Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Lanthanide amide-catalyzed one-pot functionalization of isatins: synthesis of spiro[cyclopropan-1,3'-oxindoles] and 2-oxoindolin-3-yl phosphates

Cheng Peng, Jiaojiao Zhai, Mingqiang Xue,* Fan Xu*

College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

xufan@suda.edu.cn xuemq@sina.com

SUPPLEMENTARY INFORMATION

TABLE OF CONTENTS

Characterization Data	S2
Copies of ¹ H NMR and ¹³ C NMR Spectra	S15
X-ray structures of 4p and 4r	

Characterization Data

Methyl 1'-allyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carboxylate (4a). colorless oil (117 mg, 91% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, J = 6.8 Hz, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 6.85 (d, J = 6.8 Hz, 1H), 5.89–5.80 (m, 1H), 5.26–5.20 (m, 2H), 4.39 (d, J = 5.2 Hz, 2H), 3.74 (s, 3H), 2.67 (t, J = 8.4 Hz, 1H), 2.40 (dd, J = 8.0, 4.8 Hz, 1H), 1.83 (dd, J = 8.4, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 167.5, 142.8, 131.5, 128.8, 127.7, 122.3, 118.6, 117.5, 109.1, 52.4, 42.7, 33.2, 32.2, 21.1; IR ν 3003, 2951, 1741, 1706, 1644, 1614, 1489, 1467, 1434, 1381, 1010, 749 cm⁻¹; HRMS (ESI) calcd. for C₁₅H₁₆NO₃ [M + H]⁺ 258.1125, found 258.1124.

Butyl 1'-allyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carboxylate (4b). colorless oil (132 mg, 88% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 1H), 6.85 (d, *J* = 7.6 Hz, 1H), 5.89–5.79 (m, 1H), 5.25–5.20 (m, 2H), 4.45–4.33 (m, 2H), 4.21–4.05 (m, 2H), 2.66 (t, *J* = 8.4 Hz, 1H), 2.39 (dd, *J* = 8.0, 4.8 Hz, 1H), 1.82 (dd, *J* = 8.4, 4.8 Hz, 1H), 1.64–1.57 (m, 2H), 1.40–1.31 (m, 2H). 0.91 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 167.2, 142.9, 131.6, 129.0, 127.7, 122.2, 118.6, 117.5, 109.1, 65.4, 42.7, 33.5, 32.2, 30.6, 21.1, 19.2, 13.8; IR *v* 2956, 2931, 2871, 1727, 1708, 1644, 1615, 1489, 1467, 1434, 1379, 1018, 760 cm⁻¹; HRMS (ESI) calcd. for C₁₈H₂₂NO₃ [M + H]⁺ 300.1594, found 300.1601.

Methyl 1'-allyl-2-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carboxylate (4c). white solid (125 mg, 92% yield), m.p. 90–91 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (t, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.2 Hz, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 5.89–5.79 (m, 1H), 5.25–5.19 (m, 2H), 4.44–4.30 (m, 2H), 3.73 (s, 3H), 2.48 (d, *J* = 5.2 Hz, 1H), 1.61 (s, 3H), 1.60 (d, *J* = 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 171.3, 143.7, 131.5, 127.4, 126.1, 121.7, 121.5, 117.2, 109.0, 52.3, 42.5, 38.4, 36.2, 26.9, 16.9; IR *v* 3063, 2951, 1737, 1706, 1648, 1610, 1465, 1436, 1381, 1020, 744 cm⁻¹; HRMS (ESI) calcd. for C₁₆H₁₈NO₃ [M + H]⁺ 272.1281, found 272.1268.

Methyl 1'-allyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-2-carboxylate (4d). yellow solid (100 mg, 60% yield), m.p. 103–104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.28 (m, 3H), 7.19–7.12 (m, 3H), 6.86 (d, *J* = 7.6 Hz, 1H), 6.70 (t, *J* = 7.6 Hz, 1H), 5.98 (d, *J* = 7.6 Hz, 1H), 5.93–5.84 (m, 1H), 5.26–5.22 (m, 2H), 4.49–4.37 (m, 2H), 3.95 (d, *J* = 8.0 Hz, 1H), 3.79 (s, 3H), 3.09 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 167.6, 143.1, 133.2, 131.5, 129.6, 128.6, 127.8, 127.4, 125.5, 121.7, 121.2, 117.4, 108.9, 52.5, 42.7, 38.0, 37.9, 37.0; IR *v* 2981, 2944, 1737, 1706, 1643, 1614, 1489, 1454, 1432, 1381, 1202, 741 cm⁻¹; HRMS (ESI) calcd. for C₂₁H₂₀NO₃ [M + H]⁺ 334.1438, found 334.1434.

Ethyl 1'-allyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-2-carboxylate (4e). yellow solid (123 mg, 71% yield), m.p. 124–125 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.29 (m, 3H), 7.20–7.12 (m, 3H), 6.85 (d, *J* = 7.6 Hz, 1H), 6.70 (t, *J* = 7.6 Hz, 1H), 5.99 (d, *J* = 8.0 Hz, 1H), 5.93–5.84 (m, 1H), 5.25–5.21 (m, 2H), 4.51–4.35 (m, 2H), 4.30–4.21 (m, 2H), 3.94 (d, *J* = 8.0 Hz, 1H), 3.08 (d, *J* = 8.4 Hz, 1H), 1.28 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 167.2, 143.2, 133.3, 131.6, 129.7, 128.6, 127.9, 127.4, 125.7, 121.7, 121.2, 117.3, 108.9, 61.5, 42.7, 38.0, 37.9, 37.3, 14.3; IR *v* 3008, 2975, 2922, 1725, 1702, 1644, 1614, 1491, 1453, 1436, 1202, 1011, 748 cm⁻¹; HRMS (ESI) calcd. for C₂₂H₂₂NO₃ [M + H]⁺ 348.1594, found 348.1603.

Diethyl 1'-allyl-2'-oxo-3-phenylspiro[cyclopropane-1,3'-indoline]-2,2-dicarboxylate (4f). colorless oil (98.5 mg, 47% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.23 (m, 4H), 7.11–7.09 (m, 2H), 6.92–6.84 (m, 3H), 5.93–5.84 (m, 1H), 5.30–5.23 (m, 2H), 4.62–4.56 (m, 1H), 4.32–4.03 (m, 6H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 166.2, 164.7, 144.1, 131.3, 130.8, 130.0, 128.8, 128.2, 128.1, 127.8, 121.7, 121.3, 117.5, 108.8, 62.1, 62.0, 49.5, 42.8, 42.0, 39.5, 14.1, 14.0; IR *v* 3060, 2982, 2921, 1715, 1611, 1489, 1468, 1446, 1026, 751 cm⁻¹; HRMS (ESI) calcd. for C₂₅H₂₆NO₅ [M + H]⁺ 420.1811, found 420.1816.

Diethyl 1'-allyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2,3-dicarboxylate (4g, *trans).* white solid (94.4 mg, 55% yield), m.p. 75–76 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 7.6 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 5.89–5.80 (m, 1H), 5.25–5.21 (m, 2H), 4.46–4.32 (m, 2H), 4.26–4.07 (m, 4H), 3.30 (d, *J* = 7.6 Hz, 1H), 3.28 (d, *J* = 8.0 Hz, 1H), 1.25 (t, *J* = 7.2 Hz, 3H), 1.23 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 167.3, 165.9, 143.6, 131.3, 128.4, 124.5, 122.8, 122.5, 117.7, 109.2, 61.8, 61.7, 42.8, 37.5, 35.5, 35.5, 14.2; IR *v* 3011, 2989, 2936, 1721, 1706, 1613, 1490, 1438, 1380, 1198, 757 cm⁻¹; HRMS (ESI) calcd. for C₁₉H₂₂NO₅ [M + H]⁺ 344.1492, found 344.1489.

Diethyl 1'-allyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2,3-dicarboxylate (4g', *cis***).** yellow solid (30.9 mg, 18% yield), m.p. 88–89 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.26 (t, *J* = 7.6 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.87 (d, *J* = 8.0 Hz, 1H), 6.80 (d, *J* = 7.2 Hz, 1H), 5.90–5.81 (m, 1H), 5.27–5.20 (m, 2H), 4.41–4.39 (m, 2H), 4.28–4.20 (m, 4H), 2.86 (s, 2H), 1.28 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 164.8, 143.1, 131.6, 128.4, 127.9, 122.2, 118.5, 117.5, 109.1, 61.7, 42.8, 35.3, 34.3, 14.1; IR *v* 2983, 2937, 1716, 1613, 1490, 1468, 1204, 752 cm⁻¹; HRMS (ESI) calcd. for C₁₉H₂₂NO₅ [M + H]⁺ 344.1492, found 344.1490.

2-Acetyl-1'-allyl-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (4h). yellow oil (98.4 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.28 (m, 3H), 7.18–7.13 (m, 3H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.71 (t, *J* = 7.6 Hz, 1H), 6.01 (d, *J* = 7.2 Hz, 1H), 5.93–5.83 (m, 1H), 5.26–5.21 (m, 2H), 4.50–4.36 (m, 2H), 3.98 (d, *J* = 8.4 Hz, 1H), 3.12 (d, *J* = 8.4 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 201.2, 172.8, 143.1, 133.4, 131.5, 129.7, 128.6, 127.9, 127.5, 125.7, 121.9, 121.2, 117.6, 109.0, 44.6, 42.7, 39.4, 38.7, 30.3; IR *v* 2959, 2920, 1712, 1643, 1610, 1433, 1378, 1191, 1013, 760, 699 cm⁻¹; HRMS (ESI) calcd. for C₂₁H₂₀NO₂ [M + H]⁺ 318.1489, found 318.1498.

1'-Allyl-2-benzoyl-3-phenylspiro[cyclopropane-1,3'-indolin]-2'-one (4i). yellow solid (173 mg, 91% yield), m.p. 179–180 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.2 Hz, 2H), 7.50 (t, J = 7.2 Hz, 1H), 7.37–7.31 (m, 5H), 7.26–7.19 (m, 3H), 6.88 (d, J = 8.0 Hz, 1H), 6.79 (t, J = 7.6 Hz, 1H), 6.17 (d, J = 7.6 Hz, 1H), 5.70–5.61 (m, 1H), 5.08–5.01 (m, 2H), 4.44–4.19 (m, 2H), 4.16 (d, J = 8.4 Hz, 1H), 3.64 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 172.3, 143.4, 136.6, 133.8, 133.4, 131.5, 129.9, 128.8, 128.7, 128.4, 127.9, 127.7, 125.5, 122.0, 121.3, 117.3, 109.1, 42.6, 41.8, 39.5, 37.6; IR ν 3056, 2959, 2922, 1701, 1680, 1649, 1597, 1455, 1434, 1214, 1015, 766, 753, 698 cm⁻¹; HRMS (ESI) calcd. for C₂₆H₂₂NO₂ [M + H]⁺ 380.1645, found 380.1655.

1'-Allyl-2-benzoyl-3-(p-tolyl)spiro[cyclopropane-1,3'-indolin]-2'-one (4j). yellow solid (185 mg, 94% yield), m.p. 136–137 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.2 Hz, 1H), 7.35–7.31 (m, 2H), 7.24–7.18 (m, 2H), 7.11–7.09 (m, 2H), 7.02 (d, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 1H), 6.80 (t, *J* = 7.6 Hz, 1H), 6.22 (d, *J* = 7.2 Hz, 1H), 5.69–5.60 (m, 1H), 5.08–5.00 (m, 2H), 4.43–4.15 (m, 2H), 4.12 (d, *J* = 8.4 Hz, 1H), 3.63 (d, *J* = 8.4 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 172.2, 143.4, 138.3, 136.6, 133.6, 133.4, 131.5, 130.5, 128.7, 128.6, 128.4, 128.3, 127.6, 126.9, 125.6, 121.9, 121.3, 117.3, 109.1, 42.5, 41.8, 39.5, 37.6, 21.5; IR *v* 3054, 3002, 2922, 1700, 1680, 1612, 1489, 1448, 1432, 1377, 1213, 1019, 759, 748 cm⁻¹; HRMS (ESI) calcd. for C₂₇H₂₄NO₂ [M + H]⁺ 394.1807, found 394.1818.

1'-Allyl-2-benzoyl-3-(4-methoxyphenyl)spiro[cyclopropane-1,3'-indolin]-2'-one (4k). yellow solid (195 mg, 95% yield), m.p. 180–181 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.8 Hz, 2H), 7.32–7.18 (m, 6H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.83–6.76 (m, 3H), 6.16 (d, *J* = 7.2 Hz, 1H), 5.73–5.63 (m, 1H), 5.10–5.04 (m, 2H), 4.44–4.16 (m, 2H), 4.13 (d, *J* = 8.0 Hz, 1H), 3.80 (s, 3H), 3.60 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 190.3, 172.3, 163.8, 143.4, 134.0, 131.6, 130.7, 129.9, 129.8, 128.6, 127.9, 127.6, 125.6, 121.9, 121.2, 117.3, 114.0, 109.1, 55.6, 42.6, 41.8, 39.4, 37.7; IR *v* 3060, 2920, 2850, 1711, 1673, 1603, 1509, 1488, 1452, 1254, 1024, 1014, 826, 747, 734, 698 cm⁻¹; HRMS (ESI) calcd. for C₂₇H₂₄NO₃ [M + H]⁺410.1756, found 410.1766.

1'-Allyl-2-benzoyl-3-(4-(trifluoromethyl)phenyl)spiro[cyclopropane-1,3'-indolin]-2'-one (4l). white solid (159 mg, 71% yield), m.p. 146–147 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6 Hz, 2H), 7.59 (d, *J* = 7.6 Hz, 2H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.39–7.32 (m, 4H), 7.25 (t, *J* = 7.2 Hz, 1H), 6.91 (d, *J* = 7.6 Hz, 1H), 6.83 (t, *J* = 7.6 Hz, 1H), 6.17 (d, *J* = 7.6 Hz, 1H), 5.69–5.60 (m, 1H), 5.08–5.00 (m, 2H), 4.43–4.18 (m, 2H), 4.15 (d, *J* = 7.6 Hz, 1H), 3.67 (d, *J* = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.3, 171.8, 143.4, 138.0, 136.3, 133.6, 131.2, 130.3, 130.1 (d, J = 32 Hz), 128.8, 128.3, 128.1, 125.6 (d, J = 4 Hz), 125.4, 123.5 (d, J = 263 Hz), 122.7, 121.1, 117.4, 109.4, 42.6, 41.6, 39.3, 36.8; IR v 3059, 2990, 1707, 1686, 1599, 1488, 1449, 1440, 1383, 1355, 1225, 1016, 847, 749, 740, 691 cm⁻¹; HRMS (ESI) calcd. for C₂₇H₂₁F₃NO₂ [M + H]⁺ 448.1524, found 448.1532.

1'-Allyl-2-phenyl-3-(thiophene-2-carbonyl)spiro[cyclopropane-1,3'-indolin]-2'-one (4m). yellow solid (181 mg, 94% yield), m.p. 185–186 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 5.2, 1.2 Hz, 1H), 7.44 (dd, J = 4.0, 1.2 Hz, 1H), 7.32–7.31 (m, 3H), 7.26–7.24 (m, 2H), 7.20 (t, J = 8.0 Hz, 1H), 7.00 (dd, J = 5.2, 4.0 Hz, 1H), 6.88 (d, J = 8.0 Hz, 1H), 6.78 (t, J = 7.6 Hz, 1H), 6.14 (d, J = 7.2 Hz, 1H), 5.76–5.67 (m, 1H), 5.14–5.07 (m, 2H), 4.46–4.21 (m, 2H), 4.14 (d, J = 8.4 Hz, 1H), 3.61 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 184.4, 172.2, 143.8, 143.3, 134.0, 133.6, 132.2, 131.5, 129.8, 128.7, 128.1, 127.9, 127.7, 125.5, 122.0, 121.2, 117.4, 109.1, 42.7, 42.3, 37.4, 37.7; IR *v* 2965, 1697, 1666, 1609, 1432, 1377, 1213, 1019, 759, 751, 706 cm⁻¹; HRMS (ESI) calcd. for C₂₄H₂₀NO₂S [M + H]⁺ 386.1215, found 386.1229.

Dimethyl (1'-allyl-2'-oxospiro[cyclopropane-1,3'-indolin]-2-yl)phosphonate (4n). yellow oil (101 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.25 (t, *J* = 7.6 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.88 (d, *J* = 7.6 Hz, 1H), 6.80 (d, *J* = 7.6 Hz, 1H), 5.92–5.82 (m, 1H), 5.27–5.21 (m, 2H), 4.49–4.36 (m, 2H), 3.83 (d, *J* = 10.8 Hz, 3H), 3.77 (d, *J* = 11.2 Hz, 3H), 2.30–2.24 (m, 1H), 1.99–1.91 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2 (d, *J* = 6.5 Hz), 142.9, 131.5, 128.7, 127.9, 122.3, 118.5, 117.5, 109.1, 53.4 (d, *J* = 6.3 Hz), 53.1 (d, *J* = 6.4 Hz), 42.8, 31.7 (d, *J* = 4.4 Hz), 25.6 (d, *J* = 194 Hz), 22.5 (d, *J* = 5.5 Hz); IR *v* 3057, 2955, 2852, 1716, 1490, 1380, 1245, 1026, 829, 752 cm⁻¹; HRMS (ESI) calcd. for C₁₅H₁₉NO₄P [M + H]⁺ 308.1052, found 308.1065.

Methyl 1'-allyl-4'-chloro-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carboxylate (40). yellow solid (105 mg, 72% yield), m.p. 101–103 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, J = 8.0 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 5.87–5.77 (m, 1H), 5.23–5.19 (m, 2H), 4.38–4.36 (m, 2H), 3.74 (s, 3H), 3.48 (t, J = 8.4 Hz, 1H), 2.53 (dd, J = 8.8, 4.8 Hz, 1H), 2.21 (dd, J = 8.0, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 168.1, 144.8, 131.2, 128.6, 127.8,

123.7, 123.4, 117.7, 107.8, 52.5, 42.9, 33.0, 29.3, 17.9; IR *v* 2999, 2953, 1736, 1711, 1607, 1451, 1389, 1013, 780 cm⁻¹; HRMS (ESI) calcd. for C₁₅H₁₅ClNO₃ [M + H]⁺ 292.0740, found 292.0749.

Methyl 1'-allyl-4'-bromo-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carboxylate (4p). yellow solid (134 mg, 80% yield), m.p. 111–113 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.13–7.07 (m, 2H), 6.84 (dd, J = 7.2, 2.0 Hz, 1H), 5.86–5.77 (m, 1H), 5.23–5.18 (m, 2H), 4.38–4.36 (m, 2H), 3.74 (s, 3H), 3.56 (t, J = 8.4 Hz, 1H), 2.60 (dd, J = 9.2, 4.8 Hz, 1H), 2.16 (dd, J = 8.4, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 168.2, 145.1, 131.2, 128.9, 126.6, 125.0, 117.8, 115.6, 108.4, 52.5, 42.8, 33.6, 29.2, 17.9; IR v 2998, 2951, 1734, 1710, 1604, 1577, 1447, 1387, 1053, 1008, 777 cm⁻¹; HRMS (ESI) calcd. for C₁₅H₁₅BrNO₃ [M + H]⁺ 336.0235, found 336.0233.

Methyl 1'-allyl-5'-fluoro-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carboxylate (4q). yellow oil (124 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.97–6.92 (m, 1H), 6.80 (dd, J = 8.4, 4.0 Hz, 1H), 6.62 (dd, J = 8.0, 2.4 Hz, 1H), 5.88–5.78 (m, 1H), 5.24–5.21 (m, 2H), 4.38–4.37 (m, 2H), 3.75 (s, 3H), 2.67 (t, J = 8.4 Hz, 1H), 2.42 (dd, J = 8.0, 5.2 Hz, 1H), 1.83 (dd, J = 8.4, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 167.2, 159.2 (d, J = 239 Hz), 138.8 (d, J = 1.8 Hz), 131.4, 130.5 (d, J = 8.7 Hz), 117.7, 113.9 (d, J = 23.3 Hz), 109.7 (d, J = 8.1 Hz), 106.9 (d, J = 25.5 Hz), 52.5, 42.9, 33.5, 32.5 (d, J = 2.2 Hz), 21.4; IR v 2952, 1701, 1489, 1435, 1173, 1013, 804 cm⁻¹; HRMS (ESI) calcd. for C₁₅H₁₅FNO₃ [M + H]⁺ 276.1036, found 276.1040.

Methyl 1'-allyl-5'-chloro-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carboxylate (4r). white solid (134 mg, 92% yield), m.p. 92–93 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 8.4 Hz, 1H), 6.84–6.79 (m, 2H), 5.87–5.77 (m, 1H), 5.24–5.19 (m, 2H), 4.38–4.36 (m, 2H), 3.74 (s, 3H), 2.68 (t, *J* = 8.4 Hz, 1H), 2.42 (dd, *J* = 8.0, 5.2 Hz, 1H), 1.85 (dd, *J* = 8.4, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 167.0, 141.3, 131.1, 130.5, 127.6, 127.5, 119.2, 117.7, 109.9, 52.4, 42.7, 33.4, 32.0, 21.3; IR *v* 3085, 2952, 1741, 1710, 1614, 1486, 1436, 1390, 1046, 1011, 807 cm⁻¹; HRMS (ESI) calcd. for C₁₅H₁₅ClNO₃ [M + H]⁺ 292.0735, found 292.0746.

Methyl 1'-allyl-5'-methyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carboxylate (4s). yellow

oil (117 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.04 (d, J = 8.0 Hz, 1H), 6.77 (d, J = 7.6 Hz, 1H), 6.67 (s, 1H), 5.88–5.78 (m, 1H), 5.24–5.18 (m, 2H), 4.37–4.35 (m, 2H), 3.73 (s, 3H), 2.64 (t, J = 8.4 Hz, 1H), 2.38 (dd, J = 8.0, 5.2 Hz, 1H), 2.32 (s, 3H), 1.80 (dd, J = 8.8, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 167.6, 140.5, 131.9, 131.7, 128.9, 128.0, 119.4, 117.5, 108.9, 52.4, 42.8, 33.2, 32.3, 21.2, 21.1; IR ν 2951, 2862, 1742, 1705, 1644, 1599, 1494, 1435, 1390, 1011, 870, 806 cm⁻¹; HRMS (ESI) calcd. for C₁₆H₁₈NO₃ [M + H]⁺ 272.1287, found 272.1297.

Methyl 1'-allyl-7'-fluoro-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carboxylate (4t). yellow oil (118 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.02–6.94 (m, 2H), 6.64 (d, *J* = 6.8 Hz, 1H), 5.96–5.87 (m, 1H), 5.22–5.15 (m, 2H), 4.52–4.50 (m, 2H), 3.74 (s, 3H), 2.68 (t, *J* = 8.4 Hz, 1H), 2.42 (dd, *J* = 8.0, 5.2 Hz, 1H), 1.85 (dd, *J* = 8.4, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 167.1, 147.4 (d, *J* = 243 Hz), 132.3, 131.8 (d, *J* = 4.1 Hz), 129.4 (d, *J* = 9.4 Hz), 122.9 (d, *J* = 6.6 Hz), 117.0, 115.8 (d, *J* = 19.6 Hz), 114.5 (d, *J* = 3.1 Hz), 52.5, 44.2 (d, *J* = 4.7 Hz), 33.9, 32.4 (d, *J* = 2.9 Hz), 21.7; IR *v* 3086, 2986, 2953, 1716, 1634, 1597, 1435, 1377, 1206, 1177, 1022, 778 cm⁻¹; HRMS (ESI) calcd. for C₁₅H₁₅FNO₃ [M + H]⁺ 276.1036, found 276.1039.

Methyl 1'-benzyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carboxylate (4u). yellow solid (135 mg, 88% yield), m.p. 101–103 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.25 (m, 5H), 7.16 (t, J = 7.6 Hz, 1H), 6.99 (t, J = 7.6 Hz, 1H), 6.84 (d, J = 7.2 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 4.95 (s, 2H), 3.76 (s, 3H), 2.69 (t, J = 8.4 Hz, 1H), 2.44 (dd, J = 8.0, 5.2 Hz, 1H), 1.85 (dd, J = 8.4, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 167.6, 142.8, 136.0, 128.9, 128.8, 127.8, 127.7, 127.5, 122.4, 118.7, 109.3, 52.6, 44.2, 33.5, 32.4, 21.1; IR ν 3060, 2950, 1742, 1707, 1489, 1453, 1435, 1384, 1011, 727, 696 cm⁻¹; HRMS (ESI) calcd. for C₁₉H₁₈NO₃ [M + H]⁺ 308.1281, found 308.1282.

Methyl 1'-ethyl-2'-oxospiro[cyclopropane-1,3'-indoline]-2-carboxylate (4v). yellow solid (99.3 mg, 81% yield), m.p. 56–57 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 7.6 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.84 (d, *J* = 7.2 Hz, 1H), 3.84–3.78 (m, 2H), 3.75 (s, 3H), 2.65 (t, *J* = 8.4 Hz, 1H), 2.38 (dd, *J* = 8.0, 4.8 Hz, 1H), 1.80 (dd, *J* = 8.4, 4.8 Hz, 1H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 167.7, 142.8, 129.1, 127.8, 122.1, 118.7, 108.4,

52.4, 35.2, 33.0, 32.4, 21.1, 12.9; IR *v* 3059, 2984, 2943, 1724, 1491, 1457, 1437, 1374, 1012, 749 cm⁻¹; HRMS (ESI) calcd. for C₁₄H₁₆NO₃ [M + H]⁺ 246.1130, found 246.1137.

1,3-Diallyl-2-oxoindolin-3-yl diethyl phosphate (7a). yellow oil (168 mg, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.2 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.07 (t, *J* = 7.6 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 5.87–5.78 (m, 1H), 5.58–5.46 (m, 1H), 5.33–5.20 (m, 2H), 5.09–5.04 (m, 2H), 4.41 (dd, *J* = 16.4, 5.6 Hz, 1H), 4.26 (dd, *J* = 16.4, 5.2 Hz, 1H), 4.07–3.83 (m, 4H), 2.94 (dd, *J* = 13.2, 6.4 Hz, 1H), 2.72 (dd, *J* = 13.2, 8.4 Hz, 1H), 1.24–1.19 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.5 (d, *J* = 2.1 Hz), 143.0, 131.2, 130.3, 129.4, 126.4, 124.9, 122.4, 120.8, 117.6, 109.4, 80.6 (d, *J* = 6.8 Hz), 63.9 (d, *J* = 6.0 Hz), 63.8 (d, *J* = 5.6 Hz). 42.5, 42.2 (d, *J* = 10.0 Hz), 15.9 (d, *J* = 6.8 Hz), 15.8 (d, *J* = 5.9 Hz); IR *v* 2983, 1725, 1644, 1613, 1489, 1367, 1266, 1022, 819, 757 cm⁻¹; HRMS (ESI) calcd. for C₁₈H₂₅NO₅P [M + H]⁺ 366.1465, found 366.1469.

1-Allyl-3-(2-methylallyl)-2-oxoindolin-3-yl diethyl phosphate (7b). yellow oil (157 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.6 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 5.86–5.77 (m, 1H), 5.32–5.20 (m, 2H), 4.77–4.60 (m, 2H), 4.46–4.40 (m, 1H), 4.25–4.20 (m, 1H), 4.06–3.81 (m, 4H), 2.90 (d, J = 12.8 Hz, 1H), 2.78 (d, J = 12.8 Hz, 1H), 1.49 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4 (d, J = 2.3 Hz), 143.1, 137.5, 131.0, 130.2, 126.3, 125.2, 122.0, 117.4, 117.0, 109.2, 81.1 (d, J = 7.0 Hz), 63.6 (d, J = 5.9 Hz), 63.6 (d, J = 5.5 Hz), 44.9 (d, J = 9.9 Hz), 42.4, 23.7, 15.7 (d, J = 6.5 Hz), 15.6 (d, J = 6.4 Hz); IR v 2983, 1729, 1645, 1613, 1489, 1363, 1268, 1022, 816, 752 cm⁻¹; HRMS (ESI) calcd. for C₁₉H₂₇NO₅P [M + H]⁺ 380.1621, found 380.1622.

1-Allyl-3-cinnamyl-2-oxoindolin-3-yl diethyl phosphate (7c). yellow oil (214 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.2 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 7.26–7.18 (m, 5H), 7.07 (t, J = 7.2 Hz, 1H), 6.79 (d, J = 8.0 Hz, 1H), 6.38 (d, J = 15.6 Hz, 1H), 5.91–5.84 (m, 1H), 5.77–5.68 (m, 1H), 5.23–5.19 (m, 1H), 5.07–5.05 (m, 1H), 4.40 (dd, J = 16.4, 5.2 Hz, 1H), 4.21 (dd, J = 16.4, 5.2 Hz, 1H), 4.08–3.84 (m, 4H), 3.10 (dd, J = 13.2, 6.4 Hz, 1H), 2.85 (dd, J = 13.2, 8.8 Hz, 1H), 1.24–1.19 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3 (d, J = 2.0 Hz), 142.7, 136.5, 135.4, 130.7, 130.1, 128.2, 127.3, 126.2, 125.9, 124.7, 122.2, 120.4, 117.3, 109.2, 80.7 (d, J = 6.8 Hz), 63.7 (d, J = 5.9 Hz), 63.6 (d, J = 5.5 Hz), 42.2, 41.2 (d, J = 10.1 Hz), 15.7 (d, J = 5.9 Hz), 15.6 (d, J = 6.0 Hz); IR v 2985, 1727, 1643, 1612, 1487, 1362, 1265, 1024, 815, 754, 744, 690 cm⁻¹; HRMS (ESI) calcd. for C₂₄H₂₈NNaO₅P [M + Na]⁺ 464.1603, found 464.1597.

1-Allyl-3-benzyl-2-oxoindolin-3-yl diethyl phosphate (7d). yellow oil (204 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 7.6 Hz, 1H), 7.23 (t, J = 7.6 Hz, 1H), 7.13–7.02 (m, 4H), 6.90–6.88 (m, 2H), 6.59 (d, J = 8.0 Hz, 1H), 5.50–5.41 (m, 1H), 4.98 (dd, J = 10.4, 1.2 Hz, 1H), 4.78 (dd, J = 17.2, 0.8 Hz, 1H), 4.29 (dd, J = 16.8, 4.8 Hz, 1H), 4.10–3.84 (m, 5H), 3.49 (d, J = 12.8 Hz, 1H), 3.29 (d, J = 12.4 Hz, 1H), 1.24 (t, J = 7.2 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1 (d, J = 2.0 Hz), 142.8, 132.4, 130.4, 130.3, 130.1, 127.5, 126.8, 125.7, 124.9, 121.9, 116.9, 109.1, 81.6 (d, J = 6.9 Hz), 63.6 (d, J = 5.9 Hz), 63.6 (d, J = 5.6 Hz), 43.6 (d, J = 10.4 Hz), 42.0, 15.7, 15.6; IR *v* 2983, 1727, 1645, 1613, 1489, 1455, 1365, 1268, 1023, 804, 751, 731, 699 cm⁻¹; HRMS (ESI) calcd. for C₂₂H₂₇NO₅P [M + H]⁺ 416.1621, found 416.1622.

1-Allyl-3-(4-methylbenzyl)-2-oxoindolin-3-yl diethyl phosphate (7e). colorless oil (212 mg, 99% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, *J* = 7.2 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 2H), 6.77 (d, *J* = 8.0 Hz, 2H), 6.60 (d, *J* = 8.0 Hz, 1H), 5.51–5.42 (m, 1H), 4.98–4.95 (m, 1H), 4.76–4.72 (m, 1H), 4.30 (dd, *J* = 16.8, 4.8 Hz, 1H), 4.09–3.84 (m, 5H), 3.46 (d, *J* = 12.8 Hz, 1H), 3.25 (d, *J* = 12.8 Hz, 1H), 2.22 (s, 3H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 142.8, 136.3, 130.4, 130.2, 130.0, 129.2, 128.2, 125.8, 124.9, 121.8, 116.7, 109.0, 81.6 (d, *J* = 6.7 Hz), 63.5 (d, *J* = 3.9 Hz), 63.5 (d, *J* = 4.3 Hz), 43.2 (d, *J* = 10.2 Hz), 41.9, 20.7, 15.7 (d, *J* = 5.7 Hz), 15.6 (d, *J* = 6.8 Hz); IR *v* 2983, 1725, 1645, 1611, 1487, 1363, 1269, 1016, 838, 808, 759 cm⁻¹; HRMS (ESI) calcd. for C₂₃H₂₈NNaO₅P [M + Na]⁺ 452.1597, found 452.1580.

1-Allyl-3-(4-bromobenzyl)-2-oxoindolin-3-yl diethyl phosphate (7f). yellow oil (235 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 7.2 Hz, 1H), 7.28–7.25 (m, 1H), 7.22 (d, *J* = 8.0

Hz, 2H), 7.06 (t, J = 7.6 Hz, 1H), 6.77 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 8.0 Hz, 1H), 5.54–5.45 (m, 1H), 5.05–5.03 (m, 1H), 4.82–4.78 (m, 1H), 4.29 (dd, J = 16.4, 5.2 Hz, 1H), 4.09–3.84 (m, 5H), 3.44 (d, J = 12.8 Hz, 1H), 3.24 (d, J = 12.8 Hz, 1H), 1.25–1.20 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7 (d, J = 2.1 Hz), 142.7, 132.0, 131.5, 130.5, 130.2, 130.1, 125.3, 124.7, 121.9, 120.9, 116.9, 109.1, 81.1 (d, J = 6.6 Hz), 63.5 (d, J = 5.9 Hz), 63.5 (d, J = 5.6 Hz), 42.8 (d, J = 10.3 Hz), 41.9, 15.6 (d, J = 6.9 Hz), 15.5 (d, J = 6.7 Hz); IR v 2985, 1724, 1643, 1612, 1485, 1440, 1360, 1263, 1030, 980, 814, 763, 730 cm⁻¹; HRMS (ESI) calcd. for C₂₂H₂₆BrNO₅P [M + H]⁺ 494.0726, found 494.0737.

O₂N

1-Allyl-3-(4-nitrobenzyl)-2-oxoindolin-3-yl diethyl phosphate (7g). yellow oil (207 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 7.2 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.58 (d, *J* = 8.0 Hz, 1H), 5.50– 5.40 (m, 1H), 4.91–4.89 (m, 1H), 4.82–4.77 (m, 1H), 4.14 (dd, *J* = 16.4, 4.8 Hz, 1H), 4.02–3.73 (m, 5H), 3.49 (d, *J* = 12.4 Hz, 1H), 3.29 (d, *J* = 12.8 Hz, 1H), 1.12 (t, *J* = 7.2 Hz, 3H), 1.09 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5 (d, *J* = 2.1 Hz), 146.7, 142.5, 140.3, 131.3, 130.4, 130.2, 124.9, 124.7, 122.4, 122.1, 117.0, 109.2, 80.7 (d, *J* = 6.4 Hz), 63.6 (d, *J* = 5.0 Hz), 63.6 (d, *J* = 5.1 Hz), 43.1 (d, *J* = 10.4 Hz), 42.0, 15.5 (d, *J* = 6.9 Hz), 15.4 (d, *J* = 6.7 Hz); IR *v* 2984, 1723, 1644, 1612, 1515, 1486, 1441, 1364, 1341, 1276, 1012, 855, 820, 747 cm⁻¹; HRMS (ESI) calcd. for C₂₂H₂₆N₂O₇P [M + H]⁺ 461.1472, found 461.1479.

1,3-Diallyl-4-chloro-2-oxoindolin-3-yl diethyl phosphate (7h). yellow oil (162 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, *J* = 8.0 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 1H), 6.70 (d, *J* = 8.0 Hz, 1H), 5.85–5.76 (m, 1H), 5.32–5.20 (m, 3H), 5.12–5.07 (m, 1H), 4.96–4.93 (m, 1H), 4.42 (dd, *J* = 16.4, 5.2 Hz, 1H), 4.26–3.83 (m, 5H), 3.32 (dd, *J* = 12.8, 7.2 Hz, 1H), 2.95 (dd, *J* = 12.8, 7.6 Hz, 1H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.19 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 145.2, 131.6, 131.4, 130.9, 128.7, 123.5, 122.9, 120.9, 117.7, 108.0, 80.9 (d, *J* = 7.0 Hz), 63.9 (d, *J* = 5.9 Hz), 63.9 (d, *J* = 5.5 Hz), 42.7, 39.0 (d, *J* = 11.4 Hz), 15.8 (d, *J* = 7.3 Hz), 15.7 (d, *J* = 7.8 Hz); IR *v* 2983, 1733, 1643, 1607, 1589, 1478, 1458, 1371, 1266, 1023, 986, 818, 778 cm⁻¹; HRMS (ESI) calcd. for C₁₈H₂₃ClNNaO₅P [M + Na]⁺ 422.0900, found 422.0899.

1,3-Dially1-4-bromo-2-oxoindolin-3-yl diethyl phosphate (7i). yellow oil (191 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.19–7.13 (m, 2H), 6.74 (d, *J* = 7.6 Hz, 1H), 5.85–5.76 (m, 1H), 5.32–5.19 (m, 3H), 5.13–5.08 (m, 1H), 4.96–4.93 (m, 1H), 4.42 (dd, *J* = 16.4, 5.2 Hz, 1H), 4.26– 4.13 (m, 3H), 4.01–3.86 (m, 2H), 3.41 (dd, *J* = 12.8, 6.8 Hz, 1H), 2.92 (dd, *J* = 12.8, 7.6 Hz, 1H), 1.32 (t, *J* = 7.2 Hz, 3H), 1.20 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.5 (d, *J* = 0.9 Hz), 145.2, 131.4, 130.6, 128.5, 126.4, 124.4, 120.7, 119.4, 117.5, 108.3, 81.3 (d, *J* = 6.9 Hz), 63.7 (d, *J* = 6.0 Hz), 63.6 (d, *J* = 5.7 Hz), 42.4, 38.6 (d, *J* = 11.3 Hz), 15.7 (d, *J* = 4.3 Hz), 15.6 (d, *J* = 4.7 Hz); IR v 2982, 1734, 1643, 1605, 1582, 1476, 1454, 1369, 1266, 1023, 986, 816, 778 cm⁻¹; HRMS (ESI) calcd. for C₁₈H₂₃BrNNaO₅P [M + Na]⁺ 466.0395, found 466.0389.

1,3-Diallyl-5-fluoro-2-oxoindolin-3-yl diethyl phosphate (7j). white solid (171 mg, 89% yield), m.p. 60–61 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, J = 7.6 Hz, 1H), 7.04–6.99 (m, 1H), 6.75 (dd, J = 8.4, 4.0 Hz, 1H), 5.86–5.76 (m, 1H), 5.57–5.47 (m, 1H), 5.33–5.22 (m, 2H), 5.11–5.07 (m, 2H), 4.39 (dd, J = 16.4, 4.8 Hz, 1H), 4.26 (dd, J = 16.4, 3.6 Hz, 1H), 4.13–3.87 (m, 4H), 2.91 (dd, J = 13.2, 6.4 Hz, 1H), 2.69 (dd, J = 13.2, 8.4 Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H), 1.23 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 158.5 (d, J = 239.9 Hz), 138.7, 130.7, 128.8, 127.7 (d, J = 8.0 Hz), 120.8, 117.5, 116.2 (d, J = 23.4 Hz), 112.6 (d, J = 23.8 Hz), 109.9 (d, J = 7.1 Hz), 80.1 (d, J = 6.5 Hz), 63.7, 63.6, 42.3, 41.9 (d, J = 10.4 Hz), 15.6, 15.5; IR *v* 2983, 1725, 1646, 1487, 1456, 1360, 1266, 1243, 1024, 881, 818, 778 cm⁻¹; HRMS (ESI) calcd. for C₁₈H₂₃FNNaO₅P [M + Na]⁺ 406.1196, found 406.1201.

1,3-Dially1-5-chloro-2-oxoindolin-3-yl diethyl phosphate (7k). yellow solid (188 mg, 94% yield), m.p. 49–50 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.28 (d, *J* = 7.6 Hz, 1H), 6.74 (d, *J* = 8.4 Hz, 1H), 5.85–5.76 (m, 1H), 5.57–5.46 (m, 1H), 5.32–5.21 (m, 2H), 5.12–5.08 (m, 2H), 4.38 (dd, *J* = 16.4, 5.2 Hz, 1H), 4.25 (dd, *J* = 16.4, 5.2 Hz, 1H), 4.14–3.84 (m, 4H), 2.90 (dd, *J* = 13.2, 6.4 Hz, 1H), 2.69 (dd, *J* = 13.2, 8.4 Hz, 1H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.23 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1 (d, *J* = 0.9 Hz), 141.5, 130.7, 130.0, 128.9, 128.0, 127.6, 125.1, 121.2, 117.8, 110.5, 80.1 (d, *J* = 6.6 Hz), 63.9, 63.8, 42.6, 42.0 (d, *J* = 10.7 Hz), 15.8, 15.8; IR *v* 2984, 1724, 1644, 1613, 1483, 1371, 1263, 1100, 1025, 884, 826, 777 cm⁻¹; HRMS (ESI)

calcd. for C₁₈H₂₃ClNNaO₅P [M + Na]⁺ 422.0900, found 422.0901.

1,3-Diallyl-5-methoxy-2-oxoindolin-3-yl diethyl phosphate (71). yellow oil (105 mg, 53% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, J = 2.8 Hz, 1H), 6.77–6.74 (m, 1H), 6.65 (d, J = 8.4 Hz, 1H), 5.79–5.70 (m, 1H), 5.50–5.39 (m, 1H), 5.25–5.12 (m, 2H), 5.03–4.98 (m, 2H), 4.31 (dd, J = 16.4, 5.2 Hz, 1H), 4.16 (dd, J = 16.4, 5.2 Hz, 1H), 4.02–3.80 (m, 4H), 3.72 (s, 3H), 2.85 (dd, J = 13.2, 6.4 Hz, 1H), 2.64 (dd, J = 13.2, 8.0 Hz, 1H), 1.18–1.14 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3 (d, J = 2.0 Hz), 155.8, 136.4, 131.4, 129.5, 127.8, 120.9, 117.7, 114.7, 112.2, 109.9, 81.0 (d, J = 6.9 Hz), 64.0, 63.9, 55.9, 42.7, 42.3 (d, J = 10.0 Hz), 16.0 (d, J = 4.2 Hz), 15.9 (d, J = 4.7 Hz); IR v 2983, 1725, 1642, 1603, 1493, 1363, 1271, 1023, 1005, 809, 778 cm⁻¹; HRMS (ESI) calcd. for C₁₉H₂₆NNaO₆P [M + Na]⁺ 418.1395, found 418.1400.

1,3-Diallyl-7-fluoro-2-oxoindolin-3-yl diethyl phosphate (7m). yellow oil (144 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.25 (m, 1H), 7.09–6.99 (m, 2H), 5.96–5.86 (m, 1H), 5.54– 5.44 (m, 1H), 5.34–5.30 (m, 1H), 5.19–5.17 (m, 1H), 5.08–5.04 (m, 2H), 4.51–4.40 (m, 2H), 4.10–3.85 (m, 4H), 2.90 (dd, *J* = 13.2, 6.4 Hz, 1H), 2.72 (dd, *J* = 13.2, 8.4 Hz, 1H), 1.26–1.21 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2 (d, *J* = 1.4 Hz), 147.2 (d, *J* = 243.6 Hz), 132.0, 129.5 (d, *J* = 15.2 Hz), 129.5 (d, *J* = 3.2 Hz), 129.0, 123.1 (d, *J* = 6.1 Hz), 121.1, 120.6, 118.3 (d, *J* = 19.5 Hz), 117.2, 80.4 (d, *J* = 4.7 Hz), 63.9, 63.8, 44.1 (d, *J* = 4.8 Hz), 42.4 (d, *J* = 10.1 Hz), 15.8 (d, *J* = 6.9 Hz), 15.7 (d, *J* = 6.6 Hz); IR *v* 2984, 1736, 1631, 1600, 1488, 1267, 1249, 1021, 812, 762 cm⁻¹; HRMS (ESI) calcd. for C₁₈H₂₃FNNaO₅P [M + Na]⁺ 406.1196, found 406.1195.

3-Allyl-1-ethyl-2-oxoindolin-3-yl diethyl phosphate (7n). yellow solid (159 mg, 90% yield), m.p. 48.5–49.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 1H), 7.06 (t, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 8.0 Hz, 1H), 5.53–5.43 (m, 1H), 5.07–5.01 (m, 2H), 4.05–3.66 (m, 6H), 2.91 (dd, *J* = 13.2, 6.4 Hz, 1H), 2.70 (dd, *J* = 13.2, 8.4 Hz, 1H), 1.28–1.18 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 173.2 (d, *J* = 1.9 Hz), 142.8, 130.3, 129.4, 126.6, 125.1, 122.1, 120.6, 108.4, 80.5 (d, *J* = 6.9 Hz), 63.8 (d, *J* = 5.5 Hz), 63.7 (d, *J* = 6.4 Hz), 42.1 (d, *J* = 9.9 Hz), 34.7, 15.9 (d, *J* = 6.8 Hz), 15.8 (d, *J* = 6.6 Hz), 12.2; IR *v* 2979, 1723, 1640, 1613, 1490, 1366, 1261, 1006, 797, 757 cm⁻¹; HRMS (ESI) calcd. for C₁₇H₂₅NO₅P [M + H]⁺ 354.1465, found

354.1466.

3-Allyl-2-oxo-1-propylindolin-3-yl diethyl phosphate (70). yellow oil (171 mg, 93% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.2 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.06 (t, J = 7.6 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 5.55–5.45 (m, 1H), 5.08–5.03 (m, 2H), 4.03–3.54 (m, 6H), 2.93 (dd, J = 13.2, 6.0 Hz, 1H), 2.70 (dd, J = 13.2, 8.4 Hz, 1H), 1.72–1.67 (m, 2H), 1.24–1.19 (m, 6H), 0.97 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.0 (d, J = 2.1 Hz), 142.8, 129.8, 128.9, 125.9, 124.4, 121.5, 119.9, 108.1, 79.9 (d, J = 6.7 Hz), 63.1 (d, J = 5.8 Hz), 63.0 (d, J = 5.3 Hz), 41.6 (d, J = 10.0 Hz), 41.2, 20.0, 15.3 (d, J = 7.1 Hz), 15.2 (d, J = 6.9 Hz), 10.8; IR v 2978, 1727, 1641, 1613, 1489, 1367, 1268, 1023, 817, 751 cm⁻¹; HRMS (ESI) calcd. for C₁₈H₂₆NNaO₅P [M + Na]⁺ 390.1446, found 390.1440.

3-Allyl-1-benzyl-2-oxoindolin-3-yl diethyl phosphate (7p). yellow oil (147 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 7.2 Hz, 1H), 7.36–7.19 (m, 6H), 7.04 (t, J = 7.6 Hz, 1H), 6.67 (d, J = 7.6 Hz, 1H), 5.56–5.45 (m, 1H), 5.12–5.04 (m, 3H), 4.76 (d, J = 15.6 Hz, 1H), 4.05–3.86 (m, 4H), 2.98 (dd, J = 13.2, 6.0 Hz, 1H), 2.78 (dd, J = 13.2, 8.4 Hz, 1H), 1.22 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.6 (d, J = 2.1 Hz), 142.7, 135.3, 130.1, 129.3, 128.4, 127.3, 127.2, 126.2, 124.8, 122.3, 120.7, 109.3, 80.5 (d, J = 6.9 Hz), 63.6 (d, J = 6.4 Hz), 63.6 (d, J = 5.8 Hz), 43.9, 42.1 (d, J = 10.1 Hz), 15.7 (d, J = 6.7 Hz), 15.6 (d, J = 6.6 Hz); IR v 2982, 1729, 1641, 1613, 1488, 1455, 1364, 1267, 1017, 818, 751, 735, 697 cm⁻¹; HRMS (ESI) calcd. for C₂₂H₂₆NNaO₅P [M + Na]⁺ 438.1441, found 438.1452.

Copies of ¹H NMR and ¹³C NMR Spectra

¹³C NMR spectrum of **4a**

7.7256 7.7257 7.7257 7.7257 7.7257 7.7257 7.7257 7.7257 8853 <t

¹³C NMR spectrum of **4b**

$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & &$

 13 C NMR spectrum of **4**c

$\begin{array}{c} 7.329\\ 7.288\\ 7.1288\\ 7.1288\\ 7.1288\\ 6.6776\\ 6.6776\\ 6.6776\\ 6.6776\\ 6.6776\\ 6.6776\\ 6.6776\\ 6.6776\\ 6.6776\\ 6.6776\\ 7.5223\\ 7.5223\\ 7.5223\\ 7.52333\\ 7.5233\\ 7.5233\\ 7.5233\\ 7.5233\\ 7.5233\\ 7.5233\\ 7.5233\\$

¹³C NMR spectrum of **4d**

¹³C NMR spectrum of **4e**

¹³C NMR spectrum of **4f**

¹³C NMR spectrum of **4g**

¹³C NMR spectrum of **4g**'

¹³C NMR spectrum of **4h**

7,308 7,1790 7,1790 7,1790 7,1254 7,1254 7,1254 6,8889 6,8889 6,8889 6,8889 6,1723 6,8889 6,8789 6,1723 6,1733 6,1733 6,1733 6,1733 6,1733 6,1733 6,1733 6,1733 6,1733 6,1733 6,1733 6,1733 7,1733 6,1733 7,1733 6,1733 7,17337 7,17337 7,17337 7,17357 7,173577 7,17357777777777777777777

¹³C NMR spectrum of **4i**

¹³C NMR spectrum of **4**j

$\begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & &$

¹³C NMR spectrum of 4k

¹³C NMR spectrum of **4**l

$\begin{array}{c} 7.592\\ 7.589\\ 7.589\\ 7.589\\ 7.589\\ 7.589\\ 7.589\\ 7.589\\ 7.589\\ 6.794\\ 6.794\\ 6.796\\ 6.8920\\ 6.8920\\ 6.8920\\ 6.8920\\ 6.8920\\ 6.794\\ 6.794\\ 6.794\\ 6.794\\ 7.867\\ 7.86$

¹³C NMR spectrum of **4m**

7,285 7,285 7,285 6,999 6,999 6,999 6,999 6,999 6,811 6,811 7,5,817 5,817 5,817 5,817 5,822 5,239 5,239 5,233 7,5,822 5,233 7,5,827 5,817 7,3,816 7,3,817 7,5,822 5,233 7,5,822 5,233 7,5,822 5,233 7,5,822 5,233 7,5,822 5,233 7,5,822 5,233 7,5,822 5,233 7,5,822 5,233 7,5,822 5,233 7,5,822 5,233 7,233 5,233 7,235 5,233 7,235 5,233 7,5,827 5,233 7,235 5,233 7,235 5,233 7,5,235 5,233 7,235 5,233 7,235 5,233 7,235 5,532 7,535 5,532 7,535 5,532 7,535 5,532 7,535 5,532 7,535 5,532 7,535 5,532 5,532 5,532 5,532 5,532 5,532 5,532 5,532 5,532 5,532 5,532 5,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,532 5,532 7,

¹³C NMR spectrum of **4n**

$\begin{array}{c} & 7.184 \\ & 7.1164 \\ & 6.8922 \\ & 6.8912 \\ & 6.8911 \\ & 6.8911 \\ & 6.8911 \\ & 6.8911 \\ & 6.8911 \\ & 5.8916 \\ & 5.8916 \\ & 5.7733 \\ & 5.7733 \\ & 5.7733 \\ & 5.7733 \\ & 5.7733 \\ & 5.7733 \\ & 5.7333 \\ & 5.7$

¹³C NMR spectrum of **40**

¹³C NMR spectrum of **4p**

¹³C NMR spectrum of **4q**

¹³C NMR spectrum of **4r**

$\begin{array}{c} & -2.7,054 \\ & -7.7,054 \\ & -7.7,034 \\ & -7.7,034 \\ & -6.762 \\ & -6.77 \\ & -6.783 \\ & -5.238 \\ & -5.238 \\ & -5.238 \\ & -5.183 \\ & -3.734 \\ & -3.73$

¹³C NMR spectrum of 4s

$\begin{array}{c} 7,016\\ 6,971\\ 6,637\\ 6,635\\ 6,655\\ 6,655\\ 6,655\\ 6,6529\\ 6,5909\\ 6,5909\\ 6,5909\\ 6,5177\\ 6,5177\\ 6,5177\\ 6,177\\ 6,177\\ 6,219\\ 6,177\\ 6,219\\ 6,2129\\ 6,2$

¹³C NMR spectrum of 4t

¹³C NMR spectrum of **4u**

¹³C NMR spectrum of 4v

7.473 7.4255 7.2305 7.7305 7.7305 6.821 6.5226 6

¹³C NMR spectrum of **7a**

¹³C NMR spectrum of **7b**

7, 1229 7, 1229 7, 12, 299 7, 12, 299 7, 12, 299 7, 12, 209 7, 12, 209 6, 779

¹³C NMR spectrum of **7c**

¹³C NMR spectrum of 7d

¹³C NMR spectrum of 7e

¹³C NMR spectrum of **7f**

¹³C NMR spectrum of **7g**

¹³C NMR spectrum of **7h**

7.194 7.1150 6.730 6.730 6.731 5.881 5.881 5.286 5.220 5.220 5.220 5.220 5.232

¹³C NMR spectrum of 7i

7,712,72 6,790,75 6,701,713,73 6,701,713,73 6,701,713,73 6,701,713,73 6,701,73 6,701,73 6,703,73 6,713,73

¹³C NMR spectrum of **7**j

 13 C NMR spectrum of **7**k

¹³C NMR spectrum of **7**l

¹³C NMR spectrum of **7m**

¹³C NMR spectrum of **7n**

¹³C NMR spectrum of **70**

¹³C NMR spectrum of **7p**

4p:

4r:

