Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Copper-Catalyzed Fluoroalkylation of Alkynes, and Alkynyl & Vinyl Carboxylic Acids with Fluoroalkyl halides

Jing-Jing Ma and Wen-Bin Yi*

School of Chemical Engineering, Nanjing University of Science and Technology, Xiao Ling

Wei Street, Nanjing 210094, People's Republic of China

*Corresponding author. Fax: +86-25-84315030; Tel.: +86-25-84315514; E-mail: yiwenbin@njust.edu.cn

1. General Considerations

Unless otherwise mentioned, solvents and reagents were purchased from commercial sources and used without further purification. 1 H, 19 F and 13 C NMR spectra were recorded on a 500 MHz Bruker DRX 500 and tetramethylsilane (TMS) was used as a reference. Chemical shifts were reported in parts per million (ppm), 1 H NMR chemical shifts were determined relative to intermal (CH₃)₄Si (TMS) at δ 0.0 (sometimes may be two points) or to the signal of a residual protonated solvent: CDCl₃ δ 7.26 (due to the quality of CDCl₃ the water peak may move to about 1.6 ppm). 13 C NMR chemical shifts were determined relative to internal TMS at δ 0.0. Data for 1 H, 13 C and 19 F NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad). GC-MS were performed on an ISQ Trace 1300 (electrospray ionization: EI). HRMS were recorded on the Waters Micromass GCT Premier (electrospray ionization: EI⁺).

2. Screening Results

In a sealed glass vial, phenylacetylene (1a, 0.2 mmol), ethyl bromodifluoroacetate (2a, 1.5 equiv.), catalyst and ligand were dissolved in dry solvent under argon atmosphere following the condition listed in the table below. The mixture was stirred for 24 h. After cooling to room temperature, the reaction mixture was quenched and trifluoroacetophenone (0.2 mmol, $28\,\mu$ l) was added as an internal standard. The solution was analyzed by 19 F NMR to give the yield.

2.1 Screening ligands

Table S1

Entry	Ligand/ (mol%)	Yield
1	L1 (30)	n.r.
2	L2 (30)	47%
3	L3 (30)	trace

4	L4 (30)	trace			
5	L5 (30)	87%			
6	L6 (30)	11%			
7	L7 (30)	n.r.			
8	/	n.r.			
9	L5 (10)	30%			
10	L5 (15)	42%			
11	L5 (20)	59%			
12	L5 (40)	84%			
	$ \begin{array}{c c} & & \\$	Me N N L3 -N N- L4			
$ \begin{array}{c cccc} & & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ & & & & & & & \\ \hline & & & & & & & \\ \hline & & & & & & & \\ & & & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$					

Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), CuI (15 mol%), ligand (30 mol%), MeCN (1mL), under argon, 80 °C for 24 h, determined by ¹⁹ F NMR using trifluoroacetophenone as the internal standard. n.r. = no reaction.

2.2 Screening copper catalysts

Table S2

	Ph—== + BrCF ₂ CO ₂ Et	Ph CF ₂ CO ₂ Et A1
Entry	[Cu] (mol%)	Yield
1	CuCl (15)	94%
2	CuBr (15)	44%
3	CuI (15)	87%
4	$Cu(OTf)_2(15)$	32%
5	Cu_2O (15)	62%
6	/	n.r.
7	CuCl (5)	39%
8	CuCl (10)	80%
9	CuCl (20)	51%
10	CuCl (25)	69%

Reaction conditions: **1a** (0.2 mmol), **2a** (0.3 mmol), L5 (30 mol%), MeCN (1mL), under argon, 80 °C for 24 h, determined by ¹⁹ F NMR using trifluoroacetophenone as the internal standard. n.r. = no reaction.

2.3 Screening temperature and solvents

Table S3

$$Ph = + BrCF2CO2Et \xrightarrow{CuCl (15 mol\%)} Ph \xrightarrow{Br}$$

$$1a \qquad 2a \qquad CuCl (15 mol\%) Ph \qquad CF2CO2Et$$

Entry	Solvent	Tem. (°C)	Yield	
1	MeCN	r.t.	n.r.	
2	MeCN	40	21%	
3	MeCN	60	41%	
4	MeCN	80	94%	
5	MeCN	100	45%	
6	Toluene	80	11%	
7	DMSO	80	12%	
8	DMF	80	trace	
9	EtOH	80	42%	
10	1,4-dioxane	80	trace	

Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol), CuCl (15 mol%), L5 (30 mol%), solvent (1mL), under argon for 24 h, determined by

Initially, we started our investigation by exploring the reaction between phenylacetylene (1a) and 2a (Table S1-S3). After screening, the ligand had a significant influence on the reaction results. bis(2-dimethylaminoethyl) methylamine (L5) was found to be the most suitable choice in the presence of 15 mol% CuI, giving A1 in 87% yield with > 90% *E*-selectivity (Table S1, entries 1-7). Further study was focused on various copper catalysts and CuCl seemed best (Table S2, entries 1-5). It was worth to mention that no product was detected when the reaction performed in the absence of the catalyst or the ligand, as well as argon. Other solvents such as toluene, DMSO, DMF, EtOH, 1,4-dioxane were also tested (Table S3), with no elevated yield. Allow for the amount of ligand and copper catalyst, as well as temperature, the optimal reaction condition was carried out with CuCl (15 mol%), L5 (30 mol%), MeCN as solvent refluxed at 80 °C under agron atmosphere for 24 h (Table S3, entry 4).

3. General Procedure for Experiments

Method I:

CuCl-catalyzed ATRA reaction:

ATRA reaction:

$$R = + BrCF_2CO_2Et$$

$$\frac{CuCl (15 \text{ mol}\%)}{L5 (30 \text{ mol}\%)} Br$$

$$CF_2CO_2Et$$

$$\frac{MeCN}{R}$$

$$R$$

$$R$$

A reaction tube was charged with CuCl (3.0 mg, 0.03 mmol), L5 (10.4 mg, 0.06 mmol) at room temperature, then phenylacetylene (1a) (20.4 mg, 0.2 mmol), ethyl bromodifluoroacetate (60.9 mg, 0.3 mmol) and MeCN (1 mL) were added. The resulting mixture was stirred at 80 °C under argon atmosphere for 24 h. After cooling to room temperature, the reaction mixture was quenched and purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc) to afford the desired product A1 (54.1 mg, 89%).

¹⁹ F NMR using trifluoroacetophenone as the internal standard. n.r. = no reaction.

Method II:

CuI-catalyzed ATRA reaction:

A reaction tube was charged with CuI (5.7 mg, 0.03 mmol), L5 (10.4 mg, 0.06 mmol) at room temperature, then phenylacetylene (1a) (20.4 mg, 0.2 mmol), ethyl iododifluoroacetate (2b) (75.0 mg, 0.3 mmol) and MeCN (1 mL) were added. The resulting mixture was stirred at 80 °C under argon atmosphere for 24 h. After cooling to room temperature, the reaction mixture was quenched and purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc) to afford the desired product A17 (59.8 mg, 85%).

Method III:

Decarboxylative ATRA of fluoroalkyl halides to alkynyl carboxylic acids:

A reaction tube was charged with CuCl (3.0 mg, 0.03 mmol), L5 (10.4 mg, 0.06 mmol) at room temperature, then phenylpropiolic acid (**3a**) (29.2 mg, 0.2 mmol), ethyl bromodifluoroacetate (**2a**) (60.9 mg, 0.3 mmol) and MeCN (1 mL) were added. The resulting mixture was stirred at 80 °C under argon atmosphere for 24 h. After cooling to room temperature, the reaction mixture was quenched and purified by flash silica gel column chromatography (eluent: petroleum ether/EtOAc) to afford the desired product **A1** (47.4 mg, 78%).

Method IV:

Decarboxylative perfluoroalkylation of α , β -unsaturated carboxylic acids:

A reaction tube was charged with CuI (5.7 mg, 0.03 mmol), L5 (10.4 mg, 0.06 mmol) at room temperature, then 4-phenylcinnamic acid (4a) (44.8 mg, 0.2 mmol), pentafluoroethyl iodide (98.4 mg, 0.4 mmol) and MeCN (1 mL) were added. The resulting mixture was stirred at 80 $^{\circ}$ C under argon atmosphere for 24 h. After cooling to room temperature, the reaction mixture was quenched and purified by flash silica gel column chromatography (eluent: petroleum ether) to afford the desired product **B1** (23.2 mg, 39%).

Hydrolysis-decarboxylative reaction of **A** componds:

To a methanol (5mL) solution of A (0.5 mmol) was added 1 M K_2CO_3 (5 mL) at room temperature. After the reaction was complete (as judged by TLC analysis), the pH value was adjusted to 2~4. Then

the mixture was poured into a separatory funnel containing 10 mL $\rm H_2O$ and 10 mL $\rm EtOAc$. The layers were separated and the aqueous layer was extracted with $\rm EtOAc$ (3 \times 10 mL). The combined organic layers were dried with $\rm MgSO_4$ and concentrated under reduced pressure after filtration. The crude product was followed by decarboxylative step, added 10 equiv KF in 2ml anhydrous DMF, refluxed at 170 $^{\rm o}$ C under agron atmosphere for 6-10 h, after cooled to the room temperature and purified by flash chromatography on silica gel (eluent: petroleum ether) to afford the desired product $\rm C$.

4. Analytical data of compounds

Compound **A1**¹: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A1** (54.1 mg, 89%), yellow liquid (E/Z = 94:6, the ratio detected by ¹⁹F NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.36 (s, 5H), 6.50 (t, J = 11.2 Hz, 1H), 3.99 (q, J = 7.2 Hz, 2H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.53 (t, J = 32.5 Hz), 137.21, 133.59 (t, J = 10.2 Hz), 129.98, 128.51 (t, J = 2.2 Hz), 128.14, 125.07 (t, J = 28.6 Hz), 111.08, 99.99, 63.17, 13.71; ¹⁹F NMR (470 MHz, CDCl₃) δ -93.72. GC-MS (EI) Calcd. for C₁₂H₁₁BrF₂O₂ 303.99, found 304.07. Z product: ¹⁹F NMR (470 MHz, CDCl₃) δ -97.61.

Compound **A2**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A2** (51.5 mg, 81%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.21-7.16 (m, 2H), 7.08 (d, J = 7.7 Hz, 2H), 6.39 (t, J = 11.1 Hz, 1H), 3.92 (q, J = 7.2 Hz, 2H), 2.28 (s, 3H), 1.12 (t, J = 7.2 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 162.70 (t, J = 33.1 Hz), 140.37, 134.49, 134.09, 128.89, 128.60, 124.78 (t, J = 28.4 Hz), 111.25 (t, J = 248.5 Hz), 63.23, 21.47, 13.78; 19 F NMR (470 MHz, CDCl₃) δ -93.59. GC-MS (EI) Calcd. for C₁₃H₁₃BrF₂O₂ 318.01, found 318.04.

Compound **A3**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A3** (56.9 mg, 79%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.28 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 6.46 (t, J = 11.0 Hz, 1H), 3.95 (q, J = 7.1 Hz, 2H), 2.68-2.54 (m, 2H), 1.65-1.52 (m, 3H), 1.43-1.30 (m, 2H), 1.17 (t, J = 7.2 Hz, 3H), 0.93 (t, J = 7.3 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 162.65 (t, J = 33.4 Hz), 145.37, 134.56, 134.14, 128.64, 128.23, 124.75 (t, J = 28.8 Hz), 111.26 (t, J = 248.3 Hz), 63.17, 35.56, 33.41, 22.43, 13.89 (d, J = 26.6 Hz); 19 F NMR (470 MHz, CDCl₃) δ -93.19. GC-MS (EI) Calcd. for $C_{16}H_{19}BrF_{2}O_{2}$ 360.05, HRMS (EI⁺) found 360.0542.

Compound **A4**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A4** (56.1 mg, 75%), brown liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.28 (d, J = 7.9 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 6.46 (t, J = 11.0 Hz, 1H), 3.95 (q, J = 7.2 Hz, 2H), 2.64-2.56 (m, 2H), 1.65-1.56 (m, 2H), 1.31 (qq, J = 8.7, 5.5, 3.8 Hz, 4H), 1.17 (t, J = 7.2 Hz, 3H), 0.89 (t, J = 6.8 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 162.68 (t, J = 33.2 Hz), 145.43, 134.56, 134.13 (d, J = 9.8 Hz), 128.66, 128.23, 124.77 (t, J = 28.8 Hz), 111.27 (t, J = 248.7 Hz), 63.20, 35.85, 31.57, 30.95, 22.61, 14.10, 13.78; 19 F NMR (470 MHz, CDCl₃) δ -93.12. GC-MS (EI) Calcd. for $C_{17}H_{21}BrF_{2}O_{2}$ 374.07, HRMS (EI⁺) found 374.0698.

Compound **A5**¹: purified by column chromatography on silica gel (petroleum ether/EtOAc = 12:1) to afford the **A5** (45.4 mg, 68%), brown liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.44 (t, J = 11.0 Hz, 1H), 3.99 (q, J = 7.2 Hz, 2H), 3.82 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.59 (t, J = 33.4 Hz), 159.79 , 132.94 (t, J = 10.1 Hz), 129.30, 128.37, 123.30 (t, J = 28.7 Hz), 112.43, 109.19 (d, J = 247.8 Hz), 62.13, 54.33, 12.69; ¹⁹F NMR (470 MHz, CDCl₃) δ -93.21. GC-MS (EI) Calcd. for C₁₃H₁₃BrF₂O₃ 334.00, found 334.02.

Compound **A6**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 40:1) to afford the **A6** (67.6 mg, 89%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.64-7.57 (m, 5H), 7.50-7.43 (m, 4H), 7.43-7.35 (m, 1H), 6.54 (t, J = 11.2 Hz, 1H), 4.02 (q, J = 7.2 Hz, 2H), 1.20 (t, J = 7.1 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 162.71 (t, J = 33.2 Hz), 142.94, 140.03, 136.12, 133.58, 129.13 (d, J = 18.3 Hz), 128.10, 127.25, 126.89, 125.15 (t, J = 28.4 Hz), 111.26 (t, J = 248.8 Hz), 63.39, 13.86; 19 F NMR (470 MHz, CDCl₃) δ -93.60. GC-MS (EI) Calcd. for $C_{18}H_{15}BrF_{2}O_{2}$ 380.02, HRMS (EI $^{+}$) found 380.0220.

Compound A7¹: purified by column chromatography on silica gel (petroleum ether/EtOAc = 40:1) to afford the A7 (56.0 mg, 87%), yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.32 (m, 2H), 7.05 (dd, J = 9.6, 7.7 Hz, 2H), 6.49 (t, J = 11.3 Hz, 1H), 4.07 (q, J = 7.2 Hz, 2H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.31, 161.31 (t, J = 28.7 Hz), 132.33 (d, J = 14.5 Hz), 131.95, 131.46

(t, J = 8.8 Hz), 129.64 (d, J = 9.6 Hz), 124.28 (t, J = 28.2 Hz), 114.27 (d, J = 22.2 Hz), 109.96 (t, J = 249.6 Hz), 62.32, 12.72; ¹⁹F NMR (470 MHz, CDCl₃) δ -94.36, -109.84. GC-MS (EI) Calcd. for $C_{12}H_{10}BrF_3O_2$ 321.98, found 322.02.

Compound **A8**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A8** (60.2 mg, 89%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.29-7.21 (m, 4H), 6.42 (t, J = 11.5 Hz, 1H), 4.02 (q, J = 7.2 Hz, 2H), 1.17 (t, J = 7.2 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 162.48 (t, J = 33.3 Hz), 136.18, 135.81, 132.29, 129.95, 128.53, 125.56 (t, J = 27.9 Hz), 111.06 (t, J = 250.4 Hz), 63.47, 13.85; 19 F NMR (470 MHz, CDCl₃) δ -91.61. GC-MS (EI) Calcd. for $C_{12}H_{10}BrClF_{2}O_{2}$ 337.95, HRMS (EI⁺) found 337.9523.

Compound $A9^1$: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the A9 (64.2 mg, 84%), yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.5 Hz, 2H), 6.49 (t, J = 11.5 Hz, 1H), 4.09 (d, J = 7.1 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.63 (t, J = 34.0 Hz), 136.29, 132.31, 131.51, 130.14, 125.55 (t, J = 28.0 Hz), 124.47, 111.06 (t, J = 249.5 Hz), 63.50, 13.85; ¹⁹F NMR (470 MHz, CDCl₃) δ -94.65. GC-MS (EI) Calcd. for $C_{12}H_{10}Br_2F_2O_2$ 381.90, found 381.96.

Compound **A10**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A10** (57.2 mg, 87%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.69-7.64 (m, 2H), 7.50-7.45 (m, 2H), 6.55 (t, J = 12.0 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 162.48 (t, J = 33.3 Hz), 141.85, 132.04, 130.84, 129.21, 126.22 (t, J = 26.9 Hz), 118.07, 113.71, 110.88 (t, J = 251.9 Hz), 63.70, 13.93; 19 F NMR (470 MHz, CDCl₃) δ -95.90. GC-MS (EI) Calcd. for $C_{13}H_{10}BrF_{2}NO_{2}$ 328.99, found 328.98.

Compound **A11**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 15:1) to afford the **A11** (64.2 mg, 73%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 8.07-7.99 (m, 2H), 7.43 (dd, J = 8.7, 2.1 Hz, 2H), 6.54 (t, J = 11.6 Hz, 1H), 4.08 (q, J = 7.2 Hz, 2H), 3.93 (s, 3H), 1.24 (t, J =

7.1 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 166.28, 161.33, 141.64, 133.89-131.90 (m), 131.39, 129.69, 129.47, 128.58, 125.80 (t, J = 27.9 Hz), 63.49, 52.47, 13.86; 19 F NMR (470 MHz, CDCl₃) δ -95.01. GC-MS (EI) Calcd. for $C_{14}H_{13}BrF_{2}O_{4}$ 362.00, found 362.01.

Compound **A12**¹: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A12** (31.2 mg, 42%), yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 6.55 (t, J = 11.7 Hz, 1H), 4.11 (q, J = 7.1 Hz, 2H), 1.25 (d, J = 7.2 Hz, 3H); ¹⁹F NMR (470 MHz, CDCl₃) δ -62.97 (d, J = 20.6 Hz), -95.26. GC-MS (EI) Calcd. for C₁₃H₁₀BrF₅O₂ 371.98, [M-F] found 353.03.

Compound **A13**¹: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A13** (45.8 mg, 72%), yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.26-7.21 (m, 1H), 7.16 (dt, J = 6.1, 3.8 Hz, 3H), 6.47 (t, J = 11.0 Hz, 1H), 3.96 (q, J = 7.2 Hz, 2H), 2.34 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.68 (t, J = 32.8 Hz), 138.04, 137.34 (d, J = 38.4 Hz), 134.12 (d, J = 41.6 Hz), 130.80 (d, J = 15.1 Hz), 129.12, 128.10 (d, J = 13.3 Hz), 125.63 (d, J = 23.2 Hz), 124.97 (t, J = 28.8 Hz), 111.22 (t, J = 248.9 Hz), 63.25, 21.37, 13.76; ¹⁹F NMR (470 MHz, CDCl₃) δ -93.48. GC-MS (EI) Calcd. for C₁₃H₁₃BrF₂O₂ 318.01, found 318.07.

Compound **A14**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 40:1) to afford the **A14** (43.8 mg, 68%), colorless liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.38 (td, J = 7.7, 5.6 Hz, 1H), 7.23-7.17 (m, 1H), 7.13 (t, J = 8.5 Hz, 2H), 6.56 (t, J = 11.5 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 161.56 (t, J = 35.4 Hz), 159.74, 141.58, 132.57 (t, J = 27.9 Hz), 128.72 (d, J = 8.5 Hz), 122.46, 115.38 (d, J = 21.1 Hz), 113.91 (d, J = 23.3 Hz), 110.79 (d, J = 251.1 Hz), 105.23, 62.30, 12.71; 19 F NMR (470 MHz, CDCl₃) δ -94.70, -112.15. GC-MS (EI) Calcd. for $C_{12}H_{10}BrF_3O_2$ 321.98, found 322.03.

Compound **A15**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 30:1) to afford the **A15** (35.6 mg, 56%), colorless liquid (E/Z = 92:8, the ratio detected by ¹⁹F NMR). ¹H NMR

(500 MHz, CDCl₃) δ 7.27-7.23 (m, 1H), 7.21-7.11 (m, 3H), 6.53 (td, J = 10.9, 2.5 Hz, 1H), 3.97 (qd, J = 7.2, 2.3 Hz, 2H), 2.33 (d, J = 2.5 Hz, 3H), 1.21 (td, J = 7.2, 2.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.46 (t, J = 33.4 Hz), 135.38, 134.80, 131.93, 129.23, 128.90 (d, J = 10.8 Hz), 127.35, 125.19 (t, J = 28.5 Hz), 124.52, 109.93 (t, J = 249.8 Hz), 62.12, 18.26, 12.67; ¹⁹F NMR (470 MHz, CDCl₃) δ -95.40 (d, J = 272.6 Hz), -97.44 (d, J = 272.6 Hz). GC-MS (EI) Calcd. for C₁₃H₁₃BrF₂O₂ 318.01, found 318.06.

Z product: 19 F NMR (470 MHz, CDCl₃) δ -94.87 (d, J = 282.0 Hz), -97.12 (d, J = 282.0 Hz).

Compound **A16**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 40:1) to afford the **A16** (33.5 mg, 52%), yellow liquid (E/Z=96:4, the ratio detected by ¹⁹F NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.36 (tdd, J=7.6, 6.3, 1.8 Hz, 1H), 7.28 (td, J=7.5, 1.8 Hz, 1H), 7.14 (td, J=7.6, 1.1 Hz, 1H), 7.07 (ddd, J=9.6, 8.3, 1.1 Hz, 1H), 6.61 (t, J=11.5 Hz, 1H), 4.13 (q, J=7.1 Hz, 2H), 1.27 (t, J=7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.29 (t, J=33.4 Hz), 157.35 (d, J=251.2 Hz), 130.86 (d, J=8.3 Hz), 129.24, 126.71 (t, J=27.7 Hz), 124.73 (d, J=9.5 Hz), 124.18 (d, J=15.4 Hz), 122.90, 114.73 (d, J=20.9 Hz), 109.84 (t, J=250.5 Hz), 62.31, 12.68; ¹⁹F NMR (470 MHz, CDCl₃) δ -98.50, -112.60. GC-MS (EI) Calcd. for C₁₂H₁₀BrF₃O₂ 321.98, found 322.01.

Z product: ¹⁹F NMR (470 MHz, CDCl₃) δ -99.02, -113.77.

Compound **A17**²: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A17** (59.8 mg, 85%), colorless liquid (E/Z = 94:6, the ratio detected by ¹⁹F NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, J = 2.6 Hz, 5H), 6.72 (t, J = 11.0 Hz, 1H), 3.97 (q, J = 7.1 Hz, 2H), 1.19 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.67 (t, J = 33.4 Hz), 140.82, 133.15 (t, J = 28.3 Hz), 129.56, 128.17, 127.94, 110.99 (t, J = 252.0 Hz), 108.83, 63.26, 13.82; ¹⁹F NMR (470 MHz, CDCl₃) δ -93.79. GC-MS (EI) Calcd. for C₁₂H₁₁F₂IO₂ 351.98, found 352.03.

Z product: 19 F NMR (470 MHz, CDCl₃) δ -98.04.

Compound **A18**²: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A18** (66.6 mg, 91%), yellow liquid (E/Z = 94:6, the ratio detected by ¹⁹F NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.21 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), 6.70 (t, J = 10.9 Hz, 1H), 3.98 (d, J = 7.1 Hz, 2H), 2.35 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.71 (t, J = 33.1 Hz), 139.80, 138.00, 132.84 (t, J = 28.4 Hz), 128.83, 127.97, 111.02 (t, J = 250.7 Hz), 109.40,

63.24, 21.49, 13.82; ^{19}F NMR (470 MHz, CDCl₃) δ -93.67. GC-MS (EI) Calcd. for $C_{13}H_{13}F_2IO_2$ 365.99, HRMS (EI⁺) found 365.9931.

Z product: 19 F NMR (470 MHz, CDCl₃) δ -97.78.

Compound **A19**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A19** (71.8 mg, 88%), yellow liquid (E/Z = 97:3, the ratio detected by ¹⁹F NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, J = 8.1 Hz, 2H), 7.13 (d, J = 8.2 Hz, 2H), 6.71 (t, J = 10.8 Hz, 1H), 3.95 (q, J = 7.1 Hz, 2H), 2.64-2.56 (m, 2H), 1.65-1.55 (m, 2H), 1.41-1.32 (m, 2H), 1.19 (t, J = 7.1 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.67 (t, J = 33.2 Hz), 144.79, 138.06, 132.82 (t, J = 28.6 Hz), 128.15, 128.04,111.00 (t, J = 250.7 Hz), 109.53, 63.16, 35.55, 33.42, 22.46, 14.04, 13.80; ¹⁹F NMR (470 MHz, CDCl₃) δ -93.25. GC-MS (EI) Calcd. for C₁₆H₁₉F₂IO₂ 408.04, found 408.17.

Z product: 19 F NMR (470 MHz, CDCl₃) δ -97.78.

Compound **A20**²: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A20** (56.5 mg, 74%), brown liquid (E/Z = 93:7, the ratio detected by ¹⁹F NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, J = 8.4 Hz, 2H), 6.77-6.71 (m, 2H), 6.60 (t, J = 10.8 Hz, 1H), 3.92 (q, J = 7.2 Hz, 2H), 3.74 (s, 3H), 1.13 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.64 (t, J = 32.8 Hz), 159.29, 131.98, 131.49 (t, J = 28.6 Hz), 128.67, 112.33, 109.89 (t, J = 249.5 Hz), 108.30, 62.08, 54.32, 12.69; ¹⁹F NMR (470 MHz, CDCl₃) δ -93.32. GC-MS (EI) Calcd. for C₁₃H₁₃F₂IO₃ 381.99, found 382.03.

Z product: 19 F NMR (470 MHz, CDCl₃) δ -97.59.

Compound **A21**²: purified by column chromatography on silica gel (petroleum ether/EtOAc = 40:1) to afford the **A21** (63.6 mg, 86%), colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 7.34-7.27 (m, 2H), 7.00 (t, J = 8.6 Hz, 2H), 6.71 (t, J = 11.2 Hz, 1H), 4.05 (q, J = 7.1 Hz, 2H), 1.23 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.00 (d, J = 126 Hz), 162.64 (t, J = 32.8 Hz), 136.97, 133.52 (t, J = 27.8 Hz), 130.04 (d, J = 8.7 Hz), 115.28 (d, J = 21.9 Hz), 111.96 (d, J = 250.9 Hz), 107.44, 63.39, 13.85; ¹⁹F NMR (470 MHz, CDCl₃) δ -94.34, -110.60. GC-MS (EI) Calcd. for C₁₂H₁₀F₃IO₂ 369.97, found 370.01.

Compound **A22**²: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A22** (65.6 mg, 85%), yellow liquid (E/Z = 96:4, the ratio detected by ¹⁹F NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.31 (d, J = 8.4 Hz, 2H), 7.25 (d, J = 8.2 Hz, 2H), 6.72 (t, J = 11.3 Hz, 1H), 4.08 (q, J = 7.1 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.64 (t, J = 32.8 Hz), 139.36, 135.51, 133.55 (t, J = 27.9 Hz), 129.24, 128.42, 110.99 (t, J = 255.8 Hz), 107.06, 63.45, 13.86; ¹⁹F NMR (470 MHz, CDCl₃) δ -94.62. GC-MS (EI) Calcd. for C₁₂H₁₀CIF₂IO₂ 385.94, found 385.96. *Z* product: ¹⁹F NMR (470 MHz, CDCl₃) δ -98.25.

Compound **A23**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A23** (74.4 mg, 88%), yellow liquid (E/Z = 95:5, the ratio detected by ¹⁹F NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.50-7.43 (m, 2H), 7.21-7.14 (m, 2H), 6.72 (t, J = 11.3 Hz, 1H), 4.08 (q, J = 7.2 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.62 (t, J = 32.8 Hz), 139.84, 133.53 (t, J = 27.7 Hz), 131.40, 129.44, 123.77, 110.98 (t, J = 251.3 Hz), 107.06, 63.47, 13.88; ¹⁹F NMR (470 MHz, CDCl₃) δ -93.72. GC-MS (EI) Calcd. for C₁₂H₁₀BrF₂IO₂ 429.89, HRMS (EI⁺) found 429.8881.

Z product: 19 F NMR (470 MHz, CDCl₃) δ -97.61.

Compound **A24**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1) to afford the **A24** (48.7, 58%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 8.0 Hz, 2H), 6.76 (t, J = 11.5 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 162.59 (t, J = 33.5 Hz), 144.48, 133.91 (t, J = 26.8 Hz), 131.18, 128.16, 125.21, 109.99 (t, J = 251.7 Hz), 106.08, 63.53, 13.85. 19 F NMR (470 MHz, CDCl₃) δ -62.92, -95.27. GC-MS (EI) Calcd. for C₁₃H₁₀F₃IO₂ 419.96, HRMS (EI⁺) [M-F] found 400.9668.

Compound **A25**²: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A25** (54.8 mg, 74%), colorless liquid (E/Z = 94.6, the ratio detected by ¹⁹F NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.30 (ddd, J = 13.4, 10.2, 5.7 Hz, 1H), 7.11-7.06 (m, 1H), 7.02 (ddd, J = 9.0, 5.2, 2.3 Hz, 2H), 6.73 (t, J = 11.2 Hz, 1H), 4.09 (q, J = 7.1 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (126

MHz, CDCl₃) δ 161.56 (t, J = 35.4 Hz), 159.74, 141.58, 132.57 (t, J = 27.9 Hz), 128.72 (d, J = 8.5 Hz), 122.46, 115.38 (d, J = 21.1 Hz), 113.91 (d, J = 23.3 Hz), 110.79 (d, J = 251.1 Hz), 105.23, 62.30, 12.71. ¹⁹F NMR (470 MHz, CDCl₃) δ -94.76, -112.16. GC-MS (EI) Calcd. for C₁₂H₁₀F₃IO₂ 369.97, found 369.78.

Z product: ¹⁹F NMR (470 MHz, CDCl₃) δ -98.36, -112.20.

Compound **A26**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A26** (37.4 mg, 51%), green liquid (E/Z = 96:4, the ratio detected by ¹⁹F NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.08 (t, J = 7.8 Hz, 1H), 6.71-6.65 (m, 2H), 6.62- 6.54 (m, 2H), 3.96 (q, J = 7.2 Hz, 2H), 3.31 (s, 2H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.66 (t, J = 17.0 Hz), 144.82, 140.37, 131.73 (t, J = 29.1 Hz), 128.00, 115.11 (t, J = 255.8 Hz), 109.84, 108.06, 62.10, 12.67; ¹⁹F NMR (470 MHz, CDCl₃) δ -93.08. GC-MS (EI) Calcd. for C₁₂H₁₂F₂INO₂ 366.99, HRMS (EI⁺) found 366.9882.

Z Product: ¹⁹F NMR (470 MHz, CDCl₃) δ, -97.91.

Compound **A27**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A27** (40.9, 58%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 8.37-8.17 (m, 2H), 7.33 (dt, J = 8.0, 1.9 Hz, 1H), 7.04-6.91 (m, 1H), 6.53 (t, J = 11.6 Hz, 1H), 3.85 (d, J = 7.2 Hz, 2H), 0.98 (t, J = 7.2 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 161.54 (t, J = 32.8 Hz), 149.07, 146.91, 136.09, 134.07, 133.44 (t, J = 27.2 Hz), 121.73, 109.86 (t, J = 252.6 Hz), 102.78, 62.49, 12.76; 19 F NMR (470 MHz, CDCl₃) δ -95.44. GC-MS (EI) Calcd. for C₁₁H₁₀F₂INO₂ 352.97, HRMS (EI $^+$) found 352.9722.

Compound **A28**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A28** (33.7mg, 47%), yellow liquid (E/Z = 94:6, the ratio detected by ¹⁹F NMR). ¹H NMR (500 MHz, CDCl₃) δ 7.40 (dd, J = 3.0, 1.3 Hz, 1H), 7.28 (dd, J = 5.1, 3.0 Hz, 1H), 7.09 (dd, J = 5.0, 1.4 Hz, 1H), 6.68 (s, 1H), 4.01 (d, J = 7.2 Hz, 2H), 1.19 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.42 (t, J = 33.7 Hz), 139.07, 132.26 (t, J = 29.0 Hz), 127.44, 124.92, 124.71, 110.01 (t, J = 249.2 Hz), 101.16, 62.21, 12.73; ¹⁹F NMR (470 MHz, CDCl₃) δ -92.47. GC-MS (EI) Calcd. for C₁₀H₉F₂IO₂S 357.93, HRMS (EI⁺) found 357.9342.

Z Product: ¹⁹F NMR (470 MHz, CDCl₃) δ, -97.20.

Compound **A29**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A29** (29.6 mg, 43%), colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 6.41 (t, J = 13.0 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 2.56 (p, J = 8.1 Hz, 1H), 1.79-1.68 (m, 4H), 1.67-1.61 (m, 2H), 1.46-1.40 (m, 2H), 1.35 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.50 (t, J = 34.0 Hz), 131.24 (t, J = 27.8 Hz), 111.81 (t, J = 240.7 Hz), 107.56, 63.45, 46.09, 34.96, 25.83, 14.02; ¹⁹F NMR (470 MHz, CDCl₃) δ -96.78. GC-MS (EI) Calcd. for C₁₁H₁₅F₂IO₂ 344.01, found 344.05.

$$\begin{array}{c|c} & & \text{Chemical Formula: } C_{10}H_{15}F_2IO_2\\ & & \text{Exact Mass: } 332.01 \end{array}$$

Compound **A30**³: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A30** (15.9 mg, 24%), colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 6.40 (t, J = 13.2 Hz, 1H), 4.33 (q, J = 7.1 Hz, 2H), 2.60 (t, J = 7.6 Hz, 2H), 1.54-1.46 (m, 2H), 1.35 (td, J = 7.4, 2.9 Hz, 6H), 0.93 (t, J = 7.3 Hz, 3H). ¹⁹F NMR (470 MHz, CDCl₃) δ -97.73. GC-MS (EI) Calcd. for C₁₀H₁₅F₃IO₂ 332.01, found 332.05.

Compound **A31**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 20:1) to afford the **A31** (31.8 mg, 41%), colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 6.40 (t, J = 13.2 Hz, 1H), 4.33 (q, J = 7.2 Hz, 2H), 2.66-2.54 (m, 2H), 1.57-1.49 (m, 2H), 1.36 (t, J = 7.1 Hz, 3H), 1.33-1.24 (m, 11H), 0.88 (t, J = 6.7 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.37 (t, J = 55.4 Hz), 131.31 (t, J = 27.7 Hz), 111.69 (t, J = 254.0 Hz), 63.46, 40.89, 31.92, 30.04, 29.42, 29.24, 28.51, 22.76, 14.20, 14.03; ¹⁹F NMR (470 MHz, CDCl₃) δ -97.68. GC-MS (EI) Calcd. for C₁₄H₂₃F₂IO₂ 388.07, HRMS (EI⁺) found 388.0720.

Compound **A32**: purified by column chromatography on silica gel (petroleum ether/EtOAc = 40:1) to afford the **A32** (59.7 mg, 79%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.27 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.51 (t, J = 13.3 Hz, 1H), 3.81 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 159.24, 132.50, 127.82, 125.23 (t, J = 21.9 Hz), 112.55, 112.32, 54.28; 19 F NMR (470 MHz, CDCl₃) δ -84.95--85.85 (m), -108.45--109.61 (m). GC-MS (EI) Calcd. for $C_{11}H_8F_5IO$ 377.95, HRMS (EI $^+$) found 377.9545.

Compound **A33**: purified by column chromatography on silica gel (petroleum ether) to afford the **A33** (50.4 mg, 53%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 8.2 Hz, 2H), 7.16 (d, J = 8.2 Hz, 2H), 6.65-6.55 (m, 1H); 13 C NMR (126 MHz, CDCl₃) δ 139.12, 130.28, 127.40, 126.43 (t, J = 22.1 Hz), 122.57, 109.89; 19 F NMR (470 MHz, CDCl₃) δ -80.22 (t, J = 2.52 Hz), -106.12 (d, J = 9.4 Hz), -127.14. GC-MS (EI) Calcd. for $C_{11}H_5BrF_7I$ 475.85, HRMS (EI $^+$) found 475.8510.

Compound **A34**: purified by column chromatography on silica gel (petroleum ether) to afford the **A34** (70.4 mg, 73%), yellow liquid (E/Z=81:19, the ratio detected by 1 H NMR). 1 H NMR (500 MHz, CDCl₃) δ 7.33 (d, J=8.6 Hz, 2H), 7.24 (d, J=8.5 Hz, 2H), 6.61 (t, J=13.4 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 139.80, 135.48, 129.47 (d, J=26.1 Hz), 128.90 (d, J=13.4 Hz), 128.47, 128.35, 127.72 (t, J=22.3 Hz), 124.52 (t, J=23.3 Hz), 111.05; 19 F NMR (470 MHz, CDCl₃) δ -81.02 (t, J=9.7 Hz), -105.42 (t, J=12.3 Hz), -123.57 – -123.96 (m), -125.83 (td, J=12.3, 4.8 Hz). GC-MS (EI) Calcd. for $C_{12}H_5$ ClF₉I 481.90, found 481.90.

Z product: 1 H NMR (500 MHz, CDCl₃) δ 7.45-7.39 (m, 2H), 7.38-7.34 (m, 2H), 6.51 (t, J = 13.1 Hz, 1H).

Compound **A35**: purified by column chromatography on silica gel (petroleum ether) to afford the **A35** (73.8 mg, 65%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.21 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), 6.57 (t, J = 13.5 Hz, 1H), 2.64-2.55 (m, 2H), 1.62 (p, J = 7.3 Hz, 2H), 1.33 (dh, J = 7.0, 3.9, 3.1 Hz, 4H), 0.90 (t, J = 6.8 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 144.64, 138.67, 128.06, 127.03, 126.72 (t, J = 18.9 Hz), 35.86, 31.64, 30.91, 22.63, 14.11; 19 F NMR (470 MHz, CDCl₃) δ -80.79 (t, J = 9.8 Hz), -105.07 (t, J = 13.0 Hz), -121.86--122.83 (m), -122.89--123.57 (m), -125.70--126.67 (m). GC-MS (EI) Calcd. for $C_{18}H_{16}F_{11}I$ 568.01, found 568.02.

Compound **A36**: purified by column chromatography on silica gel (petroleum ether) to afford the **A36** (73.7 mg, 61%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 6.59 (t, J = 13.5 Hz, 1H), 2.66-2.59 (m, 2H), 1.67-1.58 (m, 2H), 1.39 (dt, J = 15.0, 7.4 Hz, 2H), 0.95 (t, J = 7.4 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 144.59, 138.72, 128.49 (d, J = 35.1 Hz),

128.05, 127.03, 126.79 (d, J = 22.5 Hz), 113.59, 35.56, 33.34, 22.48, 13.95; ¹⁹F NMR (470 MHz, CDCl₃) δ -80.79 (d, J = 8.3 Hz), -104.99 (t, J = 13.1 Hz), -121.67 (p, J = 13.6 Hz), -122.31 – -123.85 (m), -126.12 (td, J = 14.0, 6.3 Hz). GC-MS (EI) Calcd. for C₁₈H₁₄F₁₃I 603.99, HRMS (EI⁺) found 603.9938.

Compound **A37**: purified by column chromatography on silica gel (petroleum ether) to afford the **A37** (54.3 mg, 41%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.20 (d, J = 7.9 Hz, 1H), 7.13 (d, J = 7.9 Hz, 1H), 6.57 (t, J = 13.5 Hz, 0H), 2.35 (s, 1H); 13 C NMR (126 MHz, CDCl₃) δ 139.61, 138.63, 128.79 (t, J = 60.5 Hz), 128.76, 126.99, 126.77 (t, J = 35.3 Hz), 113.41, 21.42; 19 F NMR (470 MHz, CDCl₃) δ -80.85 (t, J = 9.8 Hz), -105.06 (t, J = 13.1 Hz), -121.51 (q, J = 14.0, 13.0 Hz), -121.74--122.13 (m), -122.57--123.03 (m), -125.89--126.55 (m). GC-MS (EI) Calcd. for $C_{17}H_8F_{17}I$ 661.94, found 661.74. Z product: 1 H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 7.9 Hz, 1H), 7.16 (s, 0H), 6.49 (t, J = 13.3 Hz, 0H), 2.38 (s, 2H).

Chemical Formula:
$$C_{18}H_6F_{21}I$$

$$C_{10}F_{21} \qquad \text{Exact Mass: 747.92}$$

Compound **A38**: purified by column chromatography on silica gel (petroleum ether) to afford the **A38** (55.4 mg, 37%), white solid. 1 H NMR (500 MHz, CDCl₃) δ 7.35-7.27 (m, 5H), 6.59 (t, J = 13.5 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 141.47, 139.77, 134.71-130.89 (m), 130.21, 129.31, 129.00, 128.64 (d, J = 13.4 Hz), 128.04, 127.68, 127.25 (d, J = 22.7 Hz), 126.97-126.78 (m), 118.63-118.11 (m), 115.23-115.00 (m), 113.08-12.46 (m), 111.14-110.36 (m), 109.60-107.58 (m); 19 F NMR (470 MHz, CDCl₃) δ -80.74 (t, J = 10.0 Hz), -105.17 (t, J = 12.8 Hz), -121.46 , -121.56--122.01 (m), -122.57--122.92 (m), -126.08 (td, J = 14.5, 6.8 Hz). GC-MS (EI) Calcd. for $C_{18}H_6F_{21}I$ 747.92, found 746.96.

Chemical Formula:
$$C_{12}H_6F_9I$$
Exact Mass: 447.94

Compound **A39**⁴: purified by column chromatography on silica gel (petroleum ether) to afford the **A-39** (48.4 mg, 54%), colorless liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.37-7.27 (m, 5H), 6.60 (t, J = 13.5 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 141.41, 129.39, 128.65, 128.11, 126.94, 112.89; 19 F NMR (470 MHz, CDCl₃) δ -81.03 (t, J = 9.7 Hz), -105.41 (t, J = 13.1 Hz), -123.78 (d, J = 9.3 Hz), -124.92--127.97 (m). GC-MS (EI) Calcd. for $C_{12}H_{6}F_{9}i$ 447.94, found 448.12.

Compound **A40**⁵: purified by column chromatography on silica gel (petroleum ether) to afford the **A40** (44.9 mg, 41%), colorless liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.28-7.20 (m, 5H), 6.52 (t, J = 13.5 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 141.43, 130.30, 129.38, 128.48 (d, J = 40.1 Hz), 128.10, 127.19 (d, J = 22.0 Hz), 126.93; 19 F NMR (470 MHz, CDCl₃) δ -80.82 (d, J = 8.1 Hz), -105.19 (t, J = 13.1 Hz), -121.71 (t, J = 14.6 Hz), -122.84 (d, J = 9.0 Hz), -126.15 (ddd, J = 19.7, 14.2, 5.9 Hz). GC-MS (EI) Calcd. for $C_{14}H_{6}F_{13}I$ 547.93, found 548.07.

Compound **A41**⁶: purified by column chromatography on silica gel (petroleum ether) to afford the **A41** (51.8 mg, 40%), colorless liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.36-7.27 (m, 5H), 6.60 (t, J = 13.5 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 141.43, 129.38, 128.10, 127.12, 126.93, 112.79; 19 F NMR (470 MHz, CDCl₃) δ -80.79 (t, J = 10.0 Hz), -105.19 (t, J = 13.0 Hz), -120.95--121.64 (m), -121.64--122.18 (m), -122.77 (dddd, J = 30.8, 24.1, 15.3, 8.6 Hz), -126.12 (td, J = 13.6, 13.0, 7.1 Hz). GC-MS (EI) Calcd. for $C_{16}H_{6}F_{17}I$ 647.92, found 647.92.

Compound **A42**: purified by column chromatography on silica gel (petroleum ether) to afford the **A42** (34.8 mg, 29%), colorless liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.37 (dd, J = 7.0, 3.6 Hz, 5H), 6.39 (t, J = 13.5 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 137.56 (d, J = 32.0 Hz), 129.94, 128.19, 127.87, 126.94, 119.42 (t, J = 22.4 Hz); 19 F NMR (470 MHz, CDCl₃) δ -80.80 (t, J = 10.2 Hz), -105.21 (t, J = 13.2 Hz), -121.47 (q, J = 13.6 Hz), -121.90 (tt, J = 23.7, 13.1 Hz), -122.78 (ddd, J = 59.7, 21.3, 11.7 Hz), -125.98--126.27 (m). GC-MS (EI) Calcd. for $C_{16}H_{6}BrF_{17}$ 599.94, found 600.06.

Compound **B1**: purified by column chromatography on silica gel (petroleum ether) to afford the **B1** (23.2 mg, 39%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.66-7.58 (m, 4H), 7.58-7.51 (m, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.38 (dd, J = 8.4, 6.4 Hz, 1H), 7.20 (d, J = 16.7 Hz, 1H), 6.21 (dt, J = 16.1, 11.8 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 143.10, 140.19, 139.32, 132.55, 129.05, 128.23, 128.01, 127.72, 127.19, 114.02 (t, J = 22.9 Hz); 19 F NMR (470 MHz, CDCl₃) δ -85.00, -114.77 (d, J = 2.6 Hz). GC-MS (EI) Calcd. for C₁₆H₁₁F₅ 298.08, HRMS (EI⁺) found 298.0785.

$$C_3F_7$$
 Chemical Formula: $C_{11}H_6F_7NO_2$ Exact Mass: 317.03

Compound **B2**: purified by column chromatography on silica gel (petroleum ether) to afford the **B2** (19.7 mg, 31%), colorless liquid. 1 H NMR (500 MHz, CDCl₃) δ 8.28 (d, J = 8.7 Hz, 2H), 7.65 (d, J =

8.7 Hz, 2H), 7.26 (d, J = 16.2 Hz, 1H), 6.36 (dt, J = 16.2, 11.8 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 148.74, 139.53, 137.61, 128.54, 124.39, 118.67 (t, J = 23.2 Hz); 19 F NMR (470 MHz, CDCl₃) δ -80.23 (t, J = 9.1 Hz), -112.83 (q, J = 9.3 Hz), -127.33. GC-MS (EI) Calcd. for $C_{11}H_6F_7NO_2$ 317.03, HRMS (EI⁺) found 317.0284.

$$C_4F_9$$
 Chemical Formula: $C_{13}H_9F_9O$ Exact Mass: 352.05

Compound **B3**⁷: purified by column chromatography on silica gel (petroleum ether) to afford the **B3** (31.7 mg, 45%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 8.7 Hz, 2H), 7.11 (d, J = 16.1 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.05 (dt, J = 16.2, 12.3 Hz, 1H), 3.85 (s, 3H); 13 C NMR (126 MHz, CDCl₃) δ 161.31, 139.27, 129.30, 126.36, 114.46, 111.73 (t, J = 22.7 Hz); 19 F NMR (470 MHz, CDCl₃) δ -81.01 (dd, J = 11.4, 8.0 Hz), -110.79 (t, J = 12.1 Hz), -122.26--125.30 (m), -125.30--126.98 (m). GC-MS (EI) Calcd. for C₁₃H₉F₉O 352.05, found 352.05.

$$C_5F_{11}$$
 Chemical Formula: $C_{14}H_6F_{14}$ Exact Mass: 440.02

Compound **B4**: purified by column chromatography on silica gel (petroleum ether) to afford the **B4** (25.5 mg, 29%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.67 (d, J = 8.2 Hz, 2H), 7.60 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 16.2 Hz, 1H), 6.30 (dt, J = 16.2, 11.9 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 138.43, 136.93, 132.19 (t, J = 32.8 Hz), 128.02, 126.11, 123.85 (q, J = 272.7 Hz), 117.12 (t, J = 23.7 Hz); 19 F NMR (470 MHz, CDCl₃) δ -62.91 , -80.48--81.18 (m), -111.58 (t, J = 12.6 Hz), -122.35 (dtt, J = 15.8, 6.0, 3.1 Hz), -122.94--123.73 (m), -126.22 (dtd, J = 14.3, 6.9, 3.4 Hz). GC-MS (EI) Calcd. for $C_{14}H_{6}F_{14}$ 440.02, HRMS (EI $^{+}$) found 440.0253.

Compound **B5**⁷: purified by column chromatography on silica gel (petroleum ether) to afford the **B5** (46.0 mg, 46%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 16.0 Hz, 1H), 6.20 (dt, J = 16.3, 12.0 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 138.68, 132.53, 132.34, 129.19, 124.61, 115.19 (t, J = 22.7 Hz); 19 F NMR (470 MHz, CDCl₃) δ -80.75 (t, J = 10.2 Hz), -111.24 (dd, J = 15.6, 10.8 Hz), -120.67--122.40 (m), -122.60--122.97 (m), -123.15 (td, J = 14.8, 6.8 Hz), -126.12 (td, J = 14.6, 6.9 Hz). GC-MS (EI) Calcd. for $C_{14}H_{6}BrF_{13}$ 499.94, found 499.95.

Compound **B6**: purified by column chromatography on silica gel (petroleum ether) to afford the **B6** (42.2 mg, 38%), yellow liquid (E/Z = 86:14, the ratio detected by ^{1}H NMR). ^{1}H NMR (500 MHz, CDCl₃) δ 7.40 (q, J = 8.7 Hz, 4H), 7.13 (d, J = 16.1 Hz, 1H), 6.18 (dt, J = 16.2, 12.0 Hz, 1H); ^{13}C NMR (126 MHz, CDCl₃) δ 138.57, 136.32, 132.11, 129.36, 128.95, 115.09 (t, J = 23.9 Hz); ^{19}F NMR

(470 MHz, CDCl₃) δ -80.56 (t, J = 10.0 Hz), -111.03 (t, J = 12.8 Hz), -121.21 (q, J = 13.1, 11.9 Hz), -121.72 (tt, J = 21.5, 12.3 Hz), -122.53 (tq, J = 18.8, 8.9, 8.3 Hz), -122.86--123.10 (m), -125.93 (td, J = 14.1, 13.6, 6.3 Hz). GC-MS (EI) Calcd. for C₁₄H₆BrF₁₃ 555.99, HRMS (EI⁺) found 555.9883. Z Product: ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.28 (m, 4H), 7.07 (d, J = 12.8 Hz, 1H), 5.77 (q, J = 15.2 Hz, 1H).

Compound **B7**: purified by column chromatography on silica gel (petroleum ether) to afford the **B7** (24.2 mg, 19%), yellow solid. 1 H NMR (500 MHz, MeOD) δ 7.42-7.31 (m, 2H), 7.07 (dd, J = 16.0, 8.9 Hz, 1H), 6.81-6.73 (m, 2H), 6.52 (s, 1H), 6.19-6.03 (m, 1H); 13 C NMR (126 MHz, MeOD) δ 158.46, 138.75, 128.10, 123.88, 114.34, 108.70 (t, J = 36.5 Hz); 19 F NMR (470 MHz, MeOD) δ -82.50 (t, J = 10.3 Hz), -111.43 (t, J = 13.2 Hz), -122.47, -122.65-123.10 (m), -123.81, -124.19 (d, J = 15.5 Hz), -127.39 (dd, J = 14.9, 7.2 Hz). GC-MS (EI) Calcd. for $C_{18}H_{7}F_{21}O$ 638.02, HRMS (EI⁺) found 638.0159.

Compound **B8**: purified by column chromatography on silica gel (petroleum ether) to afford the **B8** (34.7 mg, 41%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 8.65 (d, J = 5.3 Hz, 1H), 7.73 (td, J = 7.7, 1.7 Hz, 1H), 7.36 (d, J = 7.7 Hz, 1H), 7.29 (dd, J = 7.6, 4.9 Hz, 1H), 7.20 (d, J = 15.7 Hz, 1H), 6.94-6.80 (m, 1H); 13 C NMR (126 MHz, CDCl₃) δ 150.68, 149.11, 137.56, 135.88, 123.33, 123.09, 117.73 (t, J = 22.9 Hz); 19 F NMR (470 MHz, CDCl₃) δ -80.78 (t, J = 10.2 Hz), -111.66 (q, J = 13.3, 12.1 Hz), -121.05--121.88 (m), -122.74--122.96 (m), -123.15 (tt, J = 20.3, 9.8 Hz), -126.15 (tt, J = 11.2, 5.5 Hz). GC-MS (EI) Calcd. for $C_{13}H_{6}F_{13}N$ 423.03, HRMS (EI $^{+}$) found 423.0297.

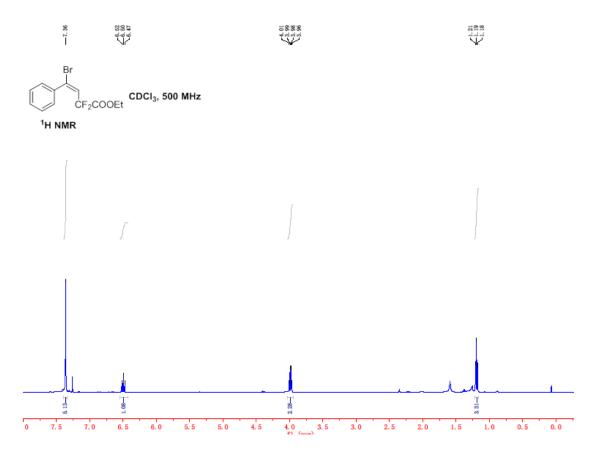
Compound **B9**: purified by column chromatography on silica gel (petroleum ether) to afford the **B9** (33.8 mg, 32%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 5.0 Hz, 1H), 7.27 (dt, J = 15.6 Hz, 1H), 7.21 (d, J = 3.6 Hz, 1H), 7.05 (dd, J = 5.1, 3.6 Hz, 1H), 6.00 (dt, J = 15.9, 12.3 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ 138.39, 132.57, 130.36, 128.16, 128.09, 112.96 (t, J = 22.8 Hz); 19 F NMR (470 MHz, CDCl₃) δ -81.02 (t, J = 10.3 Hz), -111.04 (t, J = 13.0 Hz), -121.64 (q, J = 13.2, 12.0 Hz), -122.15 (tt, J = 21.2, 11.5 Hz), -122.96 (dt, J = 20.3, 10.1 Hz), -123.32 (q, J = 14.3, 10.4 Hz), -126.36 (t, J = 13.7 Hz). GC-MS (EI) Calcd. for $C_{14}H_{5}F_{17}S$ 527.98, found 528.01.

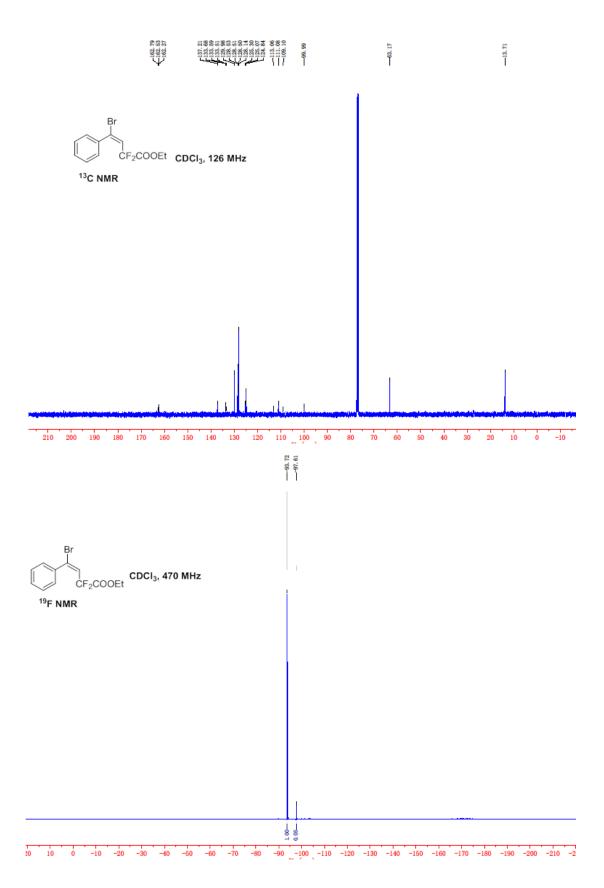
Compound **B10**: purified by column chromatography on silica gel (petroleum ether) to afford the **B10** (36.9 mg, 36%), yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.47 (d, J = 1.7 Hz, 1H), 6.93 (d, J = 15.9 Hz, 1H), 6.58-6.42 (m, 2H), 6.13 (dt, J = 16.0, 12.9 Hz, 1H); 13 C NMR (126 MHz, CDCl₃) δ

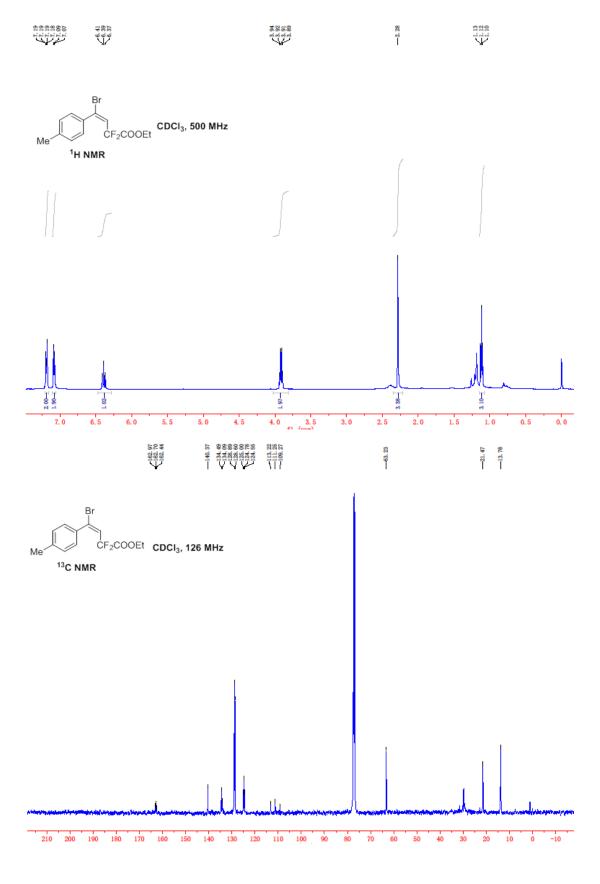
151.41, 148.64, 143.43, 125.62, 112.85, 111.08 (t, J = 39.7 Hz); ¹⁹F NMR (470 MHz, CDCl₃) δ -80.75 (t, J = 10.4 Hz), -111.11, -120.15--121.71 (m), -121.91 (dt, J = 19.1, 8.4 Hz), -122.42--122.91 (m), -122.91--123.40 (m), -124.95--127.70 (m). GC-MS (EI) Calcd. for $C_{14}H_5F_{17}O$ 512.01, HRMS (EI⁺) found 528.0071.

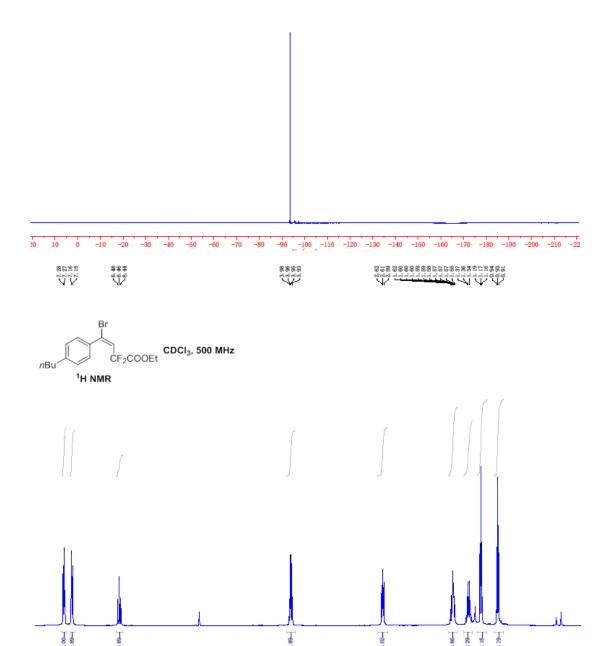
Compound (C1): purified by column chromatography on silica gel (petroleum ether) to afford the C1 (based on 91% 19 F NMR yield, the calculated yield is 31%), colorless liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 6.41 (t, J = 55.2 Hz, 1H), 2.67-2.57 (m, 2H), 1.64-1.56 (m, 2H), 1.35 (dt, J = 14.9, 7.4 Hz, 2H), 0.92 (t, J = 7.3 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 145.65 , 132.23 , 128.76 , 117.09 , 104.44 (t, J = 231.8 Hz) , 88.94, 79.37, 35.79 , 33.39 , 22.41 , 14.03; 19 F NMR (470 MHz, CDCl₃) δ -104.85. GC-MS (EI) Calcd. for $C_{13}H_{14}F_2$ 208.11, found 208.13.

Compound (C2): purified by column chromatography on silica gel (petroleum ether) to afford the C2 (based on 90% 19 F NMR yield, the calculated yield is 37%)), colorless liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 8.1 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 6.41 (t, J = 55.2 Hz, 1H), 2.66-2.56 (m, 2H), 1.61 (dd, J = 10.2, 4.5 Hz, 2H), 1.34-1.29 (m, 4H), 0.89 (t, J = 7.0 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 145.70 , 132.23 , 128.76 , 117.09 , 104.45 (t, J = 231.8 Hz) , 88.94 , 36.08 , 31.54 , 30.96 , 22.64 , 14.14 . 19 F NMR (470 MHz, CDCl₃) δ -104.85. GC-MS (EI) Calcd. for $C_{14}H_{16}F_{2}$ 222.12, found 222.16.


Compound (5)⁸: purified by column chromatography on silica gel (petroleum ether/EtOAc = 25:1) to afford the **5**, yellow liquid. 1 H NMR (500 MHz, CDCl₃) δ 4.34 (q, J = 7.1 Hz, 2H), 1.61-1.51 (m, 6H), 1.35 (t, J = 7.1 Hz, 3H), 1.17 (d, J = 13.1 Hz, 12H); 13 C NMR (126 MHz, CDCl₃) δ 60.36, 39.17, 32.40, 19.73, 15.89; 19 F NMR (470 MHz, CDCl₃) δ -73.44. GC-MS (EI) Calcd. for $C_{13}H_{23}F_{2}NO_{3}$ 279.16, found 279.20.


Compound (6): purified by column chromatography on silica gel (petroleum ether/EtOAc = 30:1) to afford the **6**, brown liquid. 1 H NMR (500 MHz, CDCl₃) δ 7.09 (d, J = 8.5 Hz, 2H), 6.87-6.76 (m, 2H), 4.38 (q, J = 7.2 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 187.34, 136.68, 123.41, 116.11, 63.73, 13.98; 19 F NMR (470 MHz, CDCl₃) δ -75.58. GC-MS (EI) Calcd. for $C_{10}H_{10}F_{2}O_{4}$ 232.05, found 232.07.

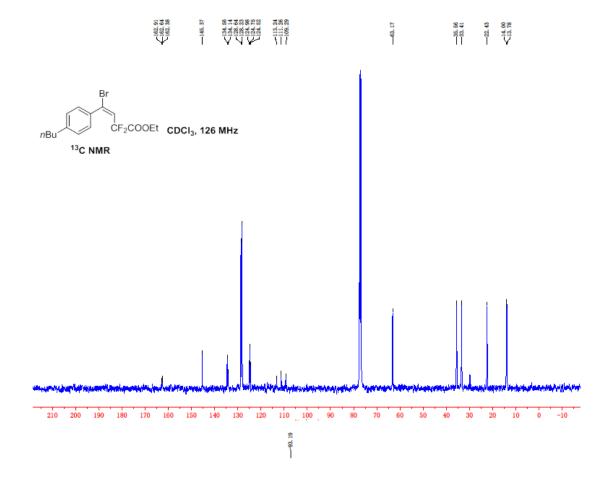

References

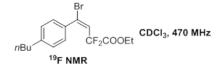

- [1] M.-C. Belhomme, D. Dru, H.-Y. Xiong, D. Cahard, T. Besset, T. Poisson and X. Pannecoucke, *Synthesis*, 2014, 46, 1859-1870.
- [2] G. Li, Y.-X. Cao, C.-G. Luo, Y.-M. Su, Y. Li, Q. Lan and X.-S. Wang, Org. Lett. 2016, 18, 4806-4809.
- [3] X. Fang, X.-Y. Yang, X.-J. Yang, S.-J. Mao, Z.-H. Wang, G.-R. Chen and F.-H. Wu, *Tetrahedron*, 2007, **63**, 10684-10692.
- [4] M. P. Jennings, E. A. Cork and P. V. Ramachandran, J. Org. Chem. 2000, 65, 8763-8766
- [5] T. Xu, C.-W. Cheung and X.-L. Hu, Angew. Chem. Int. Ed. 2014, 53, 4910-4914.
- [6] R. Beniazza, R. Atkinson, C. Absalon, F. Castet, S. A. Denisov, N. D. McClenaghan, D. Last éd écou ères and J.-M. Vincent, Adv. Synth. Catal. 2016, 358, 2949-2961.
- [7] Y.-L. Lai, D.-Z. Lin and J.-M. Huang, J. Org. Chem. 2017, 82, 597-605.
- [8] G.-B. Ma, W. Wan, J.-L. Li, Q.-Y. Hu, H.-Z. Jiang, S.-Z. Zhu, J. Wang and J. Hao, *Chem. Commun*. 2014, **50**, 9749-9752

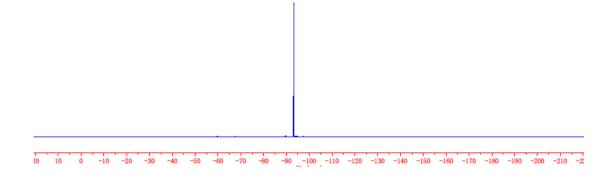
6. NMR Spectra of compounds.

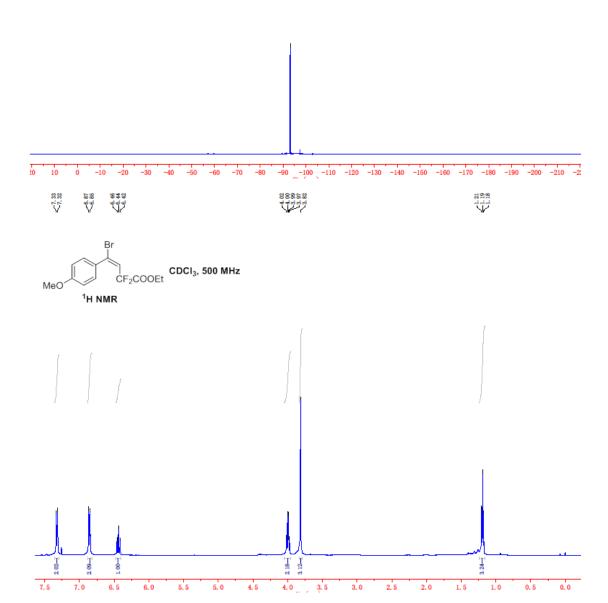
4.0 3.5

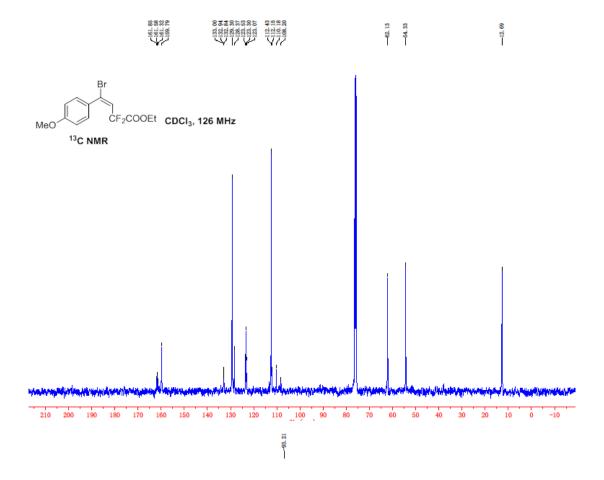
3. 0

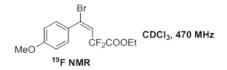

2. 0

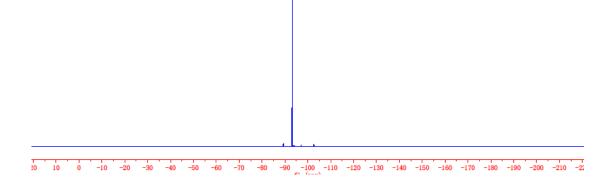

5. 5

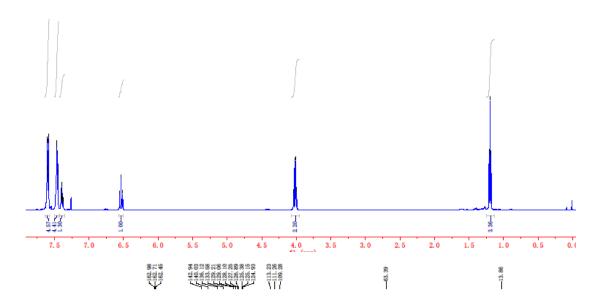

6.0

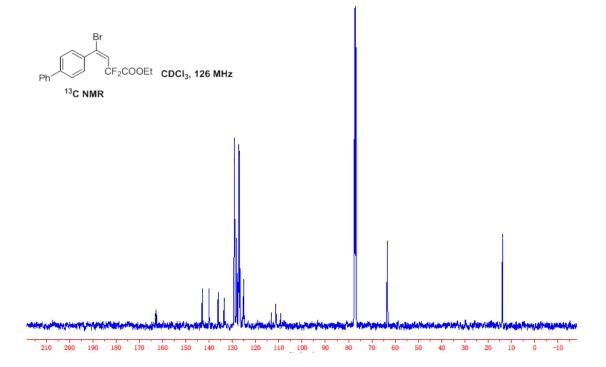

5. 0

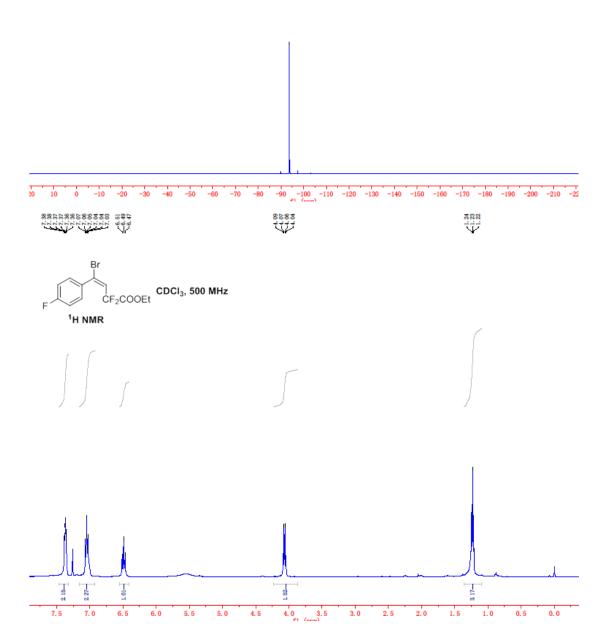

4. 5

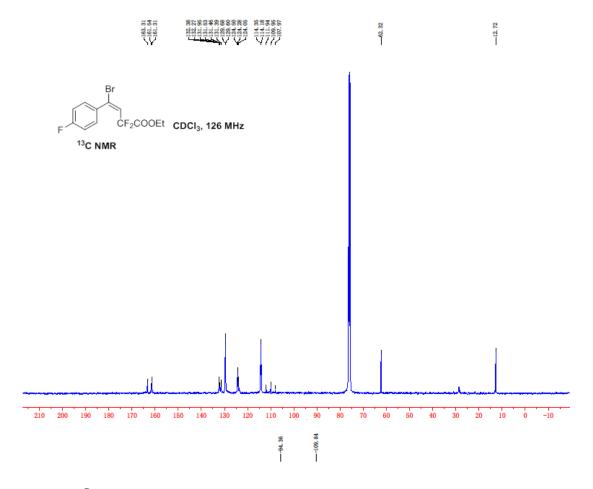


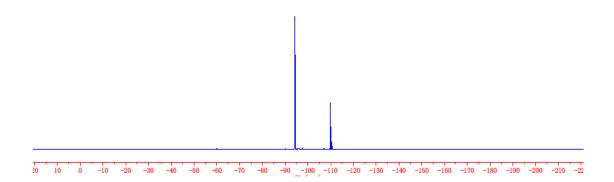


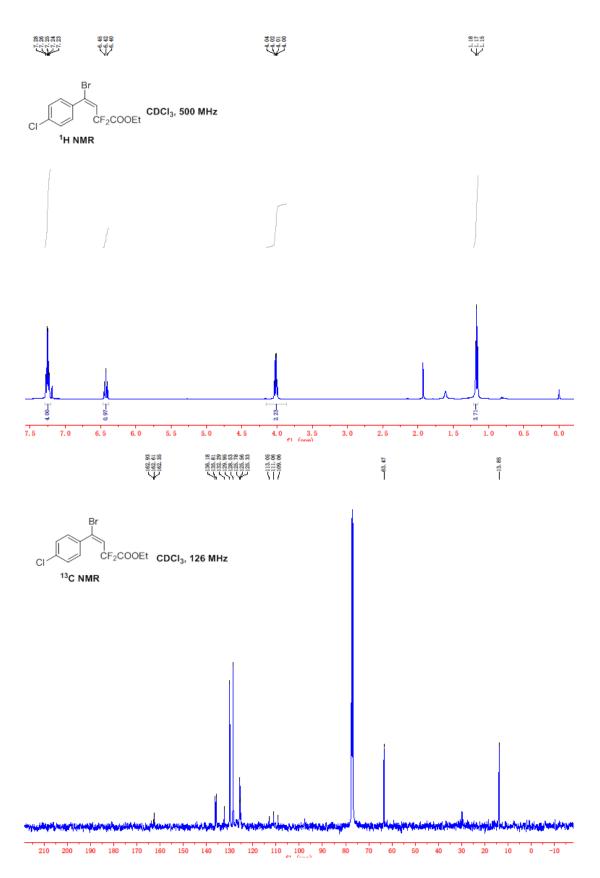


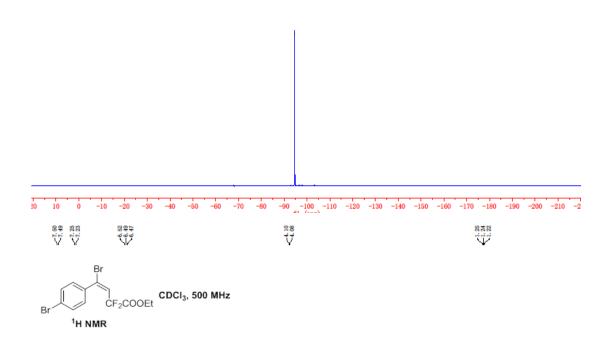


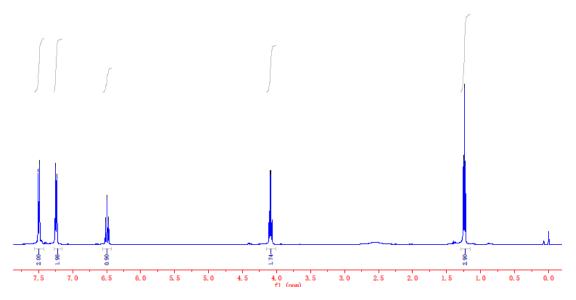


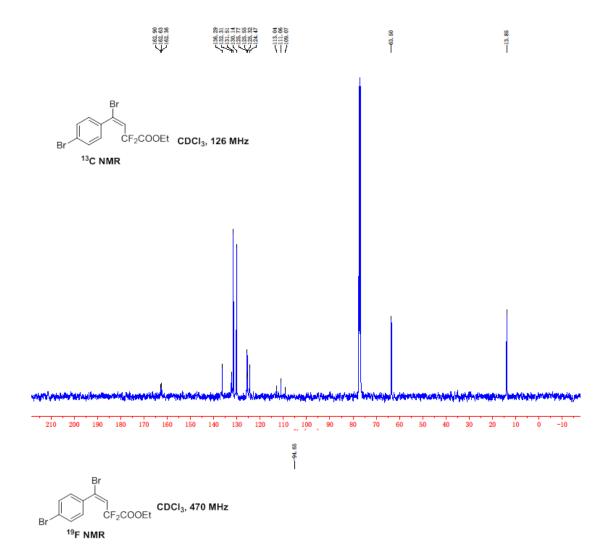


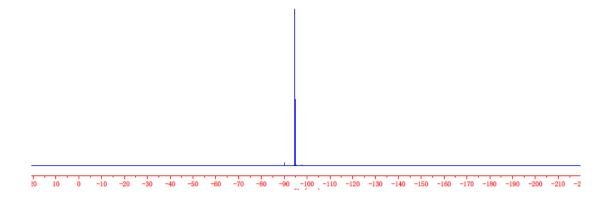


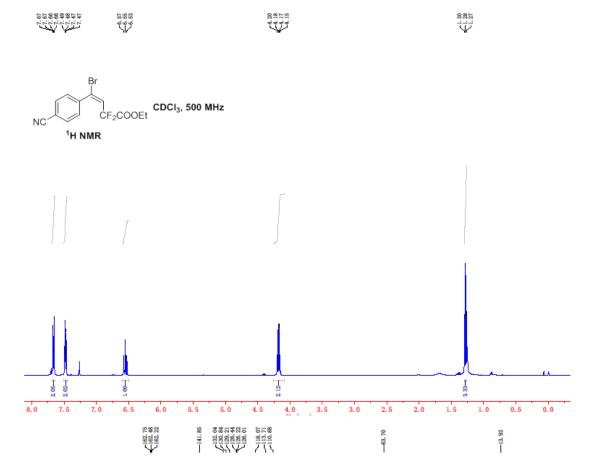


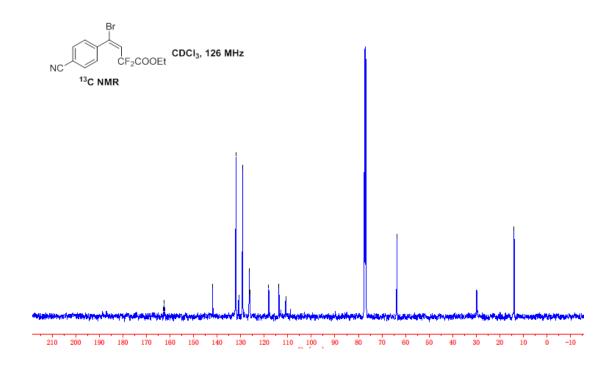


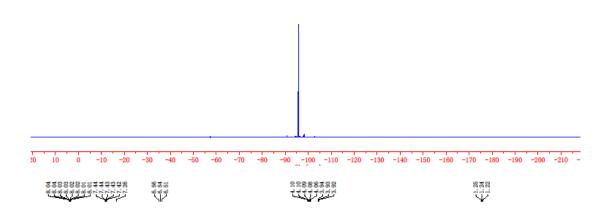


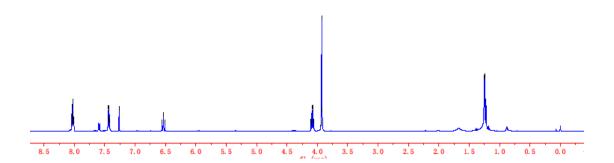


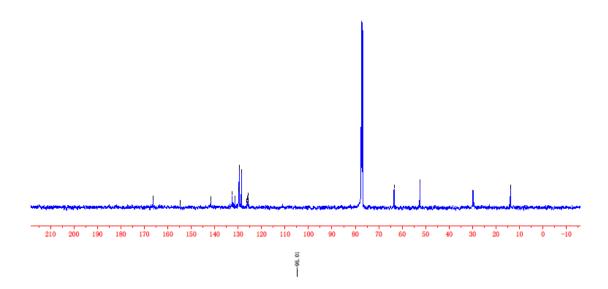


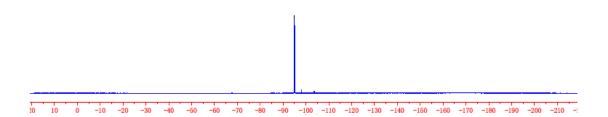


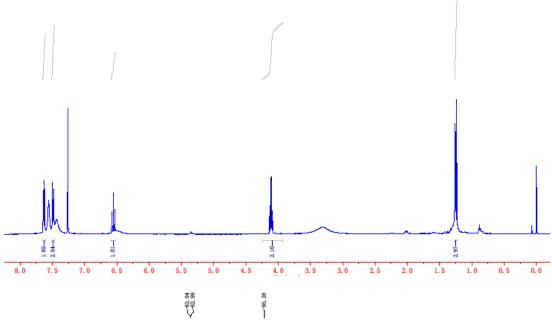


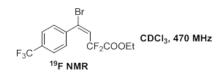


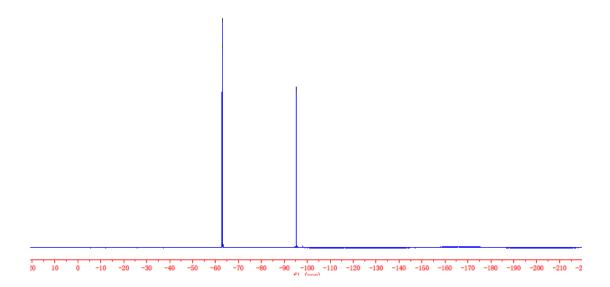


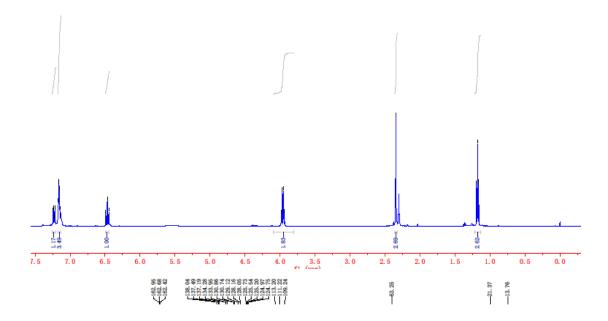


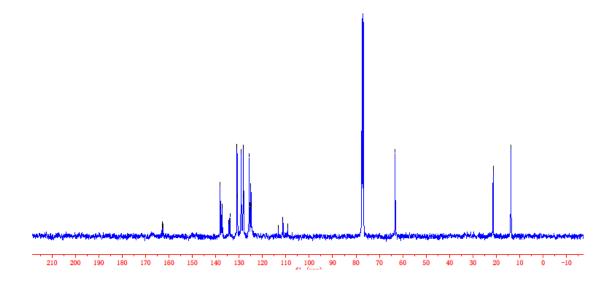


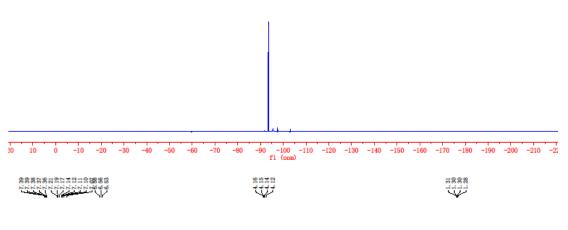








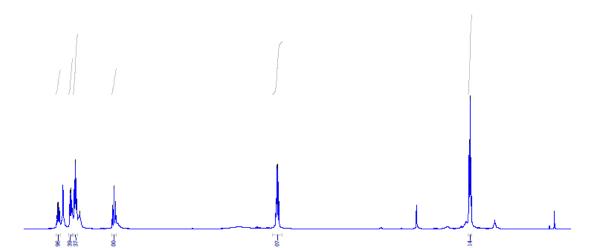




6.5

6. 0

5.5


5. 0

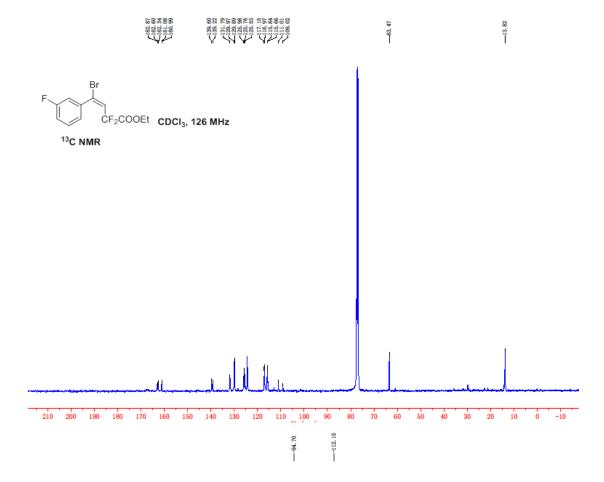
4.5

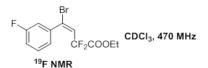
4. 0

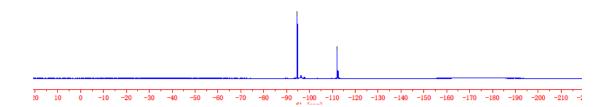
3.5

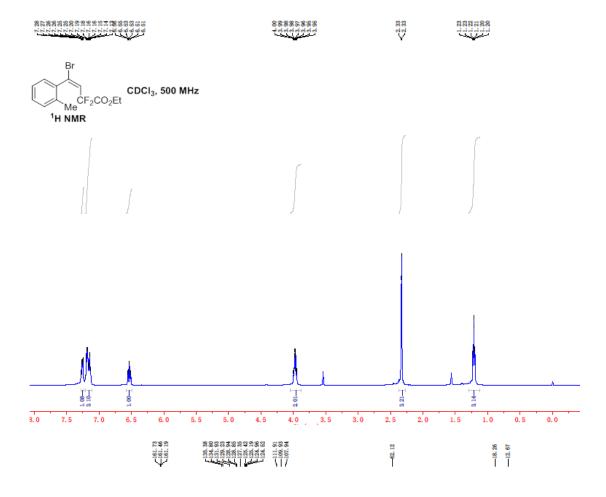
3. 0

2.5

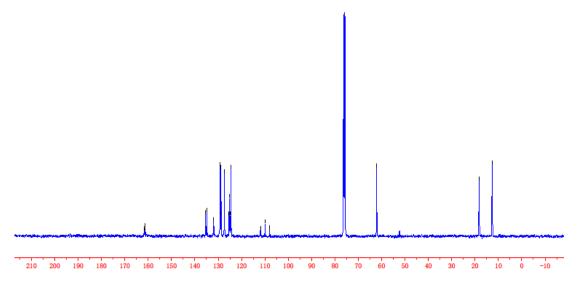

2.0

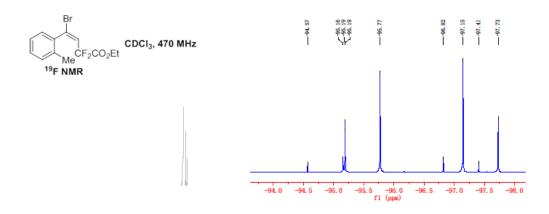

1.5

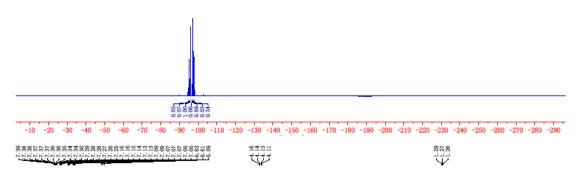

0.5

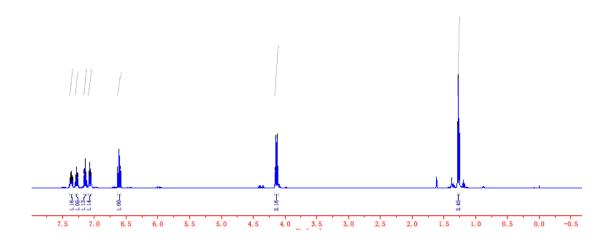

0.0

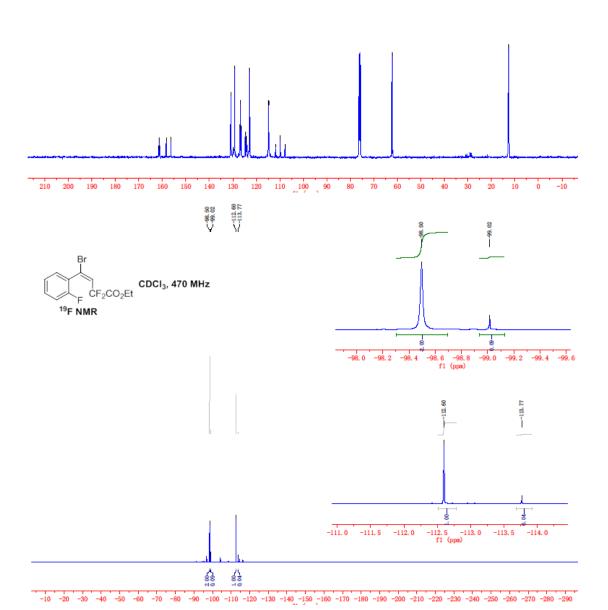
1.0

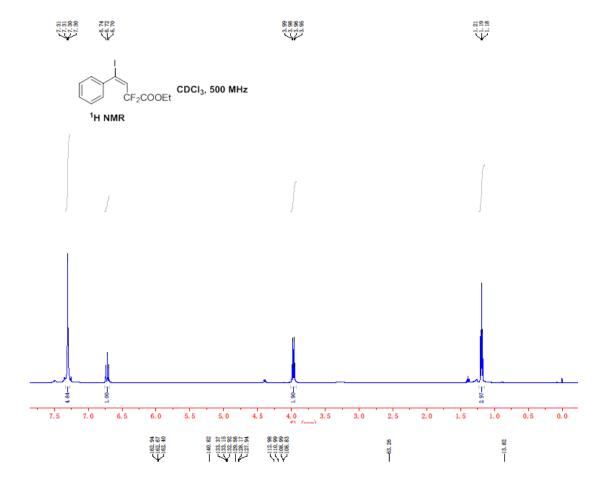


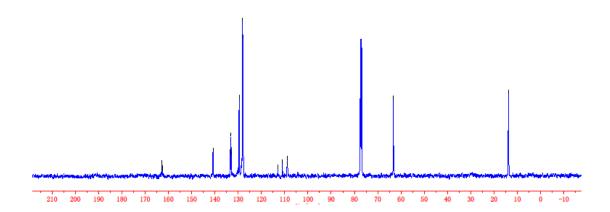


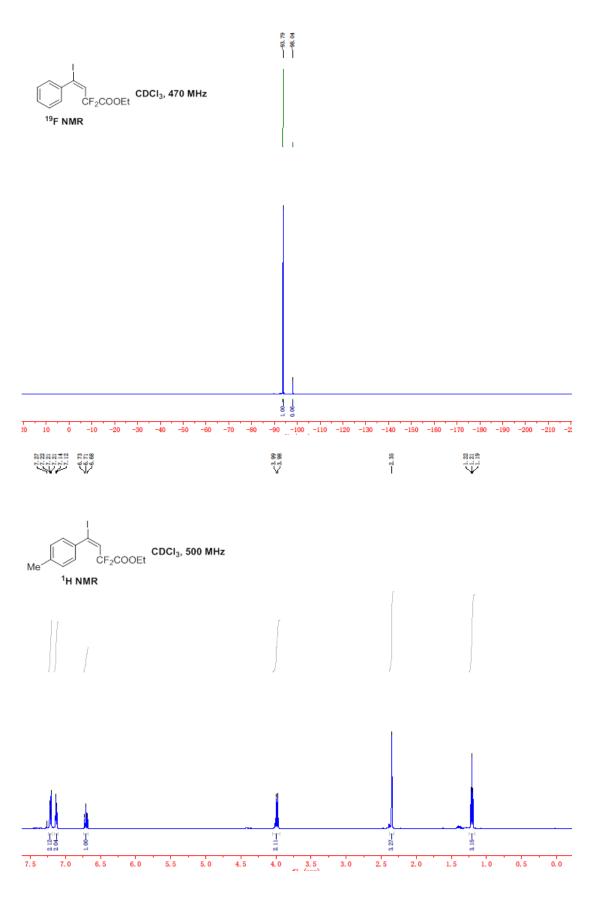


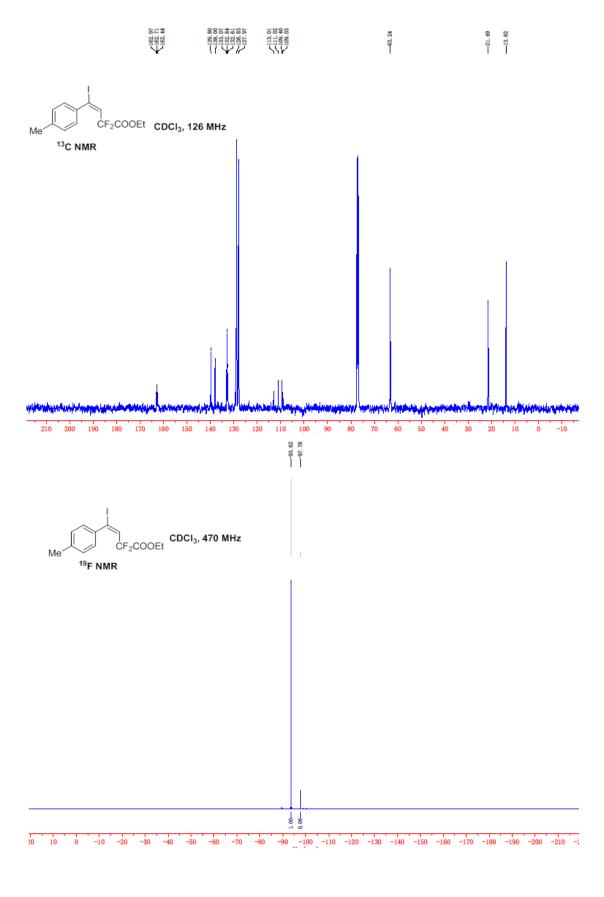


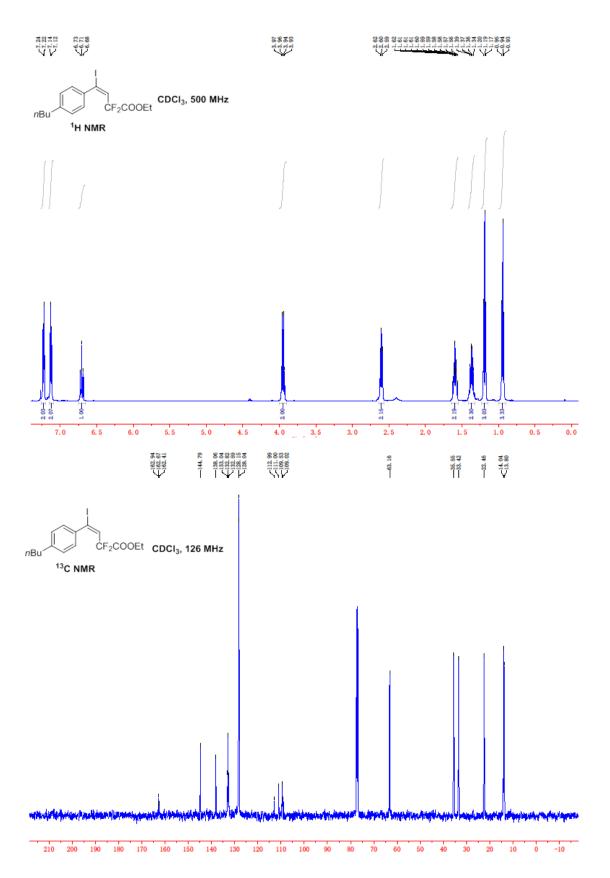


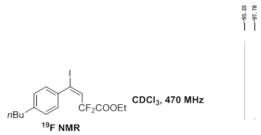


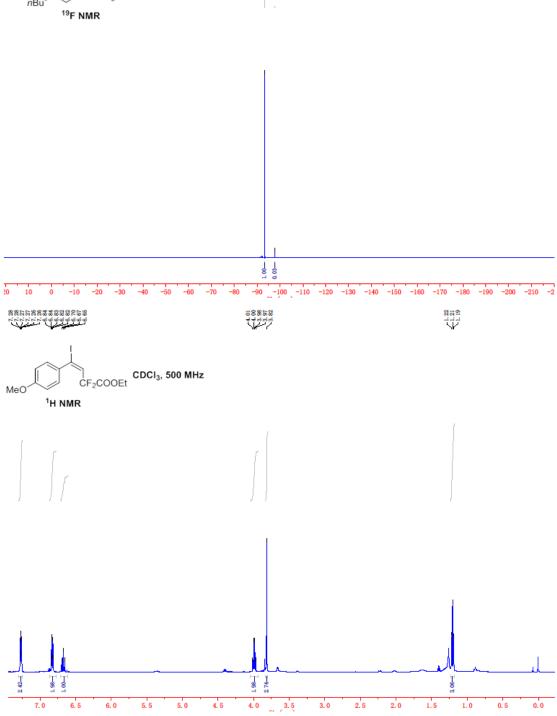


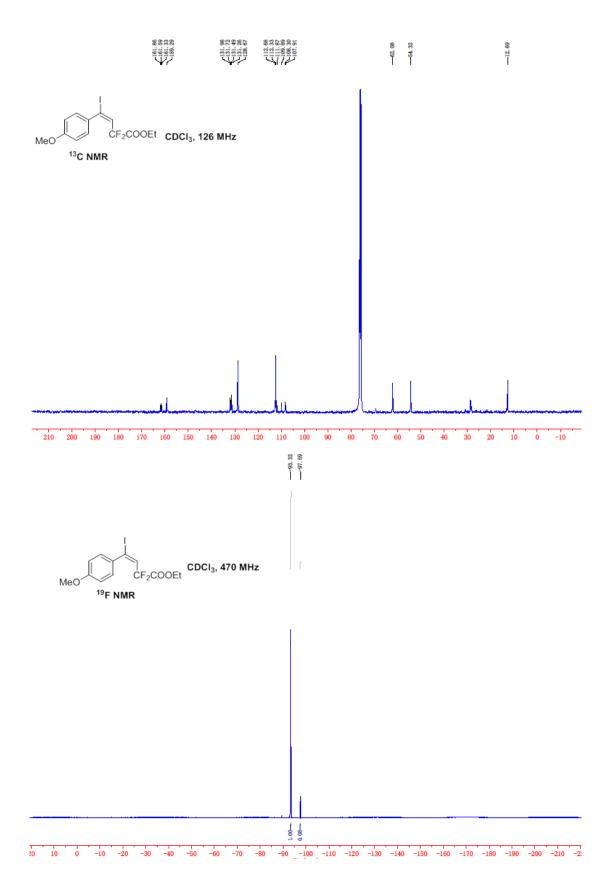


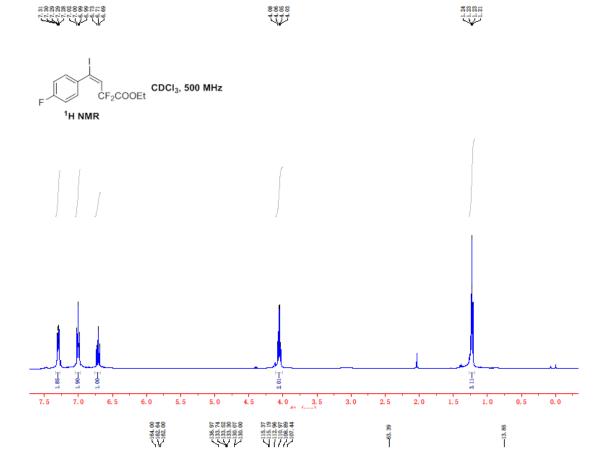


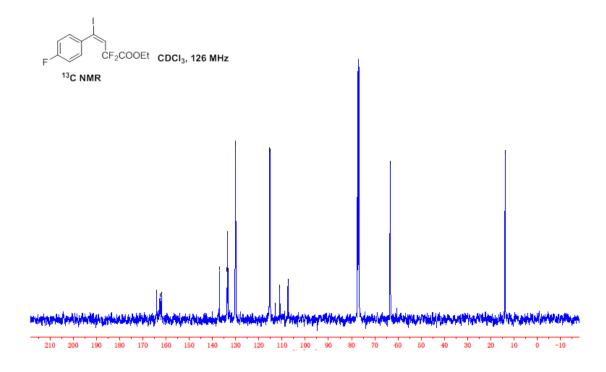


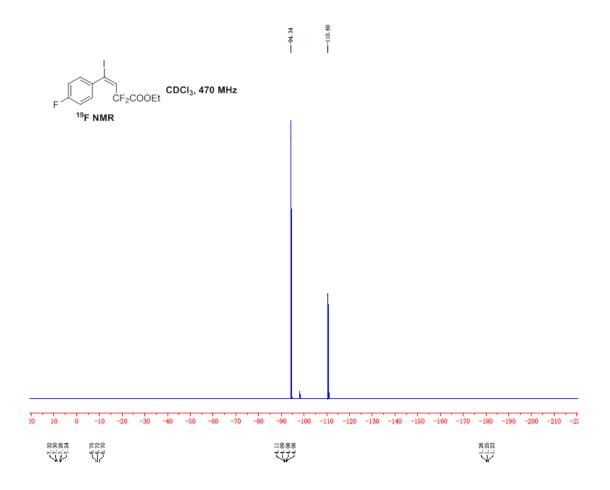

 $^{13}\mathrm{C}\ \mathrm{NMR}$

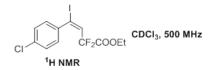


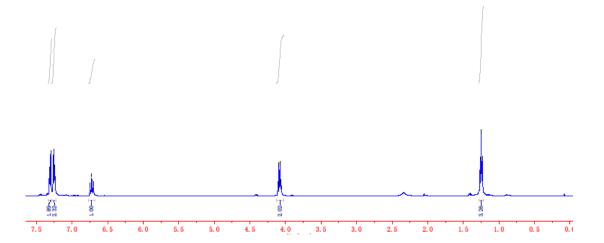


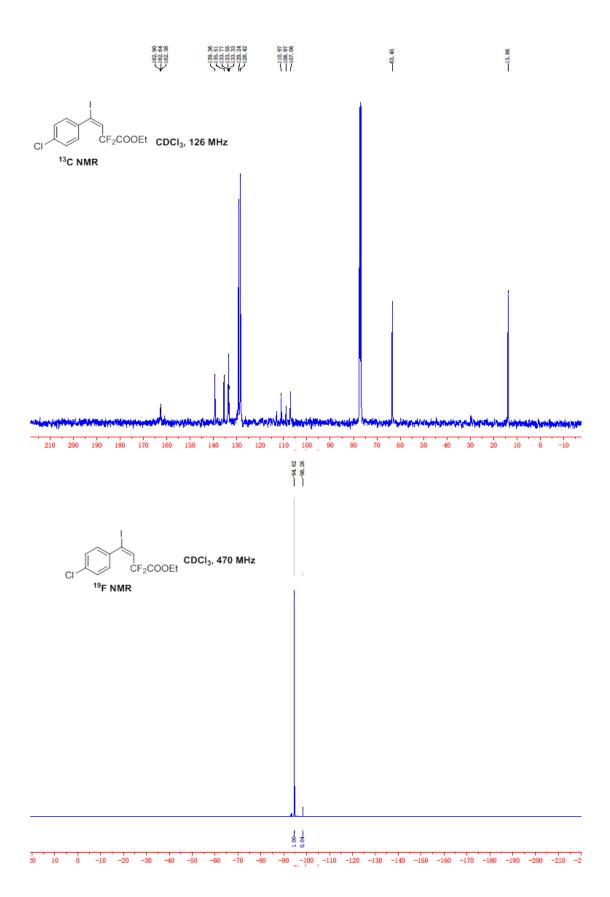


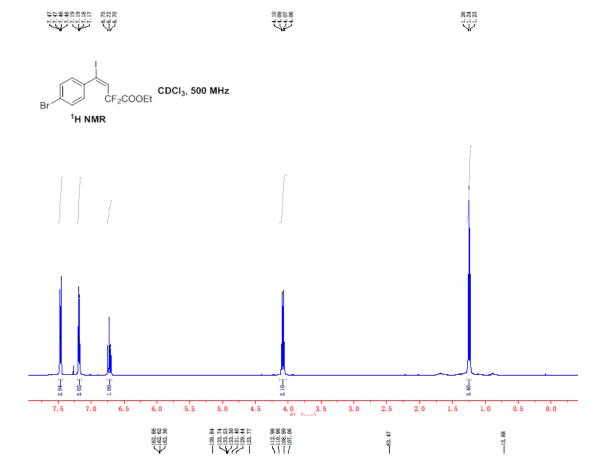


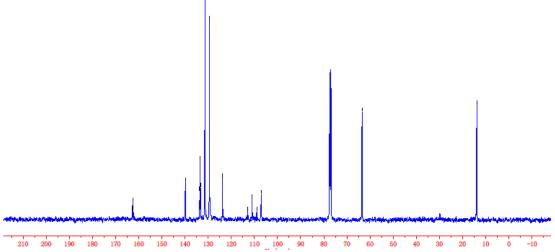


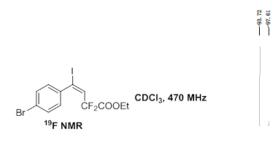


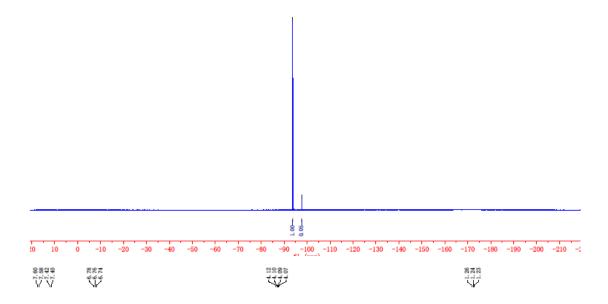


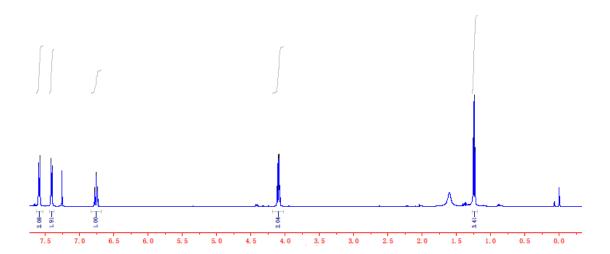


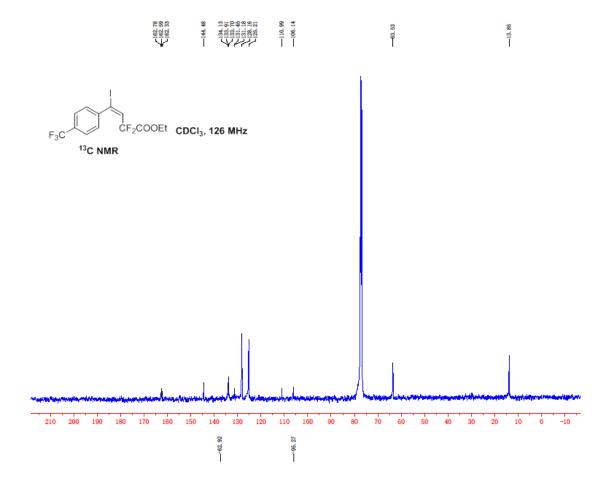


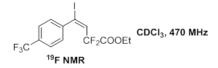


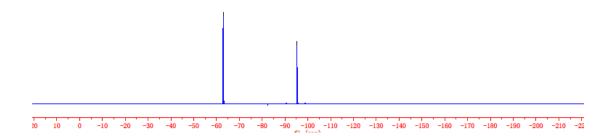


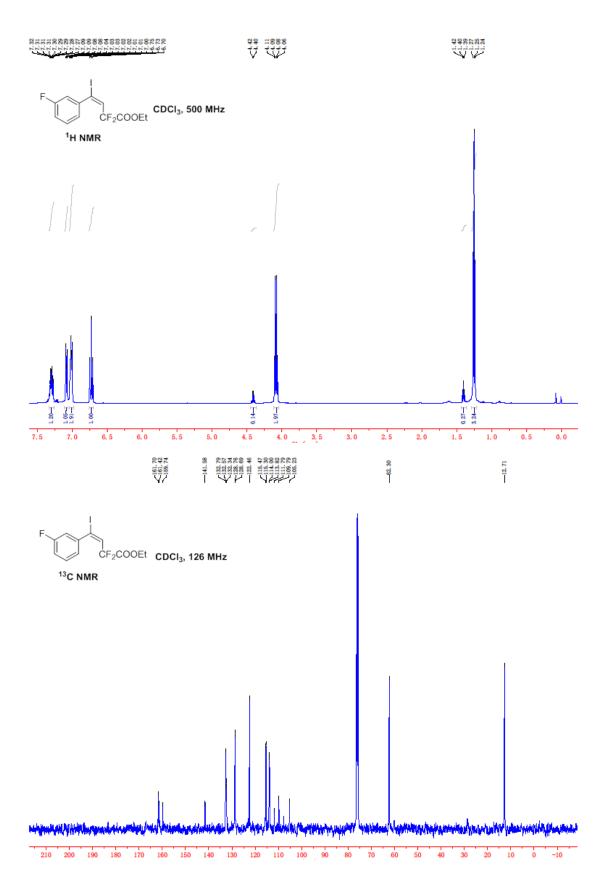


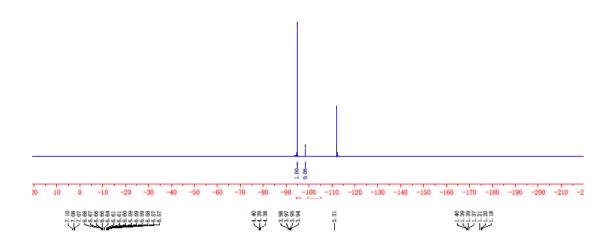


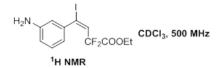


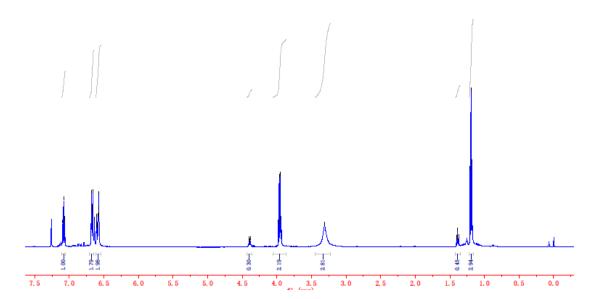


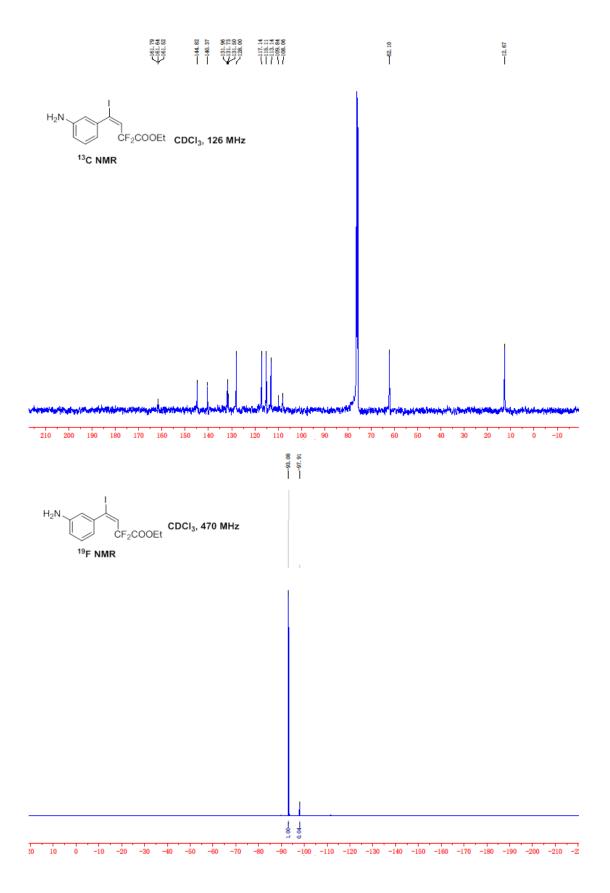


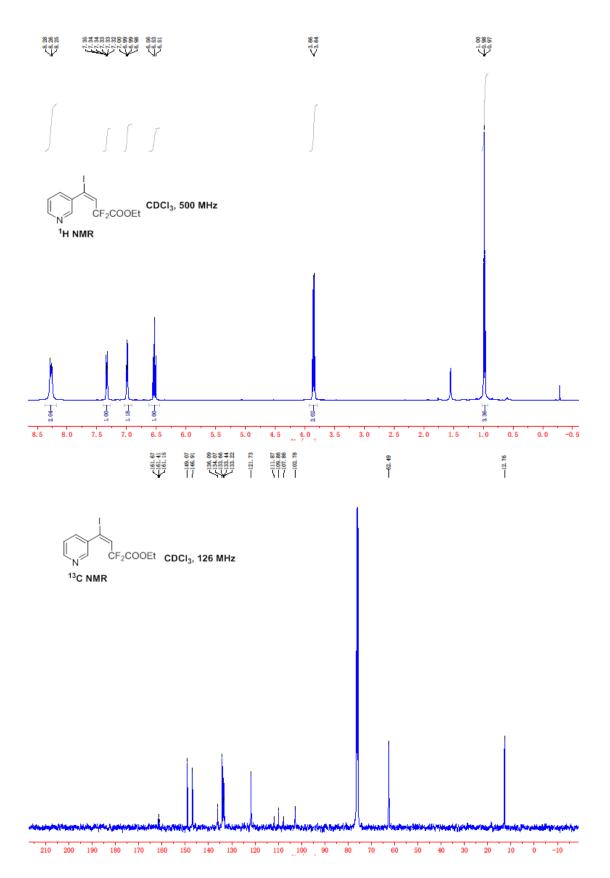


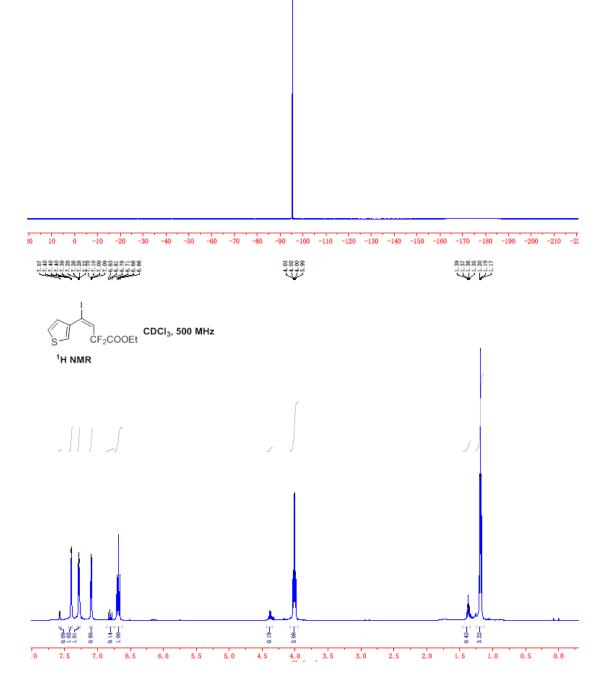


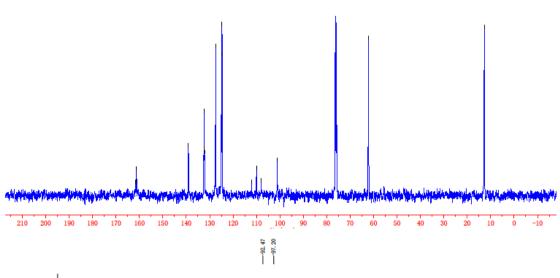


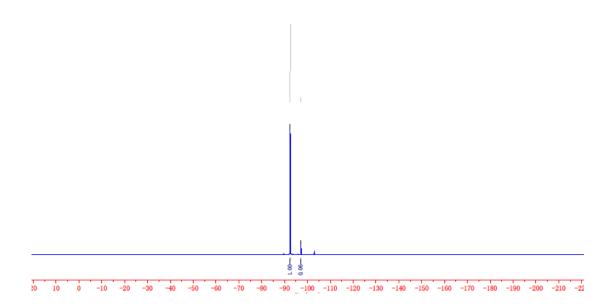


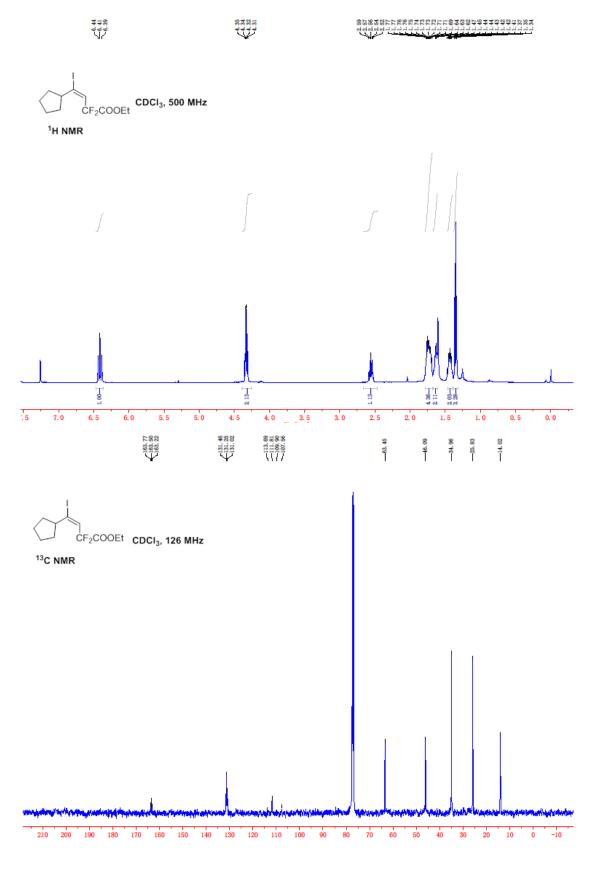




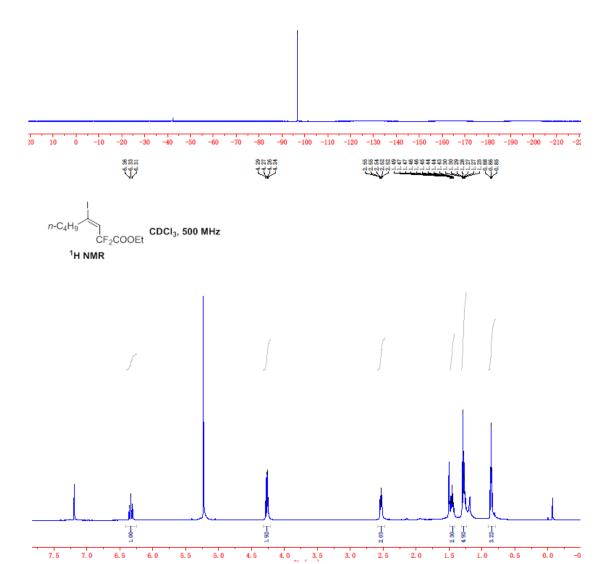


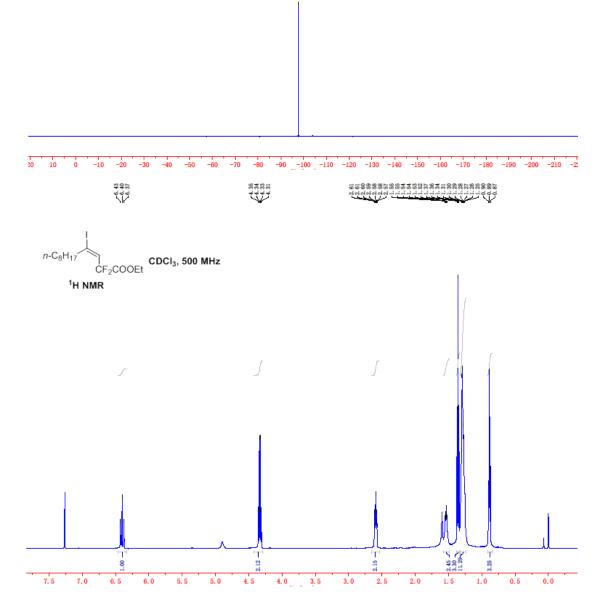


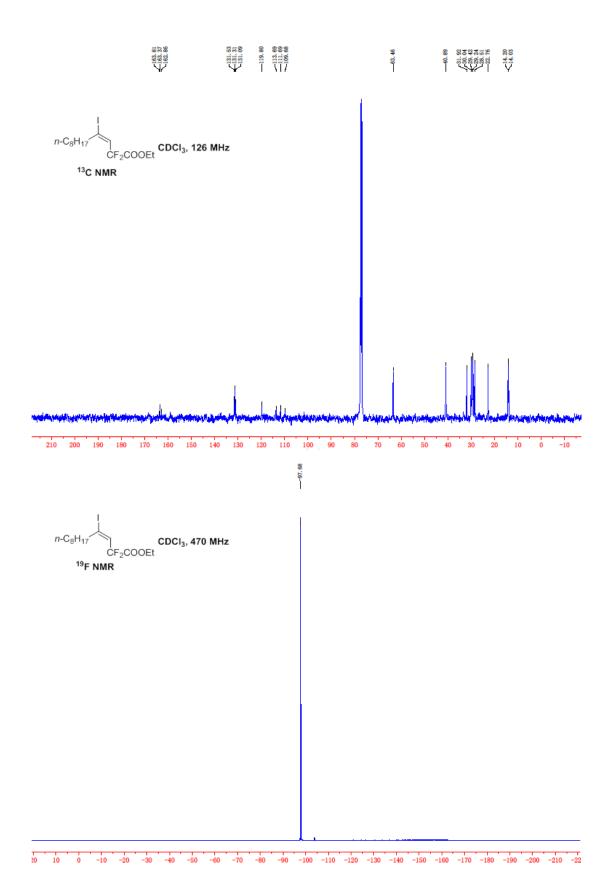



¹³C NMR

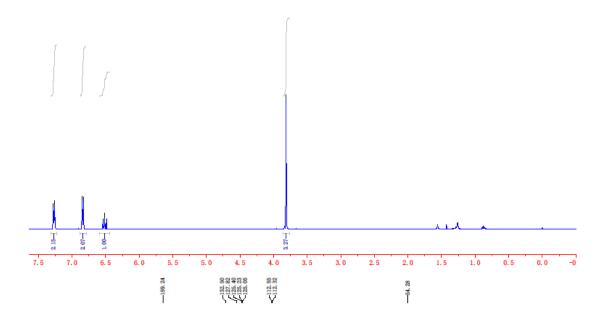
CF₂COOEt CDCI₃, 470 MHz

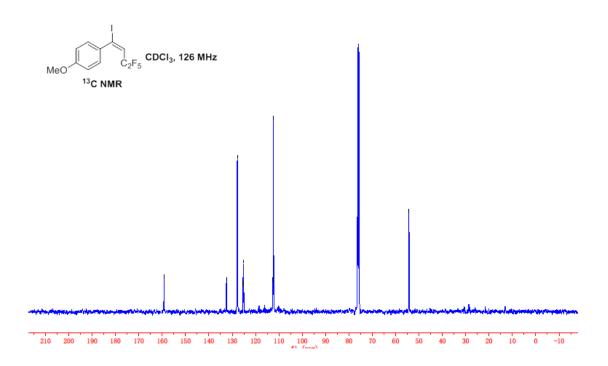

¹⁹F NMR

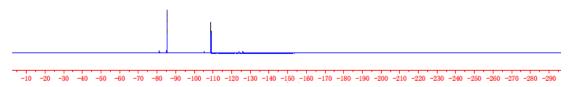


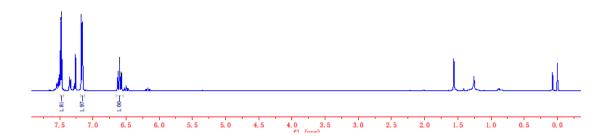


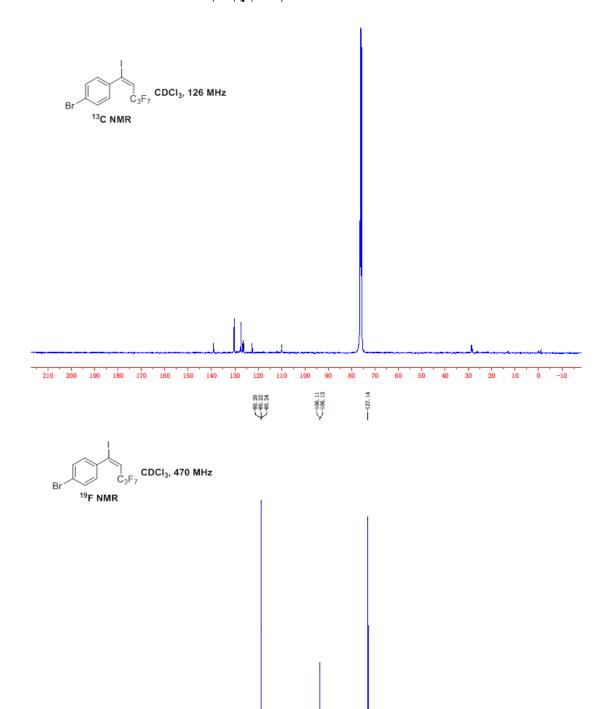
6.0

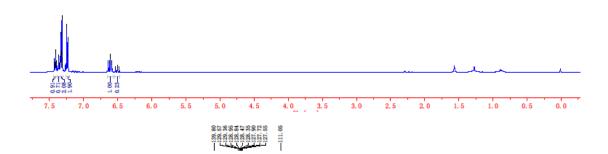

¹⁹F NMR

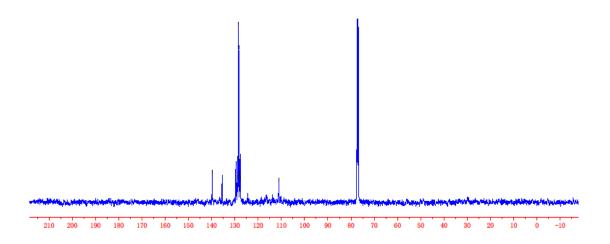


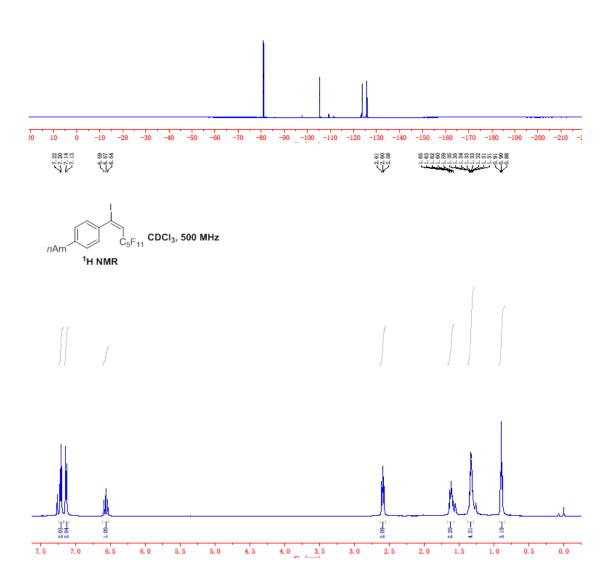


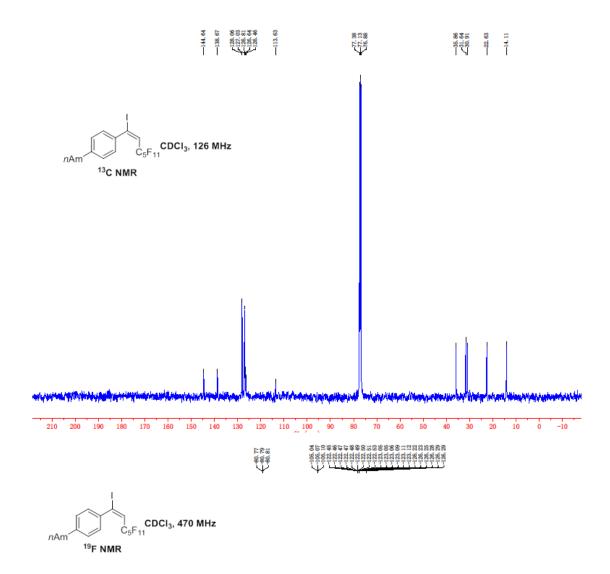


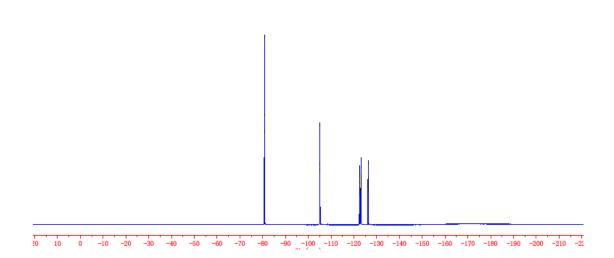

3.81

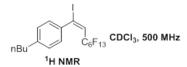


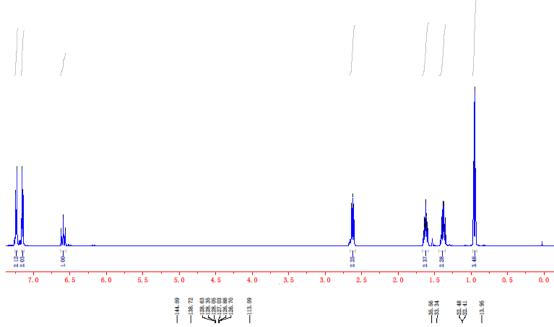


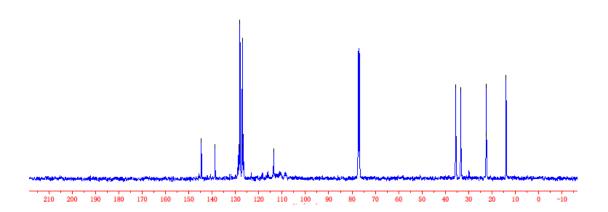


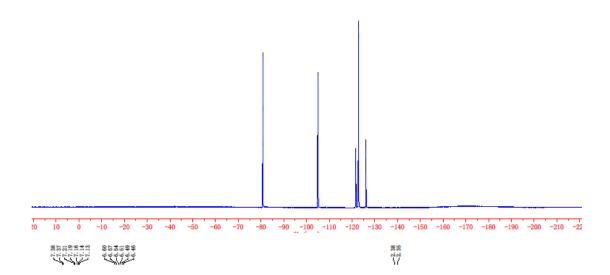

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22

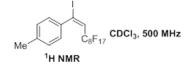


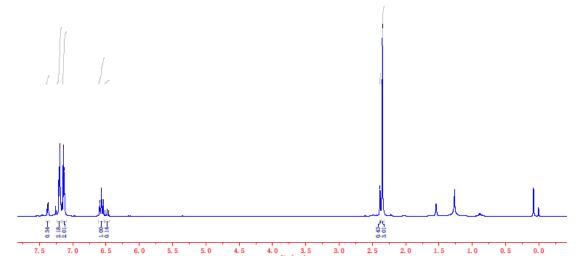


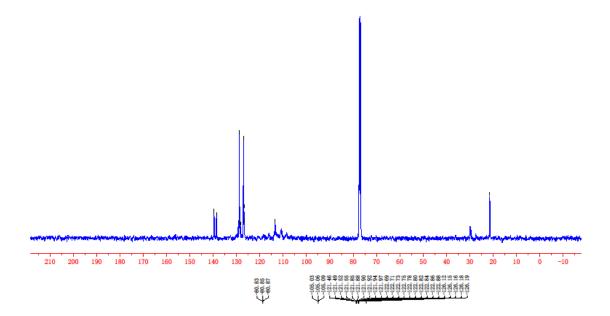


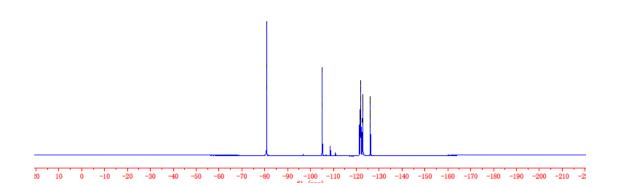


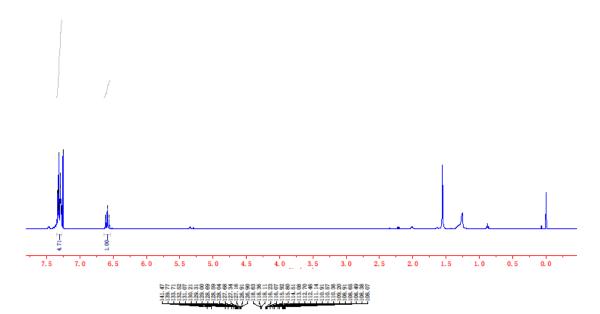




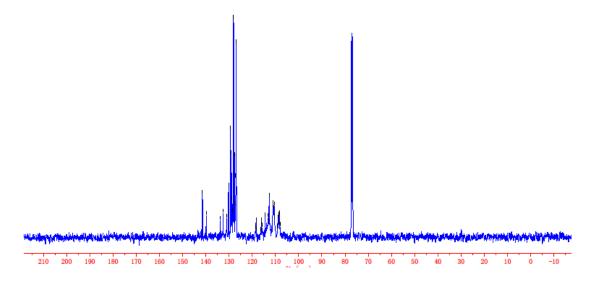


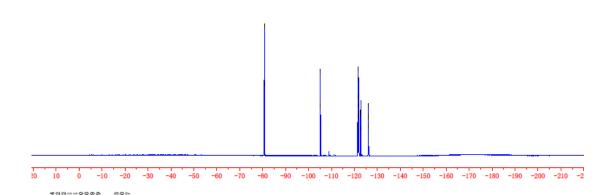


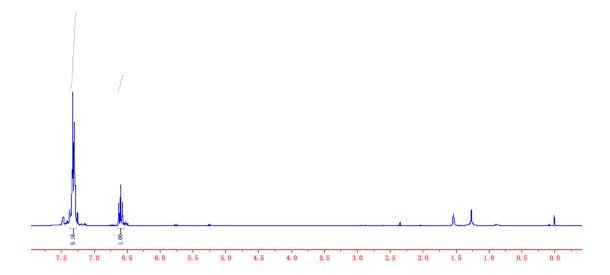


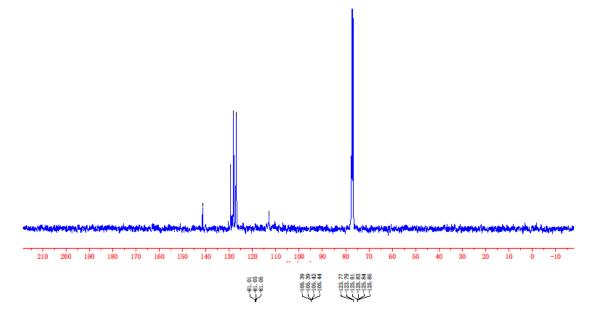


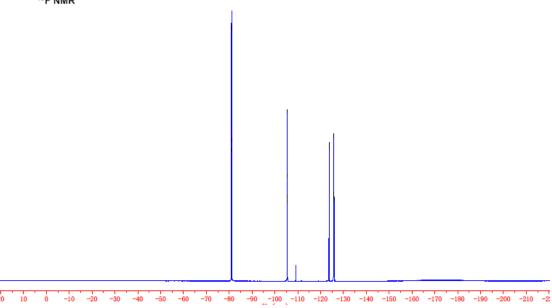


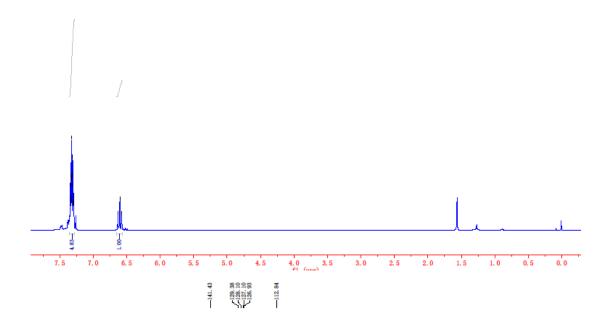


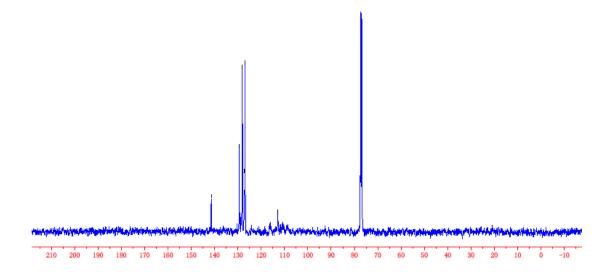


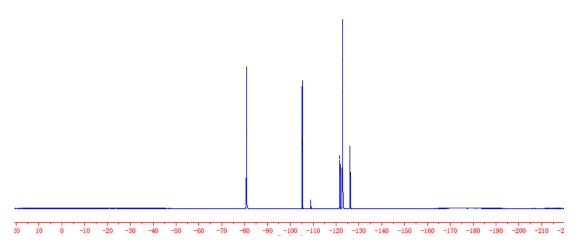


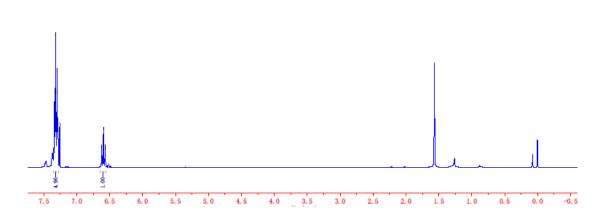


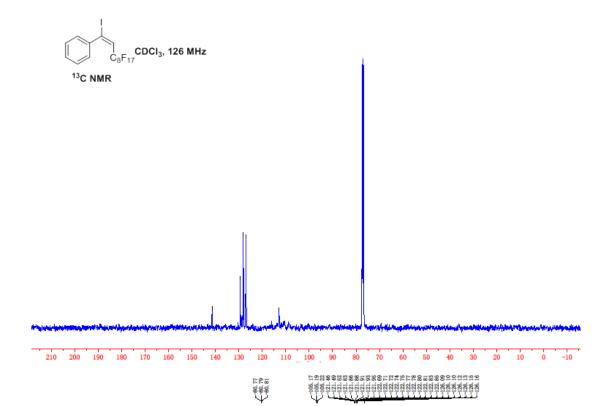




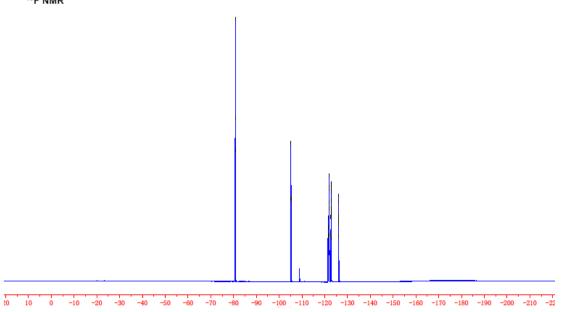


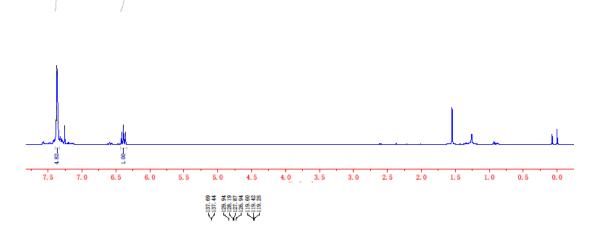


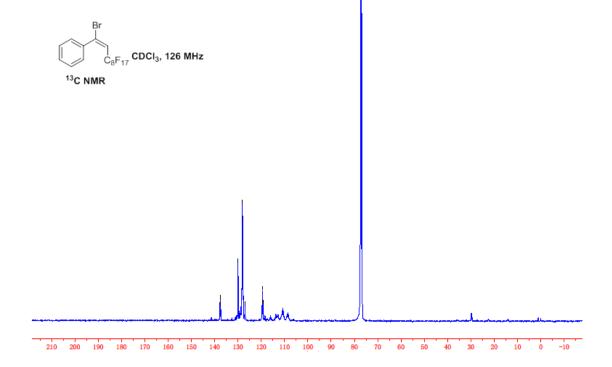


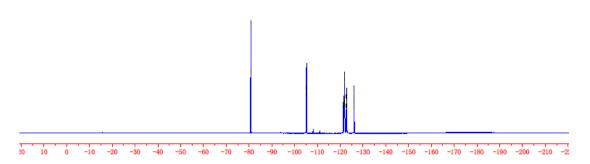


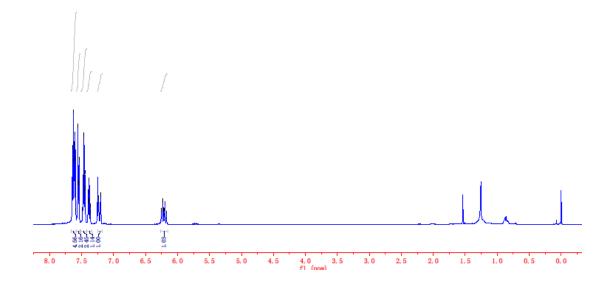


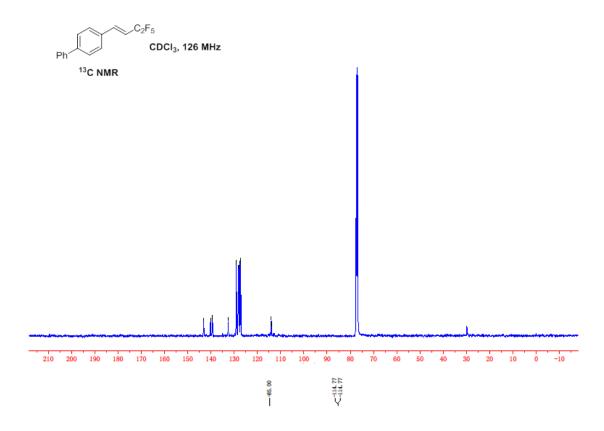


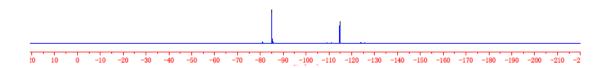


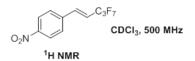




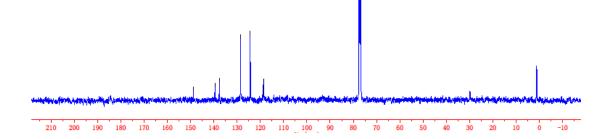


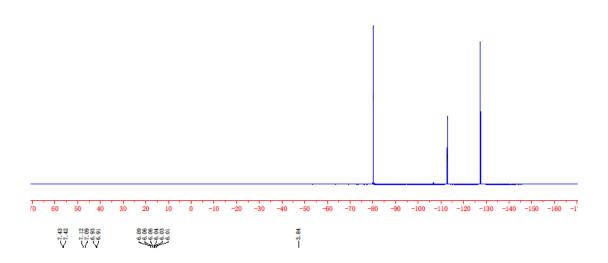


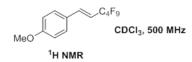


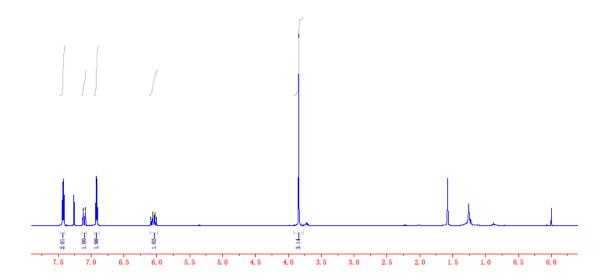


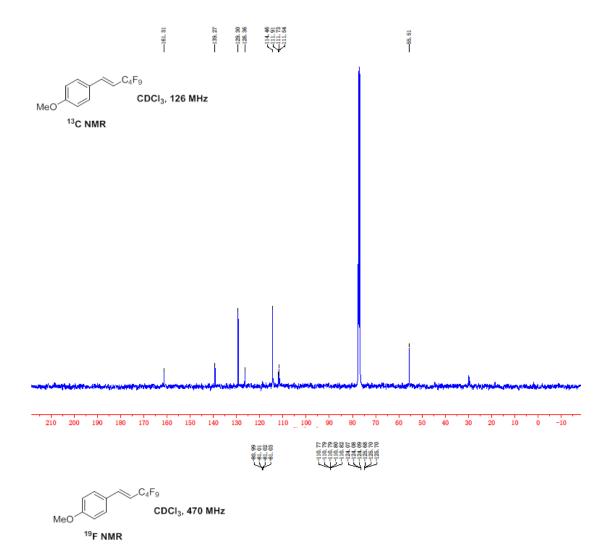
$$\begin{array}{c} \text{C}_2\text{F}_5\\ \text{CDCI}_3,\,500\;\text{MHz} \end{array}$$

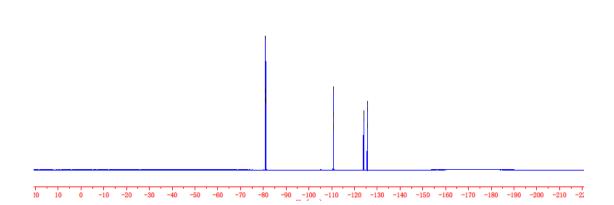


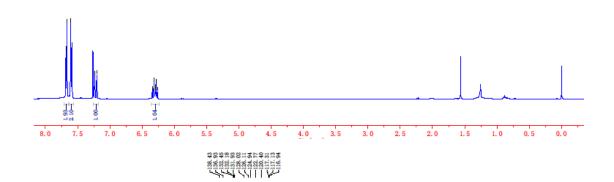


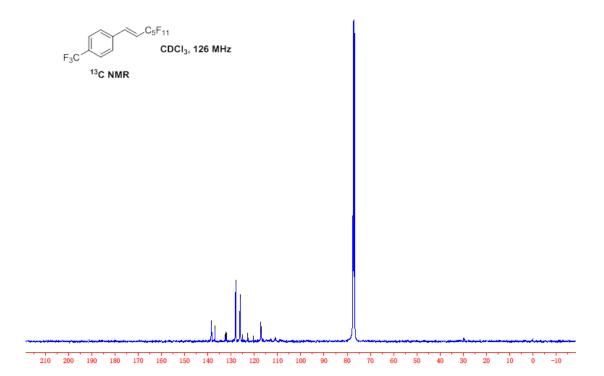

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.

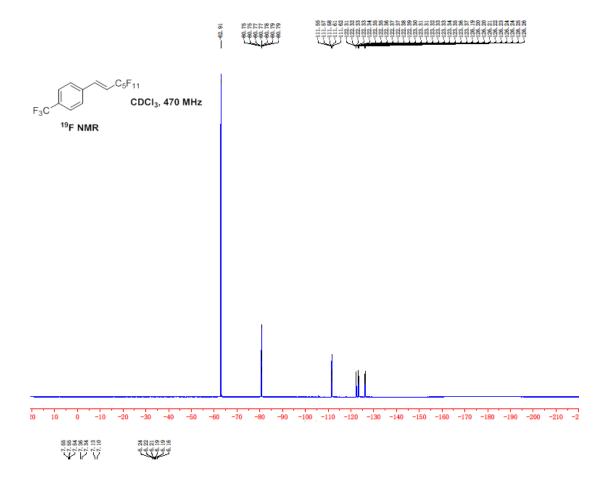

$$C_3F_7$$
 CDCI $_3$, 126 MHz



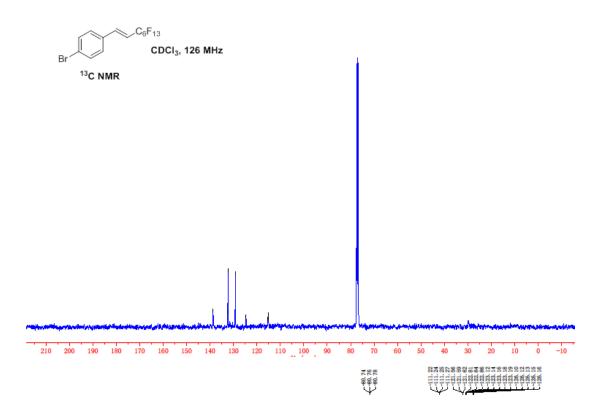


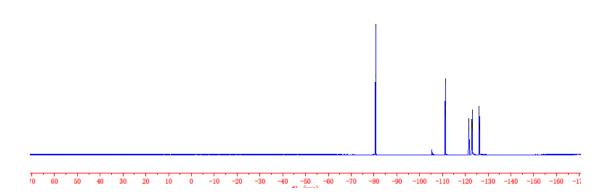


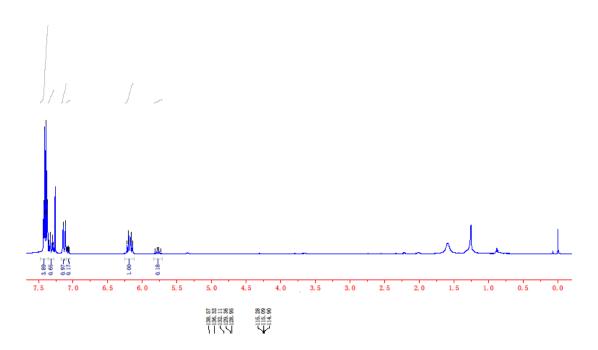


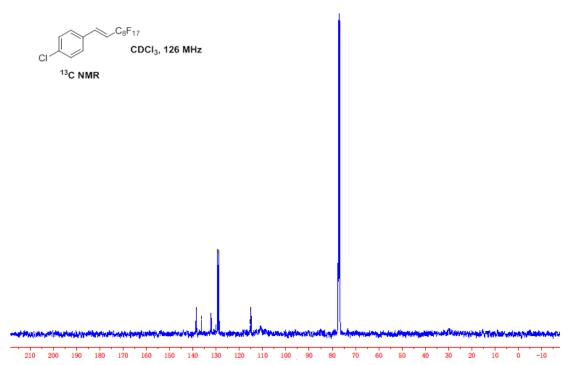


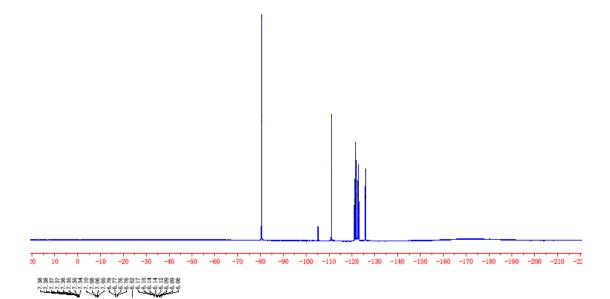
$$\mathsf{F_3C} \xrightarrow{\mathsf{C}_5\mathsf{F}_{11}} \mathsf{CDCI_3}, \mathsf{500~MHz}$$

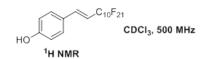


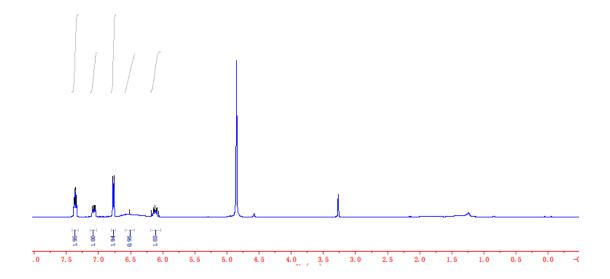


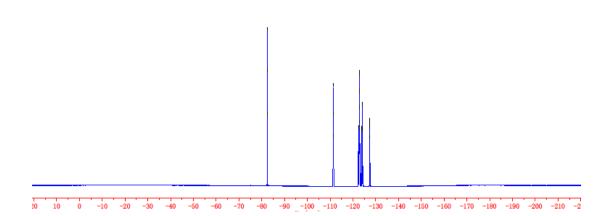


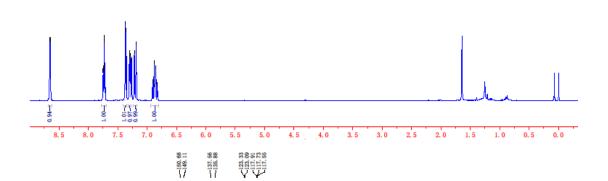

$$\begin{array}{c} & C_{\theta}F_{13} \\ & \text{CDCI}_{3}, 500 \text{ MHz} \\ \end{array}$$

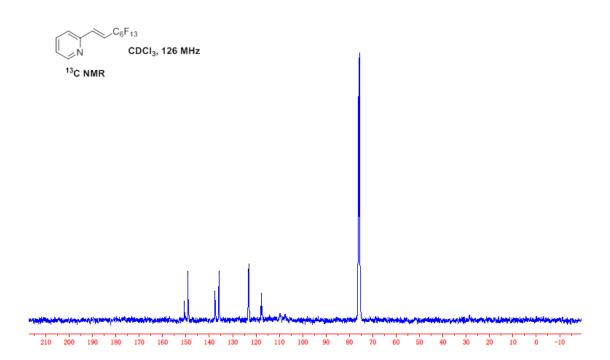


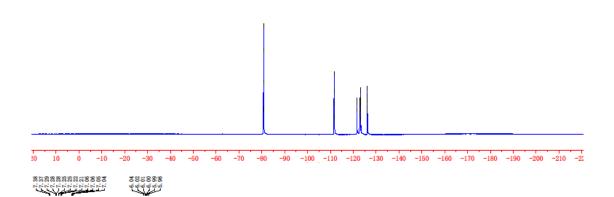




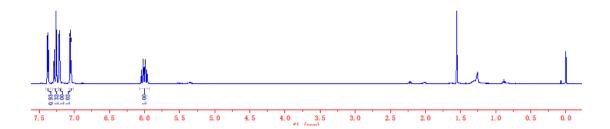


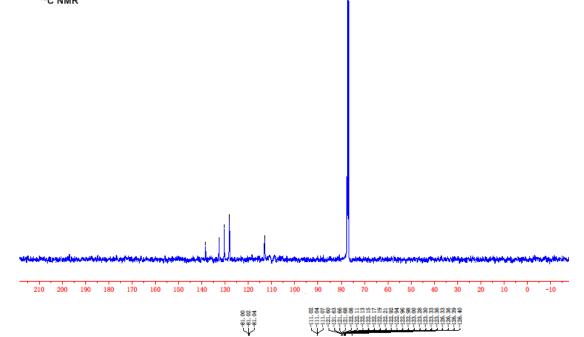


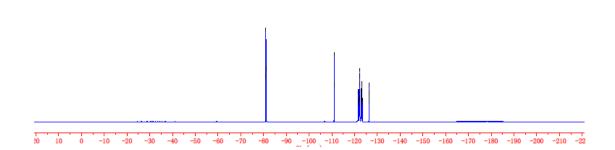




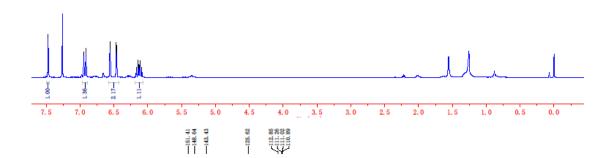
$$\begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0){100$$

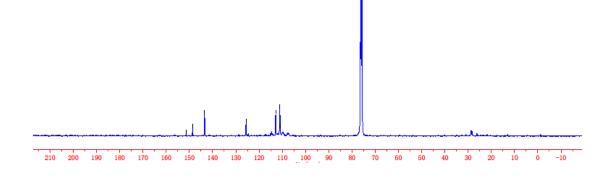


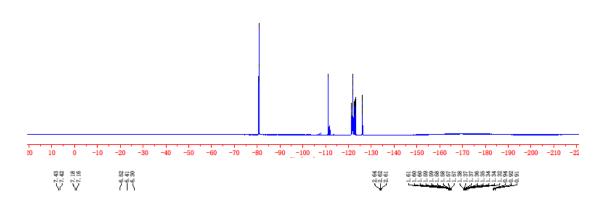


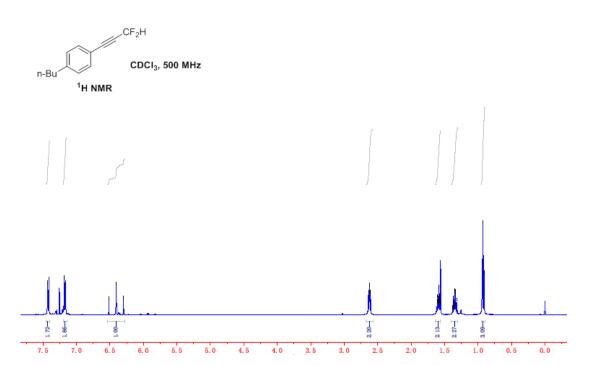


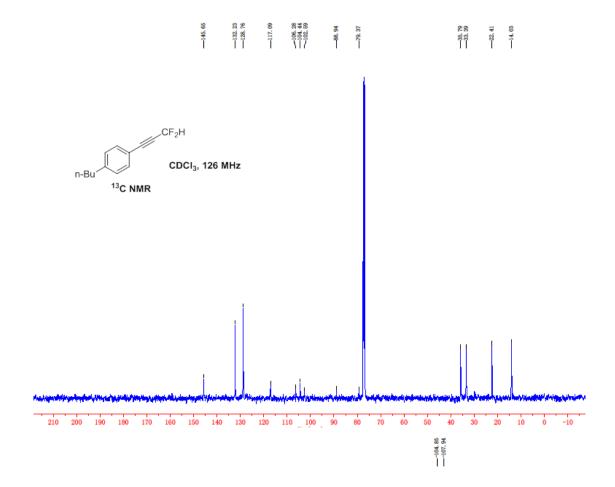
C₈F₁₇
CDCl₃, 500 MHz

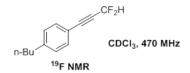











 $^{13}\mathrm{C}\ \mathrm{NMR}$

