Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Syn-selective Crotylation of Aldehydes Using Bismuth-Crotyl Bromide-(1-Butyl-3-methylimidazolium Bromide) Combination: Some Synthetic Applications

Dibakar Goswami, Mrunesh Koli, Sucheta Chatterjee, Subrata Chattopadhyay and Anubha Sharma*

Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400 085, India

Fax: +91 22 25505151; e-mail: anubhas@barc.gov.in

Supplementary materials

Content

S.no.	Title	Page no.
1.	Scheme for synthesis of 3	10
2.	Experimental section for synthesis of 3	11-12
3.	¹ H NMR spectrum of [bmim][Br]	13
4.	¹³ C NMR spectrum of [bmim][Br]	14
5.	Elemental analysis of [bmim][Br]	15
6.	¹ H NMR spectra of (a) [bmim][Br] and (b) [bmim][Br] + Bi (after 10 min) recorded in D_2O	16
7.	¹ H NMR spectrum (recorded in DMSO- <i>d</i> 6) of a mixture of Bi and [bmim][Br] after incubating for 1 h	17
8.	¹³ C NMR spectrum (recorded in DMSO- <i>d</i> 6) of a mixture of Bi and [bmim][Br] after incubating for 1 h	18
9.	¹ H NMR of reaction mixture (after 1.5 h) showing formation of Crotyl-bismuth dibromide species I	19
10	¹ H NMR spectrum of the crude reaction mixture obtained after crotylation of 1 in H_2O	20
11.	¹ H NMR spectrum of the crude reaction mixture obtained after crotylation of 1 in DMF	21
12.	¹ H NMR spectrum of the Et ₂ O extract of the crude reaction mixture obtained after crotylation of 1 in [bmim][Br]	22
13.	¹ H NMR spectrum of the residual [bmim][Br], obtained after extracting the reaction mixture in Et ₂ O	23
14.	¹ H NMR spectrum of 2a	24
15.	¹³ C NMR spectrum of 2a	25
16.	¹ H NMR spectrum of 2b	26

17.	¹³ C NMR spectrum of 2b	27
18.	¹ H NMR spectrum of 2 c	28
19.	¹³ C NMR spectrum of 2 c	29
20.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4a in [bmim][Br]	30
21.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4b in [bmim][Br]	31
22.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4c in [bmim][Br]	32
23.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4d in [bmim][Br]	33
24.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4e in [bmim][Br]	34
25.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4f in [bmim][Br]	35
26.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4g in [bmim][Br]	36
27.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4h in [bmim][Br]	37
28.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4i in [bmim][Br]	38
29.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4j in [bmim][Br]	39
30.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4k in [bmim][Br]	40
31.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4l in [bmim][Br]	41
32.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4m in [bmim][Br]	42
33.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 4n in [bmim][Br]	43
34.	¹ H NMR spectrum of crude reaction mixture, obtained after crotylation of 40 in [bmim][Br]	44

35.	¹ H NMR spectrum of 5a	45
36.	¹³ C NMR spectrum of 5a	46
37.	Elemental analysis of 5a	47
38.	¹ H NMR spectrum of 5b	48
39.	¹³ C NMR spectrum of 5b	49
40.	Elemental analysis of 5b	50
42.	¹ H NMR spectrum of 5 c	51
43.	¹³ C NMR spectrum of 5 c	52
44.	Elemental analysis of 5c	53
45.	¹ H NMR spectrum of 5d	54
46.	¹³ C NMR spectrum of 5d	55
47.	Elemental analysis of 5d	56
48.	¹ H NMR spectrum of 5 e	57
49.	¹³ C NMR spectrum of 5 e	58
50.	Elemental analysis of 5e	59
51.	¹ H NMR spectrum of 5 f	60
52.	¹³ C NMR spectrum of 5 f	61
53.	Elemental analysis of 5f	62

54.	¹ H NMR spectrum of 5 g	63
55.	¹³ C NMR spectrum of 5 g	64
56.	Elemental analysis of 5g	65
57.	¹ H NMR spectrum of 5h	66
58.	¹³ C NMR spectrum of 5h	67
59.	Elemental analysis of 5h	68
60.	¹ H NMR spectrum of 5 i	69
61.	¹³ C NMR spectrum of 5 i	70
62.	Elemental analysis of 5i	71
63.	¹ H NMR spectrum of 5 j	72
64.	¹³ C NMR spectrum of 5 j	73
65.	Elemental analysis of 5j	74
66.	¹ H NMR spectrum of 5 k	75
67.	¹³ C NMR spectrum of 5 k	76
68.	Elemental analysis of 5k	77
69.	¹ H NMR spectrum of 5 l	78
70.	¹³ C NMR spectrum of 5 I	79
71.	Elemental analysis of 51	80

72.	¹ H NMR spectrum of 5m	81
73.	¹³ C NMR spectrum of 5m	82
74.	Elemental analysis of 5m	83
75.	¹ H NMR spectrum of 5n	84
76.	¹³ C NMR spectrum of 5n	85
77.	Elemental analysis of 5n	86
78.	¹ H NMR spectrum of 5 0	87
79.	¹³ C NMR spectrum of 50	88
80.	Elemental analysis of 50	89
81.	¹ H NMR spectrum of 6a	90
81.	¹³ C NMR spectrum of 6a	91
82.	¹ H NMR spectrum of 6b	92
83.	¹³ C NMR spectrum of 6b	93
84.	¹ H NMR spectrum of 6c	94
85.	¹³ C NMR spectrum of 6c	95
86.	¹ H NMR spectrum of 7	96
87.	¹³ C NMR spectrum of 7	97
88.	¹ H NMR spectrum of 8	98

50.	¹³ C NMR spectrum of 8	99
51.	¹ H NMR spectrum of 9	100
52.	¹³ C NMR spectrum of 9	101
53.	¹ H NMR spectrum of (3 <i>R</i> ,4 <i>R</i>)-10	102
54.	¹³ C NMR spectrum of $(3R,4R)$ -10	103
55.	¹ H NMR spectrum of 11	104
56.	¹³ C NMR spectrum of 11	105
57.	¹ H NMR spectrum of (3 <i>S</i> ,4 <i>R</i>)-10	106
58.	¹³ C NMR spectrum of $(3S, 4R)$ -10	107
59.	¹ H NMR spectrum of 12	108
60.	¹³ C NMR spectrum of 12	109
61.	¹ H NMR spectrum of 13	110
62.	¹³ C NMR spectrum of 13	111
63.	¹ H NMR spectrum 14	112
64.	¹³ C NMR spectrum of 14	113
65.	¹ H NMR spectrum of 15	114
66.	¹³ C NMR spectrum of 15	115
67.	¹ H NMR spectrum of 16	116

68.	¹³ C NMR spectrum of 16	117
69.	¹ H NMR spectrum of 17	118
70.	¹³ C NMR spectrum of 17	119
71.	¹ H NMR spectrum of 18	120
72.	¹³ C NMR spectrum of 18	121
73.	¹ H NMR spectrum of 19	122
74.	¹³ C NMR spectrum of 19	123
75.	¹ H NMR spectrum of (3 <i>R</i> ,4 <i>R</i>)-20	124
76.	¹³ C NMR spectrum of (3 <i>R</i> ,4 <i>R</i>)-20	125
77.	¹ H NMR spectrum of 21	126
78.	¹³ C NMR spectrum of 21	127
79.	¹ H NMR spectrum of (3 <i>S</i> ,4 <i>R</i>)-20	128
80.	¹³ C NMR spectrum of (3 <i>S</i> ,4 <i>R</i>)-20	129
81.	¹ H NMR spectrum of 22	130
82.	¹³ C NMR spectrum of 22	131
83.	¹ H NMR spectrum of 23	132
84.	¹³ C NMR spectrum of 23	133
85.	¹ H NMR spectrum of 24	134

86.	¹³ C NMR spectrum of 24	135
87.	¹ H NMR spectrum of 25	136
88.	¹³ C NMR spectrum of 25	137
89.	¹ H NMR spectrum of 26	138
90.	¹³ C NMR spectrum of 26	139
91.	¹ H NMR spectrum of 27	140
92.	¹³ C NMR spectrum of 27	141
93.	¹ H NMR spectrum of 28	142
94.	¹³ C NMR spectrum of 28	143
95.	¹ H NMR spectrum of IV	144
96.	¹³ C NMR spectrum of IV	145

i) Et₃N/ BzCN/ CH₂Cl₂/ 0 °C/ 3h, ii) Aqueous 80% TFA/0 °C/3 h, iii)TBDPSCI/imidazole/ CH₂Cl₂/0 °C/4 h, iv) O₃/ NaOH-MeOH/ CH₂Cl₂/-40 °C- 0 °C/ 7h.

Synthesis of γ-lactone 3

Experimental section.

(3*R*,4*S*,5*R*)-4-Benzoyloxy-5,6-cyclohexylidenedioxy-3-methyl-1-hexene 3a. To a well stirred and cooled (0 °C) solution of 2b (0.55 g, 2.43 mmol) and Et₃N (0.51 mL, 3.65 mmol) in CH₂Cl₂ (15 mL) was added BzCN (380 mg, 2.92 mmol) in CH₂Cl₂ (10 mL) in 20 min. After completion of the reaction (*cf.* TLC, 3 h) the reaction mixture was poured into H₂O (15 mL), the organic layer separated, and the aqueous layer extracted with CHCl₃ (2 × 10 mL). The combined organic extracts were washed with H₂O (2 × 10 mL) and brine (1 × 5 mL), and dried. Solvent removal in vacuo followed by column chromatography (silica gel, 5-15% EtOAc/hexane) of the residue gave 3a (690

mg, 86%). colorless oil; $[\alpha]_D^{24}$ +12.6 (*c* 1.2 in CHCl₃); v_{max}/cm^{-1} 1720, 984; δ_H (500 MHz, CDCl₃) 1.13 (3H, d, J = 6.8 Hz), 1.30-1.38 (2H, m), 1.46-1.57 (8H, m), 2.57-2.61 (1H, m) 3.93-4.04 (2H, m), 4.29-4.33 (1H, m), 5.02-5.09 (2H, m), 5.31-5.33 (1H, m), 5.79-5.84 (1H, m), 7.41-7.56 (3H, m), 8.02-8.04 (2H, m); δ_C (125 MHz, CDCl₃) 15.1, 23.7, 25.0, 35.0, 36.0, 39.6, 65.3, 74.8, 75.8, 109.8, 115.5, 128.3, 129.6, 132.9, 139.4, 165.8. Anal. Calc. for C₂₀H₂₆O₄: C, 72.70; H, 7.93%. Found: C, 72.52; H, 8.20%.

(*2R*,*3S*,*4R*)-3-Benzoyloxy-4-methyl-5-hexene-1,2-diol 3b. To a stirred and cooled (0 °C) solution of 3a (550 mg, 1.67 mmol) in CH₂Cl₂ (10 mL) was added aqueous TFA (8 mL) in portions. After stirring the mixture for 3 h, when the reaction was complete (*cf.* TLC), NaHCO₃ was added to decompose excess TFA, followed by H₂O (5 mL), and the mixture extracted with CHCl₃ (2 × 10 mL). The combined organic extracts were washed with H₂O (2 × 10 mL) and brine (1 × 5 mL), and dried. Removal of solvent in vacuo followed by column chromatography (silica gel, 5% CHCl₃/MeOH) of the residue afforded 3b (320 mg, 76%). colorless thick oil; $[\alpha]_D^{24}$ +4.8 (*c* 1.0 in CHCl₃); v_{max}/cm⁻¹ 3412, 1724, 926; δ_H (500 MHz, CDCl₃) 1.20 (3H, d, *J* = 6.5 Hz), 2.67 (2H, br s), 2.84-2.86 (1H, m), 3.59-3.63 (1H, m), 3.70-3.73 (1H, m), 3.83-3.86 (1H, m), 5.04 (1H, dd, *J* = 10.5, 1.5 Hz), 5.10-5.15 (2H, m), 5.79-5.87 (1H, m), 7.44-7.47 (2H, m), 7.57-7.61 (1H, m), 8.01-8.04 (2H, m); δ_C (125 MHz, CDCl₃) 13.8, 38.1, 62.4, 70.7, 76.4, 115.4, 128.5, 129.7, 129.8, 133.5, 140.0, 167.3. Anal. Calc. for C₁₄H₁₈O₄: C, 67.18; H, 7.25%. Found: C, 67.40; H, 7.15%.

(2*R*,3*S*,4*R*)-3-Benzoyloxy-1-*tert*-butyldiphenylsilyloxy-4-methyl-hex-5-en-2-ol 3c. A cooled (0 °C) solution of 3b (250 mg, 1.0 mmol), TBDPSCl (0.26 mL, 1.0 mmol), imidazole (82 mg, 1.2 mmol) and DMAP (10 mol%) in CH₂Cl₂ (10 mL) was stirred for 4 h. On completion (*cf.* TLC), H₂O (10 mL) was added to the mixture, which was extracted with CHCl₃ (2 × 10 mL). The combined organic extracts were washed with H₂O (2 × 10 mL) and brine (1 × 5 mL), dried and concentrated in vacuo. The residue was subjected to column chromatography (silica gel, 5-15% EtOAc/hexane) to afford 3c (340 mg, 70%). colorless oil; $[\alpha]_D^{24}$ +14.8 (*c* 0.8 in CHCl₃); v_{max}/cm^{-1} 3500, 1723; δ_H (500 MHz, CDCl₃) 0.89 (3H, d, *J* = 7.0 Hz), 1.01 (9H, s), 2.36-2.42 (2H, m merged with br s), 3.42-3.45 (1H, m), 3.97-3.99 (1H, m), 4.38-4.40 (2H, m), 4.84-4.96 (2H, m), 5.41-5.49 (1H, m), 7.28-7.35 (4H, m), 7.55-7.65 (9H, m), 7.73-7.75 (2H, m); δ_C (125 MHz,

CDCl₃) 17.1, 24.7, 37.5, 63.4, 71.0, 74.4, 113.4, 125.6, 125.8, 125.9, 126.3, 127.8, 127.9, 128.1, 130.9, 132.9, 133.6, 133.9, 134.0, 138.3, 164.8. Anal. Calc. for C₃₀H₃₆O₄Si: C, 73.73; H, 7.43%. Found: C, 73.58; H, 7.59%.

(*3R*,4*S*,5*R*)-(4-Benzoyloxy-3-methyl-5-*tert*-butyldiphenylsilyloxymethyl) dihydro-2(*3H*)-furanone 3. Ozone was bubbled for 20 min through a solution of 3c (250 mg, 0.51 mmol) and methanolic NaOH (1.0 mL, 2.5 M) in CH₂Cl₂ (20 mL) at -78 °C. After stirring the mixture for 3 h at the same temperature, it was diluted with CHCl₃ (15 mL) and H₂O (10 mL), brought to room temperature, the organic layer separated and the aqueous layer extracted with CHCl₃ (2 × 10 mL). The combined organic extracts were washed with H₂O (2 × 10 mL) and brine (1 × 5 mL), and dried. Removal of solvent in vacuo followed by column chromatography (silica gel, 5-15% CHCl₃/MeOH) of the residue afforded 3 (170 mg, 68%); colorless oil; $[\alpha]_D^{24} + 21.4$ (*c* 1.1 in CHCl₃) (lit.^{9a} $[\alpha]_D^{24} + 21.1$ (*c* 0.721 in CHCl₃)); v_{max}/cm⁻¹ 1739, 1692; δ_H (500 MHz, CDCl₃) 0.93 (3H, d, *J* = 6.5 Hz), 1.19 (9H, s), 2.92-2.97 (1H, m), 3.84-3.87 (2H, m), 4.64-4.78 (1H, m), 5.84 (1H, dd, *J* = 12.5, 9.5 Hz), 7.28-7.34 (4H, m), 7.47-7.90 (9H, m), 8.02-8.04 (2H, m); δ_C (125 MHz, CDCl₃) 10.2, 19.6, 27.2, 49.7, 70.0, 75.0, 82.2, 125.6, 125.8, 125.9, 126.3, 127.7, 127.8, 130.9, 132.9, 133.9, 134.0, 165.4, 176.7. Anal. Calc. for C₂₉H₃₂O₅Si: C, 71.28; H, 6.60%. Found: C, 71.24; 6.84%.

Document: rakes20-1-2017 (VarioMICRO) from: 2/6/2017 11:35:58 AM

analytic functional testing varioMICRO CHNS serial number: 15103026

Graphic report

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
20	3.0860	DG IL	2mgChem80s	14 555	35 111	19 103	38	12.71	43.61	7.202	0.000	3.4306	6.0548

Fig. 1. ¹H NMR spectra of (a) [bmim][Br] and (b) [bmim][Br] + Bi (after 10 min) recorded in D_2O .

Fig. 2. Formation of the Bi-carbene as revealed from the ¹H NMR spectrum (recorded in DMSO-*d*₆) of a mixture of Bi and [bmim][Br] after incubating for 1 h.

Fig. 3. Formation of the Bi-carbene as revealed from the ¹³C NMR spectrum (recorded in DMSO- d_6) of a mixture of Bi and [bmim][Br] after incubating for 1 h.

Fig. 4. Formation of the crotyl-Bi species (I) as revealed from the ¹H NMR spectrum (recorded in CD_2Cl_2 at -70 °C) of a mixture of Bi and crotyl bromide in [bmim][Br] after stirring for 1.5 h.

Fig. 5. ¹H NMR spectrum (recorded in CDCl₃) of the crude reaction mixture obtained from crotylation of 1 in H_2O .

Fig. 6. ¹H NMR spectrum (recorded in DMF- d_7) of the crude reaction mixture obtained from crotylation of 1 in DMF.

Fig. 7. ¹H NMR spectrum (recorded in CDCl₃) of the Et_2O extract of the crude reaction mixture obtained from crotylation of 1 in [bmim][Br].

Fig. 8. Representative ¹H NMR spectrum (recorded in CDCl₃) of the residual [bmim][Br], left after extracting the reaction medium with Et_2O , showing that no product was left unextracted from the RTIL.

analytic functional testing varioMICRO CHNS serial number: 15103026

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
15	3.2050	Ph-CHO	2mgChem80s	61	65 357	23 117	29	0.00	81.77	8.947	0.000	0.0000	9.1396

analytic functional testing varioMICRO CHNS serial number: 15103026

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
16	3.2230	4-NO2	2mgChem80s	7 613	51 321	16 618	35	6.63	63.95	6.527	0.000	9.6461	9.7980

analytic functional testing varioMICRO CHNS serial number: 15103026

Graphic report

	W	/eight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
-	0	2.6810	2-NO2-	2mgChem80s	6 088	42 743	13 390	27	6.37	64.09	6.403	0.000	10.0660	10.0101

OH NO2

5c

analytic functional testing varioMICRO CHNS serial number: 15103026

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
21	0.5780	2-0H	2mgChem80s	64	10 747	3 336	32	0.00	74.41	7.736	0.000	0.0000	9.6186

analytic functional testing varioMICRO CHNS serial number: 15103026

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
12	1.7690	4-OMe	2mgChem80s	68	32 898	11 987	30	0.00	74.80	8.737	0.000	0.0000	8.5612

Т

analytic functional testing varioMICRO CHNS serial number: 15103026

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
17	2.4270	MK-78 E	2mgChem80s	56	42 610	15 094	28	0.00	70.58	7.919	0.000	0.0000	8.9131

analytic functional testing varioMICRO CHNS serial number: 15103026

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
24	3.1570	3-Br	2mgChem80s	63	43 046	13 335	35	0.00	54.81	5.416	0.000	0.0000	10.1201

analytic functional testing varioMICRO CHNS serial number: 15103026

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
23	3.5050	4-Br	2mgChem80s	60	47 590	14 974	29	0.00	54.56	5.442	0.000	0.0000	10.0244

analytic functional testing varioMICRO CHNS serial number: 15103026

Γ		Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
	22	3.5650	4-CI	2mgChem80s	67	59 826	18 820	31	0.00	67.33	6.631	0.000	0.0000	10.1540

analytic functional testing varioMICRO CHNS serial number: 15103026

Graphic report

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
13	1.9820	Ph-CH2-Ch2	2mgChem80s	63	40 329	14 236	28	0.00	81.82	9.177	0.000	0.0000	8.9158

OH

analytic functional testing varioMICRO CHNS serial number: 15103026

Graphic report

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
11	3.6480	Cinnamal	2mgChem80s	61	75 455	25 679	25	0.00	82.88	8.683	0.000	0.0000	9.5446

OH

analytic functional testing varioMICRO CHNS serial number: 15103026

Graphic report

÷	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
19	1.3420	2-Furfural	2mgChem80s	51	23 696	8 254	33	0.00	70.91	8.045	0.000	0.0000	8.8141

analytic functional testing varioMICRO CHNS serial number: 15103026

Graphic report

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
18	2.2060	Hexanal	2mgChem80s	68	42 204	22 881	29	0.00	76.92	12.874	0.000	0.0000	5.9748

analytic functional testing varioMICRO CHNS serial number: 15103026

Graphic report

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
14	2.5480	Nonanal	2mgChem80s	62	50 158	26 830	31	0.00	79.07	12.963	0.000	0.0000	6.0997

5n

analytic functional testing varioMICRO CHNS serial number: 15103026

Graphic report

	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	C/N ratio	C/H ratio
20	0.7780	Dodecanal	2mgChem80s	62	15 582	8 086	30	0.00	80.25	13.601	0.000	0.0000	5.9001

