Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Synthesis, duplex-forming ability, enzymatic stability, and *in vitro* antisense potency of oligonucleotides including 2'-C,4'-C-ethyleneoxy-bridged thymidine derivatives

Takashi Osawa,^{a,b} Motoki Sawamura,^b Fumito Wada,^b Tsuyoshi Yamamoto,^b Satoshi Obika*^b and Yoshiyuki Hari,*^{a,b}

a Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima 770-8514, Japan

b Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan

Contents

1.	¹ H, ¹³ C and ³¹ P spectra of new compounds	S2 - S13
2.	H-H COSY and NOESY spectra of compounds 3 and 9	S14 – S15
3.	MALDI-TOF mass data of new oligonucleotides	S16
4.	HPLC charts of new oligonucleotides	S17 – S27
5.	Representative UV-melting data	S27 – S28
6.	Conformational analysis of (<i>R</i>)-Me-EoDNA and (<i>S</i>)-Me-EoDNA	S29

1. ¹H, ¹³C and ³¹P spectra of new compounds

Compound **3** in $CDCl_3$

Compound **6** in $CDCl_3$

Compound 7 in $CDCl_3$

Compound 9 in CDCl₃

Compound 10 in CDCl₃

Compound 12 in CDCl₃

Compound 13 in CDCl₃

Compound 14 in CDCl₃

Compound 15 in CDCl₃

2. H-H COSY and NOESY spectra of compounds 3 and 9

Fig. S1. H-H COSY spectrum of compound 3 in CDCl₃.

Fig. S2. NOESY spectrum of compound 3 in CDCl₃.

Fig. S3. H-H COSY spectrum of compound 9 in DMSO-d₆.

Fig. S4. NOESY spectrum of compound 9 in DMSO- $d_{6.}$

3. MALDI-TOF mass data of new oligonucleotides

Oligonucleotides (5'-3')	Calcd. [M–H] [–]	Found [M–H] [–]
d(T ^m CTT ^m CTTTTT ^m CT ^m CT)	4233.86	4235.21
d(T ^m CTT ^m CT TTT T ^m CT ^m CT)	4317.93	4317.13
d(T ^m CTT ^m CTTTTT ^m CT ^m CT)	4317.93	4317.49
$d(T^mCT\underline{T}^mCTTTTT^mC\underline{T}^mCT)$	4402.60	4403.26
d(T ^m CTT ^m CTT <i>T</i> TT ^m CT ^m CT)	4247.86	4247.59
d(T ^m CTT ^m CT <i>TT</i> T ^m CT ^m CT)	4359.98	4360.84
d(T ^m CTT ^m CTTTTTT ^m CT ^m CT)	4359.98	4359.95
d(T ^m CT <i>T</i> ^m C <i>T</i> T <i>T</i> T ^m C <i>T</i> ^m CT)	4472.11	4471.77
d(T ^m CTT ^m CTT <u>T</u> TT ^m CT ^m CT)	4247.86	4247.39
d(T ^m CTT ^m CT <u>TT</u> T ^m CT ^m CT)	4359.98	4359.86
$d(T^m CTT^m C\underline{T}T\underline{T}T\underline{T}^m CT^m CT)$	4359.98	4359.52
$d(T^{m}CT\underline{\mathit{I}}^{m}C\underline{\mathit{T}}T\underline{\mathit{T}}T\underline{\mathit{T}}^{m}C\underline{\mathit{T}}^{m}CT)$	4472.11	4472.42
TTTTTTTTTTT	3021.21	3021.68
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	3035.02	3034.29
TTTTTTTT <u>T</u> T	3035.02	3034.21
d(TTCAGCATTGGTATTC) (ASO1)	5071.38	5071.56
d(TTCAGCATTGGTATTC) (ASO2)	5141.52	5141.32
$d(\underline{TT}CAGCATTGG\underline{T}A\underline{TT}C)$ (ASO3)	5141.52	5140.11
d(ttCAGCATTGGtAttC) (ASO4)	5131.44	5131.34
d(ttCAGCATTGGtAttC) (ASO5)	5201.57	5202.01
$d(\underline{tt}CAGCATTGG\underline{t}A\underline{tt}C) (\textbf{ASO6})$	5201.57	5202.01

Table S1. Sequences and MALDI-TOF mass spectra data of new oligonucleotides

4. HPLC charts of new oligonucleotides

5'-d(T^mCTT^mCTT^mCT^mCT)-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 \times 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-d(T^mCTT^mCT^mCT^mCT^mCT)-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-d(T^mCTT^mCT^mCT^mCT^mCT)-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 \times 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-d(T^mCTT^mCTTTTT^mCT^mCT)-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 µm, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-d(T^mCTT^mCTT^TTT^mCT^mCT)-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-d(T^mCTT^mCT^mCT^mCT^mCT)-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-d(T^mCTT^mCT^mCT^mCT^mCT)-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-d(T^mCTT^mCTTTTT^mCT^mCT)-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-d(T^mCTT^mCTT<u>T</u>TT^mCT^mCT)-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-d(T^mCTT^mCT^mCT^mCT^mCT)-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 µm, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-d(T^mCTT^mC<u>T</u>T<u>T</u>T<u>T</u>^mCT^mCT)-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-d(T^mCT<u>T</u>^mC<u>T</u>T<u>T</u>T<u>T</u>^mC<u>T</u>^mCT)-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-TTTTTTT**T**T-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 \times 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-TTTTTTTT*T*T-3'

Column : Waters XBridge[®] MS C₁₈ 2.5 µm, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-TTTTTTTT<u>T</u>T-3'

Column : Waters XBridge[®] MS C_{18} 2.5 µm, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 40°C.

5'-d(TTCAGCATTGGTATTC)-3'(ASO1)

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 10-25% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 50°C.

5'-d(*TT*CAGCATTGG*T*A*TT*C)-3' (**ASO2**)

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 5-20% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 50°C.

$5'-d(\underline{TT}CAGCATTGG\underline{T}A\underline{TT}C)-3'(ASO3)$

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 10-25% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 50°C.

5'-d(ttCAGCATTGGtAttC)-3' (ASO4)

 $\begin{array}{l} Column: Waters \ XBridge^{\circledast} \ MS \ C_{18} \ 2.5 \ \mu m, \ 4.6 \times 50 \ mm. \\ Gradient: 10-25\% \ MeCN \ in \ triethylammonium \ acetate \ (0.1 \ M, \ pH \ 7.0) \ buffer \ for \ 30 \ min. \\ Flow \ rate: 1.0 \ mL/min. \\ Column \ temp.: 50^{\circ}C. \end{array}$

5'-d(ttCAGCATTGGtAttC)-3' (ASO5)

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 10-25% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 50°C.

5'-d(ttCAGCATTGGtAttC)-3' (ASO6)

Column : Waters XBridge[®] MS C₁₈ 2.5 μ m, 4.6 × 50 mm. Gradient : 15-30% MeCN in triethylammonium acetate (0.1 M, pH 7.0) buffer for 30 min. Flow rate : 1.0 mL/min. Column temp. : 50°C.

5. Representative UV-melting data

Table S2. $T_{\rm m}$ values of duplexes formed by oligonucleotides including EoDNAs with complementary ssRNA and ssDNA^{*a*}

	$T_{\rm m}$ (°C) ($\Delta T_{\rm m}/{\rm mod.}$)	
Oligonucleotides $(5'-3')$	ssRNA	ssDNA
d(T ^m CTT ^m CTTTTT ^m CT ^m CT)	51	50
d(T ^m CTT ^m CTTTTT ^m CT ^m CT)	54 (+3.0)	47 (-3.0)
d(T ^m CTT ^m CT TT T ^m CT ^m CT)	61 (+3.3)	50 (±0.0)
d(T ^m CTT ^m CTTTTT ^m CT ^m CT)	63 (+4.0)	49 (-0.3)
d(T ^m CTT ^m CTTTTT ^m CT ^m CT)	72 (+4.2)	52 (+0.4)
d(T ^m CTT ^m CTTT ^T TT ^m CT ^m CT)	53 (+2.0)	45 (-5.0)
d(T ^m CTT ^m CT ^T TT ^m CT ^m CT)	55 (+1.7)	45 (-1.7)
d(T ^m CTT ^m CT ^T TTT Tm CT ^m CT)	60 (+3.0)	44 (-2.0)
d(T ^m CTT ^m CTTTTT ^m CT ^m CT)	67 (+3.2)	47 (-0.6)
d(T ^m CTT ^m CTT <u>T</u> TT ^m CT ^m CT)	54 (+3.0)	46 (-4.0)
d(T ^m CTT ^m CT <u>TT</u> T ^m CT ^m CT)	60 (+3.0)	48 (-0.7)
$d(T^m CTT^m C\underline{T}T\underline{T}\underline{T}T\underline{T}^m CT^m CT)$	62 (+3.7)	46 (-1.3)
$d(T^{m}CT\underline{\mathcal{I}}^{m}C\underline{\mathcal{I}}T\underline{\mathcal{I}}T\underline{\mathcal{I}}^{m}C\underline{\mathcal{I}}^{m}CT)$	71 (+4.6)	50 (±0.0)

^{*a*} Conditions: 10 mM sodium cacodylate buffer (pH 7.2), 140 mM KCl, and 4 μ M of each oligonucleotide. ^mC = 2'-deoxy-5methylcytidine, **T** = EoDNA, *T* = (*R*)-Me-EoDNA, <u>*T*</u> = (*S*)-Me-EoDNA. The sequences of target ssRNA and ssDNA are 5'r(AGAGAAAAAGAAGA)-3' and 5'-d(AGAGAAAAAGAAGA)-3', respectively. ΔT_m /mod.: the change in T_m value (ΔT_m) per modification compared to the unmodified natural strand.

Fig. S5. UV-melting data of duplex formed by oligonucleotides $[5'-d(T^mCT\underline{T}T\underline{T}T\underline{T}^mC\underline{T}^mCT)-3']$ with ssRNA (A) and with ssDNA (B).

Fig. S6. UV-melting data of duplex formed by ASOs with ssRNA shown in Table 1.

6. Conformational analysis of (R)-Me-EoDNA and (S)-Me-EoDNA

Fig. S7. (a) Coupling constants between H7' and H8' in ¹H NMR spectra of (*R*)-Me-EoDNA **3** and (*S*)-Me-EoDNA **9**. (b) Optimized structures of 3'-*O*,5'-*O*-bismethyl analogues of (*R*)-Me-EoDNA and (*S*)-Me-EoDNA (HF/6-31G*).