculated for C₇H₄BrIN₂ [M+H]⁺ : 322.86753, found: 322.86793.

General procedure for Suzuki coupling at C-2 position or C-3 position.

1b (646mg, 2mmol, 1eq) or **2b-d** (n mmol, 1 eq for C-3 functionalization), $Pd(PPh_3)_4$ (116mg, 0.1mmol, 5%), Na_2CO_3 (424mg, 4mmol, 2eq) and boronic acid (2.2mmol, 1.1eq) were introduced into a microwave tube. The tube was sealed with a rubber septum and then evacuated and refilled with argon thrice. 1,4-Dioxane (8mL) and water (4mL) were then added. The reaction mixture was heated under microwave iradiation at 120°C for 1h. After cooling, the reaction mixture was partitioned between EtOAc (10mL) and water (10mL). The aqueous phase was extracted twice with EtOAc (10mL). Organic phases were combined, dried over MgSO₄ and evaporated to dryness. The crude mixture was purified by column chromatography (silica, eluent: mixture of CH_2Cl_2 and EtOAc).

3-bromo-2-(thiophen-3-yl)imidazo[1,2-a]pyridine (2c)

¹ Gao, Y.; Yin, M.; Wu, W.; Huang, H.; Jiang, H. Adv. Synth. Catal. 2013, 355, 2263-2273.

² Zhou, X.; Yan, H.; Ma, C.; He, Y.; Li, Y.; Cao, J.; Yan, R.; Huang, G. J. Org. Chem. 2016, 81, 25-31.

³ Hiebel, M.-A.; Fall, Y.; Scherrmann, M.-C.; Berteina-Raboin, S. Eur. J. Org. Chem. 2014, 4646-4650.

⁴ Marhadour, S.; Marchand, P.; Pagniez, F.; Bazin, M.-A.; Picot, C.; Lozach, O.; Ruchaud, S.; Antoine, M.; Meijer, L.; Rachidi, N.; Le Pape, P. *Eur. J. Med. Chem.* **2012**, 58, 543-556.

⁵ Enguehard, C.; Renou, J.-L.; Collot, V.; Hervet, M.; Rault, S.; Gueiffier, A. J. Org. Chem. 2000, 65, 6572-6575.

⁶ Meng, X.; Yu, C.; Chen, G.; Zhao, P. Catal. Sci. Technol. 2015, 5, 372-379.

Eluent: CH₂Cl₂/EtOAc 98/2 \rightarrow 97/3. Pale yellow solid, yield: 80%. ¹H NMR (CDCl₃) δ : 8.04 (m, 2H, H-5, thienyl-2), 7.86 (dd, 1H, J = 4.8Hz, 1.2Hz, thienyl-4), 7.56 (dt, 1H, J = 9.0Hz, 0.9Hz, H-8), 7.39 (dd, 1H, J = 4.8Hz, 3.0Hz, thienyl-5), 7.18 (ddd, 1H, J = 9.0Hz, 6.6Hz, 1.2Hz, H-7), 6.84 (td, 1H, J = 6.9Hz, 0.9Hz, H-6). ¹³C NMR (CDCl₃) δ : 145.2 (C-8-a), 139.1 (C-2), 133.9 (thienyl-3), 127.0 (thienyl-4), 125.8 (thienyl-5), 125.6 (C-7), 124.0 (C-5), 123.8 (thienyl-2), 117.4 (C-8), 113.4 (C-6), 91.5 (C-3). m.p.: 130-134°C. HRMS (ESI): m/z calculated for C₁₁H₇BrN₂S [M+H]⁺: 278.95861, found: 278.95892.

3-bromo-2-methylimidazo[1,2-*a*]pyridine (2d)

Eluent: CH₂Cl₂/EtOAc 90/10 \rightarrow 80/20. Yellow solid, yield: 42%. ¹H NMR (CDCl₃) δ : 7.99 (dt, 1H, J = 6.9Hz, 0.9Hz, H-5), 7.48 (dt, 1H, J = 9.0Hz, 0.9Hz, H-8), 7.15 (ddd, 1H, J = 9.0Hz, 6.9Hz, 1.2Hz, H-7), 6.84 (td, 1H, J = 6.9Hz, 0.9Hz, H-6), 2.43 (s, 3H, CH₃). ¹³C NMR (CDCl₃) δ : 145.2 (C-8a), 142.0 (C-2), 124.4 (C-7), 123.7 (C-5), 117.0 (C-8), 112.6 (C-6), 93.0 (C-3), 13.7 (CH₃). m.p.: 45-49°C. HRMS (ESI): m/z calculated for C₈H₇BrN₂ [M+H]⁺ : 210.98654, found: 210.98671.

3-(furan-2-yl)-2-phenylimidazo[1,2-*a*]pyridine (3c)

Eluent: CH₂Cl₂/EtOAc 95/5. Brown solid, yield: 67%. ¹H NMR (CDCl₃) δ : 8.19 (dt, 1H, J = 6.9Hz, 0.9Hz, H-5), 7.77-7.74 (m, 2H, Ph-2,6), 7.66 (dt, 1H, J = 9.0Hz, 0.9Hz, H-8), 7.63 (t, 1H, J = 1.2Hz, furyl-5), 7.40-7.31 (m, 3H, Ph-3,4,5), 7.22 (ddd, 1H, J = 9.0Hz, 6.9Hz, 1.2Hz, H-7), 6.80 (td, 1H, J = 6.9Hz, 1.2Hz, H-6), 6.56 (m, 2H, furyl-3,4). ¹³C NMR (CDCl₃) δ : 145.5 (C-8a), 145.3 (furyl-2), 143.6 (C-2), 143.4 (furyl-5), 134.0 (Ph-1), 128.5 (Ph-3,5*), 128.2 (Ph-2,6*), 128.1 (Ph-4), 125.5 (C-7), 124.8 (C-5), 117.6 (C-8), 112.8 (C-6), 111.8 (furyl-3*), 111.6 (furyl-4*). m.p.: 111-115°C. HRMS (ESI): m/z calculated for C₁₇H₁₂N₂O [M+H]⁺: 261.10224, found: 261.10229.

3-phenyl-2-(thiophen-3-yl)imidazo[1,2-a]pyridine (3e)

Eluent: CH₂Cl₂/EtOAc 100/0 \rightarrow 93/7. white solid, yield: 88%. ¹H NMR (CDCl₃) δ : 7.91 (dt, 1H *J* = 6.9Hz, 1.2Hz, H-5), 7.78 (d, 1H, *J* = 9.3Hz, H-8), 7.65 (dd, 1H, *J* = 3.0Hz, 1.5Hz, thienyl-2), 7.61-7.48 (m, 5H, Ph-2,3,4,5,6), 7.31-7.21 (m, 3H, H-7, thienyl-4,5), 6.80 (td, 1H, *J* = 6.9Hz, 1.2Hz, H-6). ¹³C NMR (CDCl₃) δ : 143.9 (C-8a), 137.5 (C-2), 134.2 (thienyl-3), 131.1 (Ph-3,5*), 129.8 (Ph-2,6*), 129.7 (Ph-4), 129.0 (Ph-1), 127.0 (thienyl-2), 126.0 (C-7), 125.6 (thienyl-4*), 123.62 (C-5*), 123.59 (thienyl-5*), 120.6 (C-3), 116.9 (C-8), 113.2 (C-6). m.p.: 148-152°C. HRMS (ESI): *m/z* calculated for C₁₇H₁₂N₂S [M+H]⁺: 277.07940, found: 277.07945.

2-phenyl-3-(pyridin-4-yl)imidazo[1,2-a]pyridine (3f)⁴

1b (200mg, 0.619mmol, 1eq), Pd(PPh₃)₄ (36mg, 0.031mmol, 5%), Na₂CO₃ (131mg, 1.24mmol, 2eq) and phenylboronic acid (83mg, 0.681mmol, 1.1eq) were introduced into a microwave tube. The tube was sealed with a rubber septum and then evacuated and refilled with argon thrice. 1,4-Dioxane (2.8mL) and water (1.4mL) were then added. The reaction mixture was heated under microwave irradiation at 120°C for 1h. After cooling, 4-pyridylboronic acid (98mg, 0.681mmol, 1.1eq) was added and the reaction was heated again under microwave irradiation at 120°C for 1h. After cooling, the reaction was heated between CH₂Cl₂ (10mL) and water (10mL). The aqueous phase was extracted twice with CH₂Cl₂ (10mL). Organic phases were combined, dried over MgSO₄ and evaporated to dryness. The crude mixture was purified by column chromatography (silica, eluent: CH₂Cl₂/EtOAc 100/0 \rightarrow 93/7) to afford **3a** as a white solid (106mg), yield: 73%.

General procedure for Sonogashira coupling at C-2 position.

1b (161mg, 0.5mmol, 1eq), PdCl₂(PPh₃)₂ (35mg, 0.05mmol, 10%) and CuI (10mg, 0.05mmol, 10%) were introduced into a screw-cap test tube. The tube was sealed with a rubber septum and then evacuated and refilled with argon thrice. DMF (2mL), Et₃N (278 μ L, 2mmol, 4eq) and alkyne (0.55mmol, 1.1eq) were then added. The reaction mixture was stirred for 30 minutes at room temperature. The reaction mixture was partitioned between CH₂Cl₂ (10mL) and brine (10mL). The aqueous phase was extracted twice with CH₂Cl₂ (10mL). Organic phases were combined, dried over MgSO₄ and evaporated to dryness. The crude mixture was purified by column chromatography (silica, eluent: mixture of petroleum ether and diethylether).

3-bromo-2-(phenylethynyl)imidazo[1,2-*a*]pyridine (4a)

Eluent: PE/Et₂O 50/50. Orange solid, yield: 95%. ¹H NMR (CDCl₃) δ : 8.08 (dt, 1H, J = 6.9Hz, 0.9Hz, H-5), 7.64-7.61 (m, 3H, 2CH Ph, H-8), 7.38-7.36 (m, 3H, 3CH Ph), 7.31 (ddd, 1H, J = 9.0Hz, 6.6Hz, 1.2Hz, H-7), 6.98 (td, 1H, J = 6.9Hz, 1.2Hz, H-6). ¹³C NMR (CDCl₃) δ : 145.1 (C-8a), 132.0 (2CH Ph), 129.0 (CH Ph), 128.5 (2CH Ph), 128.4 (C-2), 126.2 (C-7), 124.1 (C-5), 122.5 (Cq Ph), 117.7 (C-8), 114.1 (C-6), 99.4 (C-3), 94.6 (C=C-Ph), 81.0 (C=C-Ph). m.p.: 117-121°C. HRMS (ESI): m/z calculated for C₁₅H₉BrN₂ [M+H]⁺ : 297.00219, found: 297.00257.

3-bromo-2-(cyclopropylethynyl)imidazo[1,2-a]pyridine (4b)

Eluent: PE/Et₂O 50/50. Yellow solid, yield: 98%. ¹H NMR (CDCl₃) δ : 7.96 (dt, 1H, J = 6.9Hz, 0.9Hz, H-5), 7.47 (dt, 1H, J = 9.3Hz, 0.9Hz, H-8), 7.19 (ddd, 1H, J = 9.0Hz, 6.9Hz, 1.2Hz, H-7), 6.87 (td, 1H, J = 6.9Hz, 0.9Hz, H-6), 1.50 (quint, 1H, CH c-Pr), 0.88 (m, 4H, 2CH₂ c-Pr). ¹³C NMR (CDCl₃) δ : 144.9 (C-8a), 129.1 (C-2), 125.5 (C-7), 123.8 (C-5), 117.5 (C-8), 113.6 (C-6), 98.9 (C=C-c-Pr), 98.4 (C-3), 67.6 (C=C-c-Pr), 9.0 (2CH₂ c-Pr), 0.4 (CH c-Pr). m.p.: 79-83°C. HRMS (ESI): *m/z* calculated for C₁₂H₉BrN₂ [M+H]⁺ : 261.00219, found: 261.00244.

General procedure for Sonogashira coupling at C-3 position.

4a-b (0.5mmol, 1eq), $PdCl_2(PPh_3)_2$ (35mg, 0.05mmol, 10%) and CuI (10mg, 0.05mmol, 10%) were introduced into a screw-cap test tube. The tube was sealed with a rubber septum and then evacuated and refilled with argon thrice. DMF (2mL), Et_3N (278µL, 2mmol, 4eq) and alkyne (0.55mmol, 1.1eq) were then added. The reaction mixture was stirred for 1h30 at 80°C. After cooling, the reaction mixture was partitioned between CH_2Cl_2 (10mL) and brine (10mL). The aqueous phase was extracted twice with CH_2Cl_2 (10mL). Organic phases were combined, dried over MgSO₄ and evaporated to dryness. The crude mixture was purified by column chromatography (silica, eluent: mixture of petroleum ether and diethylether).

2-(phenylethynyl)-3-(p-tolylethynyl)imidazo[1,2-*a*]pyridine (5a)

Eluent: PE/Et₂O 50/50. Orange solid, yield: 97%. ¹H NMR (CDCl₃) δ : 8.29 (d, 1H, J = 6.6Hz, H-5), 7.65-7.62 (m, 3H, Ph-2,6, H-8), 7.51 (d, 2H, J = 8.1Hz, tolyl-2,6), 7.39-7.35 (m, 3H, Ph-3,4,5), 7.32 (ddd, 1H, J = 9.0Hz, 6.9Hz, 1.2Hz, H-7), 7.21 (d, 2H, J = 7.8Hz, tolyl-3,5), 6.97 (td, 1H, J = 6.6Hz, 0.9Hz, H-6), 2.40 (s, 3H, CH₃ tolyl). ¹³C NMR (CDCl₃) δ : 144.7 (C-8a), 139.5 (tolyl-4), 132.0 (Ph-2,6), 131.9 (C-2), 131.5 (tolyl-2,6), 129.4 (tolyl-3,5), 128.9 (Ph-4), 128.5 (Ph-3,5), 127.1 (C-7), 125.3 (C-5), 122.7 (Ph-1), 119.3 (tolyl-1), 117.6 (C-8), 113.8 (C-6), 112.2 (C-3), 102.3 (C=C-tolyl), 94.7 (C=C-Ph), 82.3 (C=C-Ph), 75.2 (C=C-tolyl), 21.7 (CH₃ tolyl). **m.p.**: 113-117°C. HRMS (ESI): *m/z* calculated for C₂₄H1₇N₂ [M+H]⁺ : 333.13917, found: 333.13888.

3-(cyclopropylethynyl)-2-(phenylethynyl)imidazo[1,2-*a*]pyridine (5b)

Eluent: PE/Et₂O 50/50→40/60. Brown solid, yield: 82%. ¹H NMR (CDCl₃) δ : 8.16 (dt, 1H, J = 6.9Hz, 0.9Hz, H-5), 7.63-7.59 (m, 2H, Ph-2,6), 7.54 (dt, 1H, J = 9.0Hz, 0.9Hz, H-8), 7.38-7.33 (m, 3H, Ph-3,4,5), 7.24 (ddd, 1H, J = 9.0Hz, 6.6Hz, 1.2Hz, H-7), 6.88 (td, 1H, J = 6.6Hz, 0.9Hz, H-6), 1.70-1.61 (m, 1H, CH c-Pr), 1.04-0.91 (m, 4H, 2CH₂ c-Pr). ¹³C NMR (CDCl₃) δ : 144.5 (C-8a), 132.0 (Ph-2,6), 131.9 (C-2), 128.7 (Ph-4), 128.4 (Ph-3,5), 126.3 (C-7), 125.1 (C-5), 123.0 (Ph-1), 117.6 (C-8), 113.3 (C-6), 112.5 (C-3), 106.8 (C≡<u>C</u>-c-Pr), 93.7 (C≡<u>C</u>-Ph), 82.8 (<u>C</u>≡C-Ph), 62.4 (<u>C</u>≡C-c-Pr), 9.6 (2CH₂ c-Pr), 0.8 (CH c-Pr). **m.p.**: 105-109°C. HRMS (ESI): m/z calculated for C₂₀H₁₄N₂ [M+H]⁺: 283.12298, found: 283.12315.

3-(3-methoxyprop-1-yn-1-yl)-2-(phenylethynyl)imidazo[1,2-*a*]pyridine (5c)

Eluent: PE/Et₂O 40/60. Brown oil, yield: 42%. ¹H NMR (CDCl₃) δ : 8.22 (dt, 1H, J = 6.9Hz, 0.9Hz, H-5), 7.62-7.57 (m, 3H, Ph-2,6, H-8), 7.38-7.34 (m, 3H, Ph-3,4,5), 7.30 (ddd, 1H, J = 9.0Hz, 6.9Hz, 1.2Hz, H-7), 6.94 (td, 1H, J = 6.9Hz, 0.9Hz, H-6), 4.53 (s, 2H, CH₂OCH₃), 3.52 (s, 3H, CH₂OCH₃). ¹³C NMR (CDCl₃) δ : 145.1 (C-8a), 133.2 (C-2), 132.0 (Ph-2,6), 128.9 (Ph-4), 128.5 (Ph-3,5), 126.9 (C-7), 125.2 (C-5), 122.7 (Ph-1), 117.8 (C-8), 113.7 (C-6), 111.2 (C-3), 98.2 (C=C-CH₂OCH₃), 94.1 (C=C-Ph), 82.3 (C=C-Ph), 73.5 (C=C-CH₂OCH₃), 60.8 (CH₂OCH₃), 57.9 (CH₂OCH₃). HRMS (ESI): *m/z* calculated for C₁₉H₁₄N₂O [M+H]⁺: 287.11789, found: 287.11822.

2-(cyclopropylethynyl)-3-(phenylethynyl)imidazo[1,2-*a*]pyridine (5d)

Eluent: PE/Et₂O 50/50. Brown oil, yield: 54%. ¹H NMR (CDCl₃) δ : 8.23 (dt, 1H, J = 6.9Hz, 0.9Hz, H-5), 7.60-7.54 (m, 3H, Ph-2,6, H-8), 7.41-7.37 (m, 3H, Ph-3,4,5), 7.27 (ddd, 1H, J = 8.7Hz, 6.6Hz, 1.2Hz, H-7), 6.93 (dd, 1H, J = 6.9Hz, 1.2Hz, H-6), 1.60-1.51 (m, 1H, CH c-Pr), 0.93-0.90 (m, 4H, 2CH₂ c-Pr). ¹³C NMR (CDCl₃) δ : 144.6 (C-8a), 132.9 (C-2), 131.5 (Ph-2,6), 128.9 (Ph-4), 128.6 (Ph-3,5), 126.8 (C-7), 125.1 (C-5), 122.5 (Ph-1), 117.5 (C-8), 113.6 (C-6), 113.3 (C-3), 101.5 (C=C-Ph), 99.5 (C=C-c-Pr), 76.1 (C=C-Ph), 68.5 (C=C-c-Pr), 9.1 (2CH₂ c-Pr), 0.6 (CH c-Pr). HRMS (ESI): m/z calculated for C₂₀H₁₄N₂ [M+H]⁺ : 283.12298, found: 283.12319.

3-((4-methoxyphenyl)ethynyl)-2-(phenylethynyl)imidazo[1,2-*a*]pyridine (5e)

1b (200mg, 0.619mmol, 1eq), PdCl₂(PPh₃)₂ (43mg, 0.062mmol, 10%) and CuI (12mg, 0.062mmol, 10%) were introduced into a screw-cap test tube. The tube was sealed with a rubber septum and then evacuated and refilled with argon thrice. DMF (2.5mL), Et₃N (344µL, 2.48mmol, 4eq) and phenylacetylene (75µL, 0.68mmol, 1.1eq) were then added. The reaction mixture was stirred for 30 minutes at room temperature. 4-methoxyphenylacetylene (120µL, 0.929mmol, 1.5eq) was added, and the reaction heated at 80°C for 1h30. After cooling, the reaction mixture was partitioned between CH₂Cl₂ (12mL) and brine (12mL). The aqueous phase was extracted twice with CH₂Cl₂ (12mL). Organic phases were combined, dried over MgSO₄ and evaporate to dryness. The crude mixture was purified by column chromatography (silica. eluent: PE/Et₂O 40/60 \rightarrow 20/80) to afford **5e** as a dark yellow solid (140mg), yield: 65%. ¹H NMR (CDCl₃) δ : 8.25 (dt, 1H, J = 6.6Hz, 0.9Hz, H-5), 7.65-7.59 (m, 3H, Ph-2,6, H-8), 7.54 (d, 2H, J = 8.7Hz, 4-MeOPh-2,6), 7.37-7.34 (m, 3H, Ph-3,4,5), 7.29 (ddd, 1H, J=9.0Hz, 6.9Hz, 1.5Hz, H-7), 6.96-6.89 (m, 3H, 4-MeOPh-3,5, H-6), 3.83 (s, 3H, OCH₃). ¹³C NMR (CDCl₃) δ: 160.3 (4-MeOPh-4), 144.7 (C-8a), 133.4 (C-2*), 133.2 (4-MeOPh-2,6), 132.0 (Ph-2,6), 131.7 (4-MeOPh-1*), 128.8 (Ph-4), 128.4 (Ph-3,5), 126.9 (C-7), 125.2 (C-7), 12 5), 122.7 (Ph-1), 117.6 (C-8), 114.3 (4-MeOPh-3,5), 113.7 (C-6), 112.3 (C-3), 102.1 (C≡<u>C</u>-4-MeOPh), 94.5 (C≡<u>C</u>-Ph), 82.4 (<u>C</u>≡C-Ph*), 74.5 (<u>C</u>≡C-4-MeOPh*), 55.4 (OCH₃). **m.p.**: 54-58°C. **HRMS (ESI)**: *m*/*z* calculated for C₂₄H₁₆N₂O [M+H]⁺ : 349.13354, found: 349.13389.

2-methyl-3-(phenylethynyl)imidazo[1,2-*a*]pyridine (6b)

Eluent: PE/Et₂O 50/50 \rightarrow 20/80. Orange oil, yield: 67%. ¹H NMR (CDCl₃) δ : 8.24 (dt, 1H, *J* = 6.9Hz, 0.9Hz, H-5), 7.57-7.53 (m, 3H, Ph-2,6, H-8), 7.40-7.33 (m, 3H, Ph-3,4,5), 7.21 (ddd, 1H, *J* = 9.0Hz, 6.9Hz, 1.2Hz, H-7), 6.87 (td, 1H, *J* = 6.9Hz, 1.2Hz, H-6), 2.58 (s, 3H, CH₃). ¹³C NMR (CDCl₃) δ : 148.5 (C-2), 144.9 (C-8a), 131.3 (Ph-2,6), 128.6 (Ph-3,4,5), 125.7 (C-7), 125.1 (C-5), 122.9 (Ph-1), 116.9 (C-8), 112.8 (C-6), 106.4 (C-3), 100.7 (C=C-Ph), 76.9 (C=C-Ph), 14.4 (CH₃). HRMS (ESI): *m/z* calculated for C₁₆H₁₂N₂ [M+H]⁺ : 233.10732, found: 233.10744.

3-methyl-2-(phenylethynyl)imidazo[1,2-*a*]pyridine (6c)

Eluent: CH₂Cl₂/MeOH 99/1. Brown solid, yield: 70%. ¹H NMR (CDCl₃) δ : 7.82 (dt, 1H, J = 6.9Hz, 0.9Hz, H-5), 7.60-7.53 (m, 3H, Ph-2,6, H-8), 7.37-7.33 (m, 3H, Ph-3,4,5), 7.18 (ddd, 1H, J = 9.3Hz, 6.9Hz, 1.2Hz, H-7), 6.85 (td, 1H, J = 6.6Hz, 0.9Hz, H-6), 2.59 (s, 3H, CH₃). ¹³C NMR (CDCl₃) δ : 144.5 (C-8a), 131.7 (Ph-2,6), 128.4 (Ph-3,4,5), 126.5 (C-2), 124.4 (C-7), 123.8 (C-3*), 123.2 (Ph-1*), 122.9 (C-5), 117.7 (C-8), 112.8 (C-6), 92.7 (C=C-Ph), 83.1 (C=C-Ph), 9.2 (CH₃). m.p.: 119-123°C. HRMS (ESI): m/z calculated for C₁₆H₁₂N₂ [M+H]⁺: 233.10732, found: 233.10750.

2-(phenylethynyl)-3-(pyridin-4-yl)imidazo[1,2-*a*]pyridine (6d)

Eluent: CH₂Cl₂/MeOH 99/1. Off-white solid, yield: 89%. ¹H NMR (CDCl₃) δ : 8.81 (bd, 1H, J = 4.5Hz, Pyridyl-2,6), 8.37 (d, 1H, J = 7.2Hz, H-5), 7.76 (d, 1H, J = 5.7Hz, Pyridyl-3,5), 7.67 (d, 1H, J = 9.0Hz, H-8), 7.54-7.48 (m, 2H, Ph-2,6), 7.37-7.30 (m, 4H, Ph-3,4,5, H-7), 6.93 (td, 1H, J = 6.9Hz, 0.9Hz, H-6). ¹³C NMR (CDCl₃) δ : 150.1 (Pyridyl-2,6), 146.2 (C-8a), 136.9 (Pyridyl-4), 131.9 (Ph-2,6), 129.0 (Ph-4), 128.9 (C-2), 128.6 (Ph-3,5), 126.8 (C-7), 124.6 (Ph-1), 123.4 (C-5), 122.4 (Pyridyl-3,5), 118.5 (C-8), 114.2 (C-6), 93.4 (C=C-Ph), 82.7 (C=C-Ph), (C-3 is missing). m.p.: 87-91°C. HRMS (ESI): *m/z* calculated for C₂₀H₁₃N₃ [M+H]⁺ : 296.11822, found: 296.11851.

