Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Tf₂NH-Catalyzed formal [3+2] cycloaddition of oxadiazolones with

ynamides: a simple access to aminoimidazoles

Yingying Zhao,^{†[a,b]} Yancheng Hu,^{†[a]} Xincheng Li,^{*[a]} Boshun Wan^{*[a]}

- [a] Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China.
- [b] University of Chinese Academy of Sciences, Beijing 10049, China

[†] Y.Z. and Y.H. contributed equally to this work.

* E-mail: xcli@dicp.ac.cn; bswan@dicp.ac.cn

Table of Contents

1.	General information	S1
2.	Mechanism discussions	S1
3.	Synthesis and characterization data of ynamides	S2
4.	Synthesis and characterization data of oxadiazolones	S7
5.	Tf ₂ NH-catalyzed formal cycloaddition of N -H oxadiazolone 2a' with 1aS11	
6.	Tf ₂ NH-catalyzed formal cycloaddition of N-substituted oxadiazolones with	
yna	mides	S12
7.	Gram-scale experiment	S12
8.	Characterization data of aminoimidazoles	S13
9.	Further tranformations	S23
10.	References	S25
11.	NMR spectroscopy of ynamides	S26
12.	NMR spectroscopy of oxadiazolones	S49
13.	NMR spectroscopy of product 3aa'	S71
14.	NMR spectroscopy of aminoimidazoles	
15.	NMR spectroscopy of products 4aa-6aa	S127

1. General information

Unless otherwise noted, all reactions were carried out under inert atmosphere using standard Schlenk techniques or in an argon-filled glove-box. All chemicals were purchased from commercial sources and were used directly without further purification. Solvents were treated prior to use according to the standard methods. Column chromatography was conducted on silica gel (300–400 mesh) using a forced flow of eluent at 0.3–0.5 bar pressure. NMR Spectra were recorded at room temperature in CDCl₃ or d^6 -DMSO on 400 MHz spectrometers. The chemical shifts for ¹H NMR were recorded in ppm downfield from tetramethylsilane (TMS) with CDCl₃ (7.26 ppm) or d^6 -DMSO (2.50 ppm) as the internal standard. The chemical shifts for ¹³C NMR were recorded in ppm downfield using the central peak of CDCl₃ (77.16 ppm) or d^6 -DMSO (39.52 ppm) as the internal standard. Coupling constants (J) are reported in hertz and refer to apparent peak multiplications. The abbreviations *s*, *d*, *t*, *q* and *m* stand for singlet, doublet, triplet, quartet and multiplet in that order. HRMS data was obtained with Micromass HPLC-Q-TOF mass spectrometer (ESI) or Agilent 6540 Accurate-MS spectrometer (Q-TOF).

2. Mechanism discussions

The carbon atom adjacent to phenyl group in intermediate **B** has both "cationic" and "anionic" characters. Two mechanisms based on its different characters are proposed in the below scheme (left, cationic carbon; right, anionic carbon). From the anionic-type mechanism, we can see that the enamine motif in intermediate **B** attacks the nitrogen atom (–NMe) with the release of CO_2 to form cyclic iminium ion **D**. However, we think it is not feasible for this process. Because the nitrogen atom is generally regarded as the nucleophile, not electrophile.

Besides, the substrate scope supports the cationic-type mechanism. The annulations of alkyl-derived ynamides with oxadiazolone 2a afforded the desired imidazoles in low yields, while the aryl-substituted substrates gave good results. Because the benzylic cation in intermediate C (aryl groups) is more stable than alkyl

carbocation (alkyl groups).

3. Synthesis and characterization data of ynamides

N-Alkyl substituted ynamides **1a-1p**, and **1r** were synthesized by copper-catalyzed cross-couplings of amides with the corresponding alkynyl bromides.^{1–4} *N*-Phenyl substituted ynamide **1q** was synthesized by iron-catalyzed cross-coupling of phenylbenzenesulfonamide with (bromoethynyl)benzene.⁴

General procedure 1 (GP 1): In a 50 mL flame-dried Schlenk tube, *N*-alkyl substituted amides (5.0 mmol), CuSO₄•5H₂O (10 mol%), 1,10-phenanthroline (20 mol%), K₂CO₃ (2.0 equiv.) and toluene (20 mL) were added in sequence under argon atmosphere. Then alkynyl bromides (6.0 mmol) was introduced and the resulting mixture was stirred at 80 °C for 12 h. After that, the crude mixture was filtered through a short pad of celite and washed with ethyl acetate. Removal of the solvent and purification by silica gel column chromatography yielded the *N*-alkyl substituted

ynamides (eluent: petroleum ether/ethyl acetate 5/1).

General procedure 2 (GP 2): In a 50 mL flame-dried Schlenk tube, 4-methyl-N-phenylbenzenesulfonamide (5.0 mmol), FeCl₃•6H₂O (10 mol%), K₂CO₃ (2.0 equiv.) and toluene (20 mL) were added in sequence under argon atmosphere. Then N,N'-dimethylethanediamine (DMEDA, 20 mol%) and (bromoethynyl)benzene (6.0 mmol) were introduced. The resulting mixture was stirred at 90 °C for 12 h. After that, the crude mixture was filtered through a short pad of celite and washed with ethyl acetate. Removal of the solvent and purification by silica gel column chromatography yielded the N-phenyl ynamide 1q (eluent: petroleum ether/ethyl acetate 5/1).

Characterization data of ynamides:

N-Benzyl-4-methyl-N-(phenylethynyl)benzenesulfonamide (1a)

Ts Known compound;¹ 7.8 g (in 25 mmol scale); 96% yield; ¹H NMR (400 ^{-N} Bn MHz, CDCl₃) δ 7.79 (d, J = 8.2 Hz, 2H), 7.36–7.28 (m, 7H), 7.26–7.19 (m, 5H), 4.58 (s, 2H), 2.44 (s, 3H).

N-Benzyl-4-methyl-*N*-(*o*-tolylethynyl)benzenesulfonamide (1b)

Known compound;⁸ 790.0 mg (in 3.0 mmol scale); 70% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.1 Hz, 2H), 7.38–7.26 (m, 1b 7H), 7.18 (d, J = 7.5 Hz, 1H), 7.14–7.02 (m, 3H), 4.59 (s, 2H), 2.42 (s, 3H), 2.16 (s, 3H).

N-Benzyl-N-((2-fluorophenyl)ethynyl)-4-methylbenzenesulfonamide (1c)

1c

White solid; 1.12 g (in 3.4 mmol scale); 87% yield; mp 72-73 °C; $= -N_{Bn}^{18} ^{1} H NMR (400 MHz, CDCl_3) \delta 7.81 (d, J = 8.2 Hz, 2H), 7.37-7.27$ (m, 7H), 7.26–7.17 (m, 2H), 7.05–6.96 (m, 2H), 4.59 (s, 2H), 2.43 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 250.6 Hz), 144.8, 134.7, 134.4, 133.0 (d, J = 1.4 Hz), 129.8, 1129.3 (d, J = 7.8 Hz), 129.1, 128.6, 128.5, 127.9,

123.9 (d, J = 3.7 Hz), 115.4 (d, J = 20.7 Hz), 111.6 (d, J = 15.7 Hz), 87.5, 65.3, 55.9,

21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.27. HRMS (ESI) calcd. for C₂₂H₁₉FNO₂S $[M + H]^+$ 380.1115, found 380.1121.

N-Benzyl-N-((3-fluorophenyl)ethynyl)-4-methylbenzenesulfonamide (1d)

Yellow solid; 0.98 g (in 3.0 mmol scale); 86% yield; mp 69-70 °C; ¹^s _{Bn} ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.37–7.29 (m, 7H), 7.23–7.16 (m, 1H), 7.01–6.86 (m, 3H), 4.58 (s, 2H), 2.45 (s, 3H). ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 246.2 Hz), 145.0, 134.7, 134.3, 129.93, 129.9 (d, J = 9.2 Hz), 129.0, 128.7 128.6, 127.8, 126.9 (d, J = 3.1 Hz), 124.8 (d, J = 9.6 Hz), 117.8 (d, J = 22.8 Hz), 115.0 (d, J = 21.2 Hz), 83.7, 70.7 (d, J =3.5 Hz), 55.7, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.16. HRMS (ESI) calcd. for $C_{22}H_{19}FNO_2S [M + H]^+ 380.1115$, found 380.1119.

N-Benzyl-4-methyl-*N*-(*p*-tolylethynyl)benzenesulfonamide (1e)

Ts Known compound;² 680 mg (in 2.5 mmol scale); 73% yield; ¹H ^{Bn} NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.1 Hz, 2H), 7.39–7.25 (m, 7H), 7.13 (d, J = 7.9 Hz, 2H), 7.04 (d, J = 7.9 Hz, 2H), 4.56 (s, 2H), 2.43 (s, 3H), 2.30 (s, 3H).

N-Benzyl-N-((4-fluorophenyl)ethynyl)-4-methylbenzenesulfonamide (1f)

Ts Known compound;⁵ 510.0 mg (in 2.5 mmol scale); 54% yield; ¹H Bn NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.2 Hz, 2H), 7.37–7.27 (m, 7H), 7.19 (dd, J = 8.5, 5.4 Hz, 2H), 6.92 (t, J = 8.6 Hz, 2H),

4.56 (s, 2H), 2.43 (s, 3H).

N-Benzyl-N-((4-chlorophenyl)ethynyl)-4-methylbenzenesulfonamide (1g)

^{Ts} Known compound;⁶ 1.38 g (in 4.0 mmol scale); 88% yield; ¹H ^N Bn NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 8.3 Hz, 2H), 7.35–7.27 (m, 7H), 7.20 (d, J = 8.5 Hz, 2H), 7.13 (d, J = 8.6 Hz, 2H), 4.57

(s, 2H), 2.43 (s, 3H).

N-Benzyl-4-methyl-N-(thiophen-2-ylethynyl)benzenesulfonamide (1h)

Known compound;⁶ 1.47 g (in 5.0 mmol scale); 80% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.3 Hz, 2H), 7.34–7.28 (m, 7H), 7.22 (d, J = 5.2 Hz, 1H), 7.08 (d, J = 3.6 Hz, 1H), 6.92 (dd, J = 5.2,

3.6 Hz, 1H), 4.58 (s, 2H), 2.45 (s, 3H).

N-Benzyl-4-methyl-N-((triisopropylsilyl)ethynyl)benzenesulfonamide (1i)

The Known compound;¹ 1.0 g (in 5.0 mmol scale); 45% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.3 Hz, 2H), 7.32–7.23 (m, 7H), 4.49 (s, 2H), 2.43 (s, 3H), 0.97–0.91 (m, 21H).

N-Benzyl-N-(hex-1-ynyl)-4-methylbenzenesulfonamide (1j)

^{TS} Known compound;⁵ 5.0 g (in 20 mmol scale); 73% yield; ¹H NMR (400 ^{TS} MHz, CDCl₃) δ 7.74 (d, J = 8.3 Hz, 2H), 7.33–7.22 (m, 7H), 4.43 (s, 2H), 2.43 (s, 3H), 2.15 (t, J = 6.9 Hz, 2H), 1.39–1.30 (m, 2H), 1.28–1.17 (m, 2H), 0.82 (t, J = 7.3 Hz, 3H).

N-Benzyl-N-(cyclohexylethynyl)-4-methylbenzenesulfonamide (1k)

Known compound;⁷ 1.2 g (in 5.0 mmol scale); 70% yield; ¹H NMR ^{Ts} (400 MHz, Acetone- d_6) δ 7.79 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.0Hz, 2H), 7.36–7.24 (m, 5H), 4.43 (s, 2H), 2.46–2.30 (m, 4H), 1.63–1.46 (m, 4H), 1.42–1.32 (m, 1H), 1.31–1.17 (m, 5H).

N-Benzyl-N-(phenylethynyl)benzenesulfonamide (11)

N-Benzyl-4-fluoro-*N*-(phenylethynyl)benzenesulfonamide (1m)

Known compound;⁵ 380.0 mg (in 5.0 mmol scale); 21% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.85 (m, 2H), 7.33–7.31 (m, 4H), 7.28–7.24 (m, 6H), 7.20–7.14 (m, 2H), 4.62 (s, 2H).

N-Benzyl-4-nitro-N-(phenylethynyl)benzenesulfonamide (1n)

Known compound;¹ 574.0 mg (in 2.5 mmol scale); 58% yield; ¹H
NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 8.6 Hz, 2H), 7.98 (d, J = 8.5 Hz, 2H), 7.39–7.22 (m, 10H), 4.68 (s, 2H).

N-Benzyl-*N*-(phenylethynyl)naphthalene-2-sulfonamide (10)

Yellow solid; 570.0 mg (in 2.5 mmol scale); 80% yield; mp 109–110°C; ¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.97–7.86 (m, 4H), 7.68–7.57 (m, 2H), 7.36–7.30 (m, 2H), 7.28–7.19 (m, 8H), 4.64 (s, 2H). ¹³C {¹H} NMR (100 MHz,

CDCl₃) δ 135.3, 134.6, 134.4, 132.1, 131.3, 129.5, 129.4, 129.0, 128.6, 128.5, 128.3, 128.1, 127.9, 127.78, 122.77, 122.7, 82.7, 71.5, 56.0. HRMS (ESI) calcd. for C₂₅H₂₀NO₂S [M + H]⁺ 398.1209, found 398.1215.

N-Benzyl-*N*-(phenylethynyl)methanesulfonamide (1p)

Known compound;⁴ 785.6 mg (in 4.0 mmol scale); 69% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.46 (m, 2H), 7.43–7.32 (m, 5H), 7.31–7.25 (m, 3H), 4.71 (s, 2H), 2.93 (s, 3H).

4-Methyl-*N*-phenyl-*N*-(phenylethynyl)benzenesulfonamide (1q)

^{Ts} Known compound;¹ 500.0 mg (in 5 mmol scale); 29% yield; ¹H NMR ^{Ph} (400 MHz, CDCl₃) δ 7.62 (d, J = 8.3 Hz, 2H), 7.43–7.25 (m, 12H), 2.44 (s, 3H).

3-(Phenylethynyl)oxazolidin-2-one (1r)

^{Ph} ^{Ph} ^{Ir} ^{Known compound;⁴ 200.0 mg (in 2.5 mmol scale); 43% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.40 (m, 2H), 7.35–7.27 (m, 3H), 4.53–4.43 (m, 2H), 4.04–3.95 (m, 2H).}

4. Synthesis and characterization data of oxadiazolones

Various free N-H oxadiazolones, which were prepared according to the known method,⁹ reacted with CH_3I or BnBr to yield *N*-substituted oxadiazolones **2a–j**.

General procedure 1 (GP 1): To a solution of NaH (8.0 mmol) in THF (40.0 mL) at 0 $^{\circ}$ C was added free N-H oxadiazolones (4.0 mmol) and stirred for 40 min. The resulting mixture was then treated with CH₃I or BnBr (8.0 mmol, 2.0 equiv) and stirred at room temperature for 12 h. The reaction was quenched with water, and extracted with ethyl acetate. The combined organic layers were dried with anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. Purification by silica gel column chromatography afforded *N*-substituted oxadiazolones.

General procedure 2 (GP 2): In a 100 mL flask, free N-H oxadiazolones (4.0 mmol), K_2CO_3 (8.0 mmol, 2.0 equiv) and acetone (40 mL) were added in sequence. Then CH₃I (8.0 mmol, 2.0 equiv) was introducted and the resulting mixture was stirred at 50 °C for 2 h. The reaction was quenched with water, and extracted with ethyl acetate. The combined organic layers were dried with anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. Direct crystallization in DCM/pentane afforded *N*-substituted oxadiazolones.

Characterization data of N-substituted oxadiazolones:

4-Methyl-3-phenyl-1,2,4-oxadiazol-5(4H)-one (2a)

By following GP 1, the product was obtained as a white solid; 280 mg (in 5 mmol scale); 32% yield; mp 113–114 °C; ¹H NMR (400 MHz, 2a CDCl₃) δ 7.69 – 7.52 (m, 5H), 3.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 158.9, 132.3, 129.5, 128.2, 123.3, 29.9. HRMS (ESI) calcd. for C₉H₉N₂O₂ $[M + H]^+$ 177.0659, found 177.0658.

4,5,5-Trimethyl-3-phenyl-4,5-dihydro-1,2,4-oxadiazole (2a")

By following GP 1, the product was obtained as colorless oil; 300 mg (in 2.8 mmol scale); 56% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.68 2a' (m, 2H), 7.52 - 7.40 (m, 3H), 3.06 (s, 3H), 1.60 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 131.3, 128.8, 128.6, 128.2, 106.4, 43.6, 28.9. HRMS (ESI) calcd. for $C_{11}H_{15}N_2O [M + H]^+$ 191.1179, found 191.1182.

3-(2-Bromophenyl)-4-methyl-1,2,4-oxadiazol-5(4H)-one (2b)

By following GP 1, the product was obtained as colorless oil; 113 mg (in 0.8 mmol scale); 56% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.81 -7.72 (m, 1H), 7.57 - 7.45 (m, 3H), 3.14 (s, 3H). ¹³C NMR (100) 2b MHz, CDCl₃) δ 159.3, 158.6, 133.7, 133.6, 132.1, 128.3, 125.0, 123.0, 29.1. HRMS (ESI) calcd. for $C_9H_8BrN_2O_2 [M + H]^+ 254.9764$, found 254.9760.

3-(3-Bromophenyl)-4-methyl-1,2,4-oxadiazol-5(4H)-one (2c)

2c

mg (in 3.2 mmol scale); 60% yield; mp 102–103 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.73 (m, 2H), 7.57 (d, J = 7.8 Hz, 1H), 7.47 (t, J = 7.8 Hz, 1H), 3.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.6, 157.6, 135.4, 131.1, 131.0, 126.8, 125.2, 123.5, 29.9. HRMS (ESI) calcd. for C₉H₈BrN₂O₂ [M + H]⁺254.9764, found 254.9761.

By following GP 1, the product was obtained as a white solid; 485.8

3-(4-Bromophenyl)-4-methyl-1,2,4-oxadiazol-5(4H)-one (2d)

By following GP 1, the product was obtained as a white solid; 575 mg (in 8.3 mmol scale); 27% yield; mp 126-127 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 7.68 (d, J = 8.5 Hz, 2H), 7.47 (d, J =8.5 Hz, 2H), 3.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 158.1, 132.9, 129.7, 127.2, 122.2, 29.9. **HRMS (ESI)** calcd. for $C_9H_8BrN_2O_2 [M + H]^+ 254.9764$, found

254.9761.

3-(4-Chlorophenyl)-4-methyl-1,2,4-oxadiazol-5(4H)-one (2e)

By following GP 1, the product was obtained as a white solid; 560 mg (in 7.1 mmol scale); 38% vield; mp 116–117 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.49 (m, 4H), 3.33 (s, 3H). ¹³C 2e NMR (100 MHz, CDCl₃) & 159.6, 158.0, 138.7, 129.9, 129.5, 121.7, 29.8. HRMS (ESI) calcd. for $C_9H_8CIN_2O_2 [M + H]^+ 211.0269$, found 211.0268.

3-(4-Methoxyphenyl)-4-methyl-1,2,4-oxadiazol-5(4H)-one (2f)

By following GP 1, the product was obtained as a white solid; 151.1 mg (in 1.7 mmol scale); 50% yield; mp 89-90 °C; ¹H 2f **NMR** (400 MHz, CDCl₃) δ 7.40 (d, J = 8.7 Hz, 2H), 6.92 (d, J =8.7 Hz, 2H), 3.83 (s, 3H), 2.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 157.1, 130.1, 123.7, 113.9, 55.4, 30.8. **HRMS (ESI)** calcd. for $C_{10}H_{11}N_2O_3$ [M + H]⁺ 207.0764, found 207.0762.

4-Methyl-3-(thiophen-2-yl)-1,2,4-oxadiazol-5(4H)-one (2g)

By following GP 1, the product was obtained as a white solid; 710 mg (in 7.1 mmol scale); 55% yield; mp 140–141 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 5.1 Hz, 1H), 7.60 (d, J = 3.8 Hz, 1H), 2g 7.30 - 7.18 (m, 1H), 3.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 154.1, 130.9, 130.3, 128.4, 123.3, 30.0. **HRMS (ESI)** calcd. for $C_7H_7N_2O_2S [M + H]^+ 183.0223$, found 183.0224.

4-Methyl-3-(naphthalen-1-yl)-1,2,4-oxadiazol-5(4H)-one (2h)

By following GP 1, the product was obtained as colorless oil; 343 mg (in 4.7 mmol scale); 32% yield; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.9 Hz, 1H), 8.03 – 7.93 (m, 1H), 7.80 – 7.73 (m, 1H), 7.70 – 7.57 (m, 4H), 3.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

159.7, 158.7, 133.6, 132.7, 130.7, 129.10, 129.06, 128.4, 127.3, 125.2, 123.9, 120.3, 29.3 **HRMS (ESI)** calcd. for $C_{13}H_{11}N_2O_2$ [M + H]⁺ 227.0815, found 227.0819.

3-Benzyl-4-methyl-1,2,4-oxadiazol-5(4H)-one (2i)

By following GP 2, the product was obtained as a white solid; 400 mg (in 2.5 mmol scale); 83% yield; mp 107–108 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.31 (m, 3H), 7.29 – 7.23 (m, 2H), 3.94 (s, 2H), 3.00 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 158.1, 131.7, 129.5, 128.6, 128.3, 31.3, 28.4. HRMS (ESI) calcd. for C₁₀H₁₁N₂O₂ [M + H]⁺ 191.0815, found 191.0810.

4-Benzyl-3-phenyl-1,2,4-oxadiazol-5(4H)-one (2j)

By following GP 1, the product was obtained as a white solid; 200 mg (in 1.5 mmol scale); 53% yield; mp 81–82 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (t, J = 7.3 Hz, 1H), 7.51 – 7.41 (m, 4H), 7.33 – 7.27 (m, 3H), 7.13 – 7.06 (m, 2H), 4.83 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 159.1, 134.6, 132.2, 129.4, 129.2, 128.60, 128.57, 127.3, 123.3, 46.6. HRMS (ESI) calcd. for C₁₅H₁₃N₂O₂ [M + H]⁺ 253.0972, found 253.0968.

5. Tf₂NH-catalyzed formal cycloaddition of *N*-H oxadiazolone 2a' with 1a

In a 10 mL flame-dried Schlenk flask, **1a** (0.20 mmol), **2a'** (0.20 mmol) and DCE (1.5 mL) were added in sequence. Then a solution of Tf₂NH (20 mol%) in DCE (0.5 mL) was added dropwise to the system. The resulting mixture was stirred at 80 °C for 12 h. The reaction was quenched by Et₃N solution (10 vol.% in pentane) and extracted with ethyl acetate. The solvent was evaporated and the crude product was purified by silica gel column chromatography to obtain **3aa'** as the main product.

(Z)-N-Benzyl-N-(1-(4-(N-benzyl-4-methylphenylsulfonamido)-2,5-diphenyl-1*H*-i midazol-1-yl)-2-phenylvinyl)-4-methylbenzenesulfonamide (3aa')

White solid; 27 mg; 32% yield; mp 241–242 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.3 Hz, 2H), 7.81 – 7.71 (m, 3H), 7.52 – 7.47 (m, 2H), 7.42 – 7.34 (m, 7H), 7.33 – 7.29 (m, 4H), 7.06 (t, J = 7.4 Hz, 1H), 6.97 – 6.90 (m, 4H), 6.89 – 6.80 (m, 3H), 6.78 – 6.69 (m, 3H), 6.60 (t, J = 7.7 Hz, 2H), 5.76 – 5.69 (m, 2H), 4.80 (d, J = 13.4 Hz, 1H),

4.26 (d, J = 13.4 Hz, 1H), 4.13 (d, J = 6.2 Hz, 1H), 3.76 (d, J = 13.6 Hz, 1H), 3.57 (d, J = 13.6 Hz, 1H), 2.46 (s, 3H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 143.1, 137.1, 136.3, 135.5, 135.3, 132.92, 132.85, 131.7, 131.6, 130.3, 130.2, 129.94, 129.90, 129.6, 129.3, 129.21, 129.16, 129.1, 128.93, 128.86, 128.85, 128.8, 128.6, 128.5, 128.2, 128.0, 127.9, 127.5, 127.4, 127.34, 127.26, 127.2, 56.6, 54.8, 21.8, 21.6. HRMS (ESI) calcd. for C₅₁H₄₅N₄O₄S₂ [M + H]⁺ 841.2877, found 841.2875.

6. Tf₂NH-catalyzed formal cycloaddition of *N*-substituted oxadiazolones with ynamides

Representative procedure: In a 10 mL flame-dried Schlenk flask, **1a** (0.24 mmol, 1.2 equiv), **2a** (0.20 mmol) and toluene (1.5 mL) were added in sequence. Then a solution of Tf₂NH (15 mol%, 8.4 mg) in toluene (0.5 mL) was added dropwise to the system. The resulting mixture was stirred at 90 °C for 12 h. The reaction was quenched by Et_3N solution (10 vol.% in pentane) and extracted with ethyl acetate. The solvent was evaporated and the crude product was purified by silica gel column chromatography to give the desired product **3aa** (eluent: petroleum ether/ethyl acetate 10/1).

7. Gram-scale experiment

In a 50 mL flame-dried Schlenk flask, **1a** (3.3 mmol, 1.1 equiv), **2a** (3.0 mmol) and toluene (30 mL) were added in sequence. Then Tf₂NH (15 mol%, 126.5 mg) was introduced. The resulting mixture was stirred 90 °C for 12 h. The reaction was quenched by Et₃N solution (10 vol.% in pentane) and extracted with ethyl acetate. The combined organic phase was dried with anhydrous sodium sulfate. Removal of the solvent and purification by silica gel column chromatography afforded the desired aminoimidazole **3aa** in 80% yield (1.187 g).

8. Characterization data of aminoimidazoles

N-Benzyl-4-methyl-*N*-(1-methyl-2,5-diphenyl-1*H*-imidazol-4-yl)benzenesulfonam ide (3aa)

White solid; 79.8 mg; 81% yield; mp 163–164 °C; ¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 7.96 (d, $J = 8.2$ Hz, 2H), 7.57 (d, $J = 8.3$ Hz, 2H), 7.49 – 7.30 (m, 8H), 7.23 – 7.17 (m, 2H), 7.07 (t, $J = 7.3$ Hz, 1H), 6.95 (t, $J = 7.6$ Hz, 2H), 6.88 (d, $J = 7.3$ Hz, 2H), 4.49 (s, 2H), 3.43 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 143.6, 136.5, 135.5, 134.0, 133.4, 130.6, 130.3, 129.5, 129.03, 129.00, 128.97, 128.95, 128.7, 128.4, 128.3, 127.9, 127.2, 54.6, 34.1, 21.8. HRMS (ESI) calcd. for C₃₀H₂₈N₃O₂S [M + H]⁺ 494.1897, found 494.1904.

N-Benzyl-4-methyl-*N*-(1-methyl-2-phenyl-5-*o*-tolyl-1*H*-imidazol-4-yl)benzenesulf onamide (3ba)

6.98 (d, J = 7.3 Hz, 2H), 4.68 (d, J = 13.8 Hz, 1H), 4.37 (d, J = 13.9 Hz, 1H), 3.28 (s, 3H), 2.46 (s, 3H), 1.56 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 145.4, 143.5, 138.9, 136.6, 136.2, 134.0, 132.7, 132.7, 130.7, 129.7, 129.4, 129.2, 129.0, 128.9, 128.7, 128.1, 128.0, 127.4, 125.8, 54.5, 32.9, 21.8, 19.1. **HRMS (ESI)** calcd. for C₃₁H₃₀N₃O₂S [M + H]⁺ 508.2053, found 508.2055.

N-Benzyl-*N*-(5-(2-fluorophenyl)-1-methyl-2-phenyl-1*H*-imidazol-4-yl)-4-methylb enzenesulfonamide (3ca)

White solid; 89.7 mg; 88% yield; mp 161–162 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.81 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 7.1 Hz, 2H), 7.59 – 7.39 (m, 6H), 7.36 – 7.12 (m, 4H), 7.07 (t, J = 7.4 Hz, 3ca 2H), 6.93 (d, J = 7.4 Hz, 2H), 4.47 (s, 2H), 3.41 (s, 3H), 2.44 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 159.7 (d, J = 247.5 Hz), 145.0, 143.5, 135.6 (d, J = 23.4 Hz), 134.5, 132.6, 131.4 (d, J = 8.2 Hz), 129.8, 129.5, 128.9, 128.6, 128.3, 128.2, 127.9, 127.3, 126.7, 124.3 (d, J = 3.1 Hz), 116.1 (d, J = 15.3 Hz), 115.5 (d, J = 21.4 Hz), 53.8, 33.14 (d, J = 4.2 Hz), 21.1. ¹⁹F NMR (376 MHz, DMSO- d_6) δ -111.93. HRMS (ESI) calcd. for C₃₀H₂₇FN₃O₂S [M + H]⁺ 512.1803, found 512.1808.

N-Benzyl-*N*-(5-(3-fluorophenyl)-1-methyl-2-phenyl-1*H*-imidazol-4-yl)-4-methylb enzenesulfonamide (3da)

White solid; 79 mg; 77% yield; mp 156–157 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 7.7 Hz, 2H), 7.50 – 7.41 (m, 3H), 7.38 (d, J = 8.2 Hz, 2H), 7.35 – 7.28 (m, 1H), 7.10 (d, J = 7.4 Hz, 2H), 7.08 – 6.96 (m, 3H), 6.90 (d, J = 7.2 Hz, 2H), 6.71 (d, J = 9.7 Hz, 1H), 4.48 (s, 2H), 3.43 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, J = 245.8 Hz), 146.3, 143.7, 136.5, 135.5, 134.3, 132.20, 132.18, 130.4, 129.9 (d, J = 8.5 Hz), 129.5, 129.2, 129.2, 129.0, 128.9, 128.8, 127.9, 127.5, 126.2 (d, J = 2.9 Hz), 116.9 (d, J = 22.1 Hz), 115.3 (d, J = 20.9 Hz), 54.6, 34.1, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.18. HRMS (ESI) calcd. for C₃₀H₂₇FN₃O₂S [M + H]⁺ 512.1803, found 512.1810.

N-Benzyl-4-methyl-*N*-(1-methyl-2-phenyl-5-*p*-tolyl-1*H*-imidazol-4-yl)benzenesulf onamide (3ea)

Colorless oil; 78 mg; 77% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.2 Hz, 2H), 7.55 (d, *J* = 6.9 Hz, 2H), 7.47 – 7.39 (m, 3H), 7.36 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 7.9 Hz, 2H), 7.11 – 7.03 (m, 3H), 6.97 (t, J = 7.6 Hz, 2H), 6.91 (d, J = 7.3 Hz, 2H), 4.49 (s, 2H), 3.41 (s, 3H), 2.46 (s, 3H), 2.40 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 145.6, 143.5, 138.1, 136.6, 135.7, 133.8, 133.4, 130.7, 130.2, 129.4, 129.1, 129.0, 128.91, 128.87, 128.7, 127.8, 127.2, 125.5, 54.6, 33.9, 21.8, 21.5. **HRMS (ESI)** calcd. for C₃₁H₃₀N₃O₂S [M + H]⁺ 508.2053, found 508.2054.

N-Benzyl-*N*-(5-(4-fluorophenyl)-1-methyl-2-phenyl-1*H*-imidazol-4-yl)-4-methylb enzenesulfonamide (3fa)

4.47 (s, 2H), 3.40 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, J = 248.2 Hz), 145.9, 143.7, 136.4, 135.6, 134.1, 132.5, 132.2 (d, J = 8.2 Hz), 130.5, 129.5, 129.13, 129.06, 129.0, 128.9, 128.8, 127.9, 127.4, 124.4 (d, J = 3.3 Hz), 115.3 (d, J = 21.6 Hz), 54.6, 34.0, 21.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -113.23. HRMS (ESI) calcd. for C₃₀H₂₇FN₃O₂S [M + H]⁺ 512.1803, found 512.1809.

N-Benzyl-*N*-(5-(4-chlorophenyl)-1-methyl-2-phenyl-1*H*-imidazol-4-yl)-4-methylb enzenesulfonamide (3ga)

(d, J = 7.2 Hz, 2H), 4.47 (s, 2H), 3.41 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.2, 143.7, 136.4, 135.5, 134.4, 134.2, 132.3, 131.5, 130.3, 129.5, 129.2, 129.1, 129.0, 128.9, 128.8, 128.6, 127.9, 127.4, 126.8, 54.6, 34.0, 21.8. **HRMS (ESI)** calcd. for C₃₀H₂₇ClN₃O₂S [M + H]⁺ 528.1507, found 528.1508.

N-Benzyl-4-methyl-*N*-(1-methyl-2-phenyl-5-(thiophen-2-yl)-1*H*-imidazol-4-yl)ben zenesulfonamide (3ha)

White solid; 90.3 mg; 90% yield; mp 145–146 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.2 Hz, 2H), 7.57 – 7.49 (m, 2H), 7.50 – 7.34 (m, 6H), 7.21 – 7.15 (m, 1H), 7.14 – 6.96 (m, 6H), 4.54 (s, 2H), 3.53 (s, 3H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 143.7, 136.4, 135.7, 135.3, 130.3, 129.9, 129.5, 129.1, 129.0, 128.9, 128.7, 128.4, 128.0, 127.7, 127.3, 127.2, 126.9, 54.5, 34.2, 21.8. HRMS (ESI) calcd. for C₂₈H₂₆N₃O₂S₂ [M + H]⁺ 500.1461, found 500.1466.

N-Benzyl-*N*-(5-butyl-1-methyl-2-phenyl-1*H*-imidazol-4-yl)-4-methylbenzenesulfo namide (3ja)

Yellow oil; 40.0 mg; 42% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 2H), 7.46 - 7.37 (m, 5H), 7.36 - 7.29 (m, 5H), 7.25 -7.22 (m, 2H), 4.61 (s, 2H), 3.48 (s, 3H), 2.44 (s, 5H), 1.20 - 1.13 (m, ^{3ja} 2H), 0.92 - 0.83 (m, 2H), 0.80 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 143.4, 136.9, 136.4, 132.8, 132.7, 130.8, 129.4, 129.4, 128.9,

128.7, 128.61, 128.56, 128.2, 127.6, 54.1, 32.4, 30.8, 23.2, 23.0, 21.7, 13.9. **HRMS** (ESI) calcd. for $C_{28}H_{32}N_3O_2S [M + H]^+ 474.2210$, found 474.2211.

N-Benzyl-*N*-(5-cyclohexyl-1-methyl-2-phenyl-1*H*-imidazol-4-yl)-4-methylbenzene sulfonamide (3ka)

CDCl₃) δ 145.0, 143.4, 136.5, 135.8, 132.5, 130.9, 129.7, 129.4, 129.3, 128.74, 128.68, 128.6, 128.2, 127.64, 127.59, 54.5, 35.2, 33.2, 30.4, 27.0, 26.0, 21.7. **HRMS** (ESI) calcd. for C₃₀H₃₄N₃O₂S [M + H]⁺ 500.2366, found 500.2367.

N-Benzyl-N-(1-methyl-2,5-diphenyl-1H-imidazol-4-yl)benzenesulfonamide (3la)

White solid; 83.3 mg; 77% yield; mp 147–148 °C; ¹H NMR (400 MHz,
N-Bn
CDCl₃)
$$\delta$$
 8.09 (d, $J = 7.2$ Hz, 2H), 7.67 – 7.53 (m, 5H), 7.50 – 7.39 (m,
3H), 7.38 – 7.29 (m, 3H), 7.22 – 7.15 (m, 2H), 7.08 (t, $J = 7.3$ Hz, 1H),
6.96 (t, $J = 7.6$ Hz, 2H), 6.89 (d, $J = 7.3$ Hz, 2H), 4.51 (s, 2H), 3.44 (s,
3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 139.6, 135.5, 133.8, 133.4, 132.9, 130.6,

130.3, 129.1, 129.0, 128.9, 128.8, 128.7, 128.4, 128.34, 128.29, 127.9, 127.3, 54.7, 34.1. **HRMS (ESI)** calcd. for C₂₉H₂₆N₃O₂S [M + H]⁺480.1740, found 480.1743.

N-Benzyl-4-fluoro-*N*-(1-methyl-2,5-diphenyl-1*H*-imidazol-4-yl)benzenesulfonami de (3ma)

Hz, 2H), 6.89 (d, J = 7.4 Hz, 2H), 4.50 (s, 2H), 3.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 165.4 (d, J = 254.2 Hz), 145.9, 135.7 (d, J = 3.2 Hz), 135.3, 133.8, 133.5, 131.6 (d, J = 9.2 Hz), 130.5, 130.3, 129.10, 129.08, 129.0, 128.8, 128.4, 128.33, 128.29, 128.0, 127.4, 116.0 (d, J = 22.5 Hz), 54.8, 34.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.76. HRMS (ESI) calcd. for C₂₉H₂₅FN₃O₂S [M + H]⁺ 498.1646, found 498.1645.

N-benzyl-*N*-(1-methyl-2,5-diphenyl-1*H*-imidazol-4-yl)-4-nitrobenzenesulfonamid e (3na)

(s, 2H), 3.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.2, 146.1, 145.5, 134.7, 133.5, 133.2, 130.21, 130.18, 130.1, 129.3, 129.2, 128.88, 128.87, 128.6, 128.4, 128.1, 128.0,

127.7, 124.0, 55.1, 34.1. **HRMS (ESI)** calcd. for $C_{29}H_{25}N_4O_4S [M + H]^+ 525.1591$, found 525.1606.

N-Benzyl-*N*-(1-methyl-2,5-diphenyl-1*H*-imidazol-4-yl)naphthalene-2-sulfonamid e (30a)

1H), 6.96 (t, J = 7.6 Hz, 2H), 6.90 (d, J = 7.2 Hz, 2H), 4.57 (s, 2H), 3.44 (s, 3H). ¹³C **NMR** (100 MHz, CDCl₃) δ 145.9, 136.5, 135.5, 135.3, 133.9, 133.5, 132.4, 130.5, 130.31, 130.27, 129.4, 129.1, 129.0, 128.9, 128.70, 128.68, 128.4, 128.3, 128.3, 128.1, 127.9, 127.30, 127.26, 124.4, 54.8, 34.1. **HRMS (ESI)** calcd. for C₃₃H₂₈N₃O₂S [M + H]⁺ 5 530.1897, found 530.1895.

N-Benzyl-*N*-(1-methyl-2,5-diphenyl-1*H*-imidazol-4-yl)methanesulfonamide (3pa)

Yellow solid; 61.5 mg; 74% yield; mp 145–146 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 7.0 Hz, 2H), 7.53 – 7.41 (m, 3H), 7.33 – 7.23 (m, 3H), 7.16 – 7.06 (m, 3H), 7.05 – 6.92 (m, 4H), 4.68 (s, 2H), 3.42 (s, 3H), 3.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 135.5, 134.0, 132.8, 130.4, 130.1, 129.14, 129.08, 129.06, 128.8, 128.29, 128.25, 128.1, 127.9, 127.4, 55.18, 38.5, 33.9. HRMS (ESI) calcd. for C₂₄H₂₄N₃O₂S [M + H]⁺ 418.1584, found 418.1581.

4-Methyl-*N*-(1-methyl-2,5-diphenyl-1*H*-imidazol-4-yl)-*N*-phenylbenzenesulfonam ide (3qa)

145.8, 143.4, 141.0, 136.7, 136.2, 132.0, 130.8, 130.2, 129.2, 129.13, 129.09, 129.0, 128.8, 128.73, 128.65, 128.5, 128.3, 127.2, 34.3, 21.8. **HRMS (ESI)** calcd. for $C_{29}H_{26}N_3O_2S [M + H]^+ 480.1740$, found 480.1744.

N-Benzyl-*N*-(2-(2-bromophenyl)-1-methyl-5-phenyl-1*H*-imidazol-4-yl)-4-methylb enzenesulfonamide (3ab)

(s, 2H), 3.20 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 143.6, 136.1, 135.4, 133.1, 132.9, 132.7, 132.4, 131.3, 130.4, 129.8, 129.5, 128.8, 128.3, 128.22, 128.17, 128.0, 127.7, 127.4, 124.9, 54.3, 32.7, 21.7. HRMS (ESI) calcd. for $C_{30}H_{27}BrN_3O_2S [M + H]^+ 572.1002$, found 572.1016.

N-Benzyl-*N*-(2-(3-bromophenyl)-1-methyl-5-phenyl-1*H*-imidazol-4-yl)-4-methylb enzenesulfonamide (3ac)

White solid; 93.3 mg; 82% yield; mp 165–166 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.2 Hz, 2H), 7.71 (s, 1H), 7.53 (d, J = 8.1 Hz, 1H), 7.48 (d, J = 7.8 Hz, 1H), 7.40 (d, J = 8.1 Hz, 2H), 7.37 – 7.29 (m, 4H), 7.18 (d, J = 7.7 Hz, 2H), 7.07 (t, J = 7.3 Hz,

1H), 6.95 (t, J = 7.6 Hz, 2H), 6.86 (d, J = 7.3 Hz, 2H), 4.49 (s, 2H), 3.43 (s, 3H), 2.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.1, 143.8, 136.4, 135.4, 134.2, 133.9, 132.5, 132.2, 131.9, 130.3, 130.1, 129.5, 129.0, 128.9, 128.5, 128.3, 128.1, 127.9, 127.3, 127.1, 122.9, 54.8, 34.1, 21.8. HRMS (ESI) calcd. for C₃₀H₂₇BrN₃O₂S [M + H]⁺ 572.1002, found 572.1000.

N-Benzyl-*N*-(2-(4-bromophenyl)-1-methyl-5-phenyl-1*H*-imidazol-4-yl)-4-methylb enzenesulfonamide (3ad)

White solid; 95.2 mg; 83% yield; mp 180–181 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.4Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.39 – 7.30 (m, 5H), 7.17 (d, J = 6.1 Hz, 2H), 7.07 (t, J = 7.3 Hz, 1H), 6.95 (t, J = 7.6 Hz, 2H), 6.87 (d, J = 7.4 Hz, 2H), 4.47 (s, 2H), 3.42 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 143.7, 136.5, 135.5, 134.2, 133.8, 132.0, 130.4, 130.3, 129.5, 129.0, 128.9, 128.5, 128.3, 128.2, 127.9, 127.3, 123.3, 54.7, 34.1, 21.8. HRMS (ESI) calcd. for C₃₀H₂₇BrN₃O₂S [M + H]⁺ 572.1002, found 572.1007.

White solid; 99.3 mg; 94% yield; mp 183–184 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.2 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 7.39 – 7.29 (m, 5H), 7.18 (d, J = 7.3 Hz, 2H), 7.07 (t, J = 7.3 Hz, 1H), 6.95 (t, J = 7.6 Hz,

2H), 6.87 (d, J = 7.3 Hz, 2H), 4.47 (s, 2H), 3.41 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 143.7, 136.5, 135.5, 135.1, 134.2, 133.8, 130.3, 130.2, 129.5, 129.03, 129.00, 128.9, 128.4, 128.3, 128.2, 127.9, 127.3, 54.7, 34.1, 21.8. HRMS (ESI) calcd. for C₃₀H₂₇ClN₃O₂S [M + H]⁺ 528.1507, found 528.1503.

N-Benzyl-*N*-(2-(4-methoxyphenyl)-1-methyl-5-phenyl-1*H*-imidazol-4-yl)-4-methy lbenzenesulfonamide (3af)

Yellow oil; 77.4 mg; 74% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 8.7 Hz, 2H), 7.40 – 7.29 (m, 5H), 7.22 – 7.17 (m, 2H), 7.06 (t, J = 7.3 Hz, 1H), 7.00 – 6.92 (m, 4H), 6.88 (d, J = 7.3 Hz, 2H), 4.48 (s, 2H), 3.86 (s, 3H),

3.40 (s, 3H), 2.47 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 145.8, 143.6, 136.6, 135.6, 133.7, 133.1, 130.4, 130.3, 129.5, 129.02, 128.96, 128.6, 128.2, 128.2, 127.8,

127.2, 123.1, 114.2, 55.5, 54.6, 34.0, 21.8. **HRMS (ESI)** calcd. for $C_{31}H_{30}N_3O_3S$ [M + H]⁺ 524.2002, found 524.2006.

N-Benzyl-4-methyl-*N*-(1-methyl-5-phenyl-2-(thiophen-2-yl)-1*H*-imidazol-4-yl)ben zenesulfonamide (3ag)

White solid; 68.2 mg; 69% yield; mp 134–135 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.2 Hz, 2H), 7.41 – 7.35 (m, 3H), 7.35 – 7.29 (m, 3H), 7.28 – 7.25 (m, 1H), 7.18 – 7.02 (m, 4H), 6.94 (t, J = 7.6 Hz, 2H), 6.87 (d, J = 7.3 Hz, 2H), 4.45 (s, 2H), 3.51 (s, 3H),

2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 140.0, 136.4, 135.5, 134.2, 133.5, 133.0, 130.3, 129.4, 129.2, 129.1, 128.4, 128.3, 128.1, 127.9, 127.6, 127.3, 127.0, 126.5, 54.7, 33.8, 21.8. **HRMS (ESI)** calcd. for C₂₈H₂₆N₃O₂S₂ [M + H]⁺ 500.1461, found 500.1466.

N-Benzyl-4-methyl-*N*-(1-methyl-2-(naphthalen-1-yl)-5-phenyl-1*H*-imidazol-4-yl) benzenesulfonamide (3ah)

TsWhite solid; 90.8 mg; 84% yield; mp 120–121 °C; ¹H NMR (400NMHz, CDCl₃) δ 8.00 – 7.87 (m, 4H), 7.63 – 7.51 (m, 5H), 7.40 –NPhMe7.33 (m, 3H), 7.30 (d, J = 8.1 Hz, 2H), 7.23 – 7.14 (m, 3H), 7.07Sah(t, J = 7.5 Hz, 2H), 6.99 (d, J = 7.4 Hz, 2H), 4.54 (s, 2H), 3.16 (s, 14)

3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 143.6, 136.3, 135.6, 133.8, 133.6, 132.8, 132.7, 130.4, 130.0, 129.6, 129.5, 129.0, 128.7, 128.6, 128.5, 128.4, 128.3, 128.1, 127.9, 127.4, 127.0, 126.4, 125.5, 125.2, 54.5, 33.1, 21.7. HRMS (ESI) calcd. for C₃₄H₃₀N₃O₂S [M + H]⁺ 544.2053, found 544.2060.

N-Benzyl-*N*-(2-benzyl-1-methyl-5-phenyl-1*H*-imidazol-4-yl)-4-methylbenzenesulf onamide (3ai)

N-Bn Yellow solid; 78.0 mg; 77% yield; mp 110–111 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 7.8 Hz, 2H), 7.33 – 7.23 (m, 8H), 7.11 (d, J = 7.5 Hz, 3H), 7.06 – 7.00 (m, 2H), 6.97 (t, J = 8.4 Hz, 4H), 4.51 (s, 2H), 4.05 (s, 2H), 3.11 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 143.4, 137.0, 136.3, 135.6, 132.3, 132.1, 130.3, 129.4, 129.3, 128.72, 128.69, 128.5, 128.3, 128.10, 128.05, 127.9, 127.3, 126.7, 54.1, 33.9, 31.5, 21.7. HRMS (ESI) calcd. for C₃₁H₃₀N₃O₂S [M + H]⁺ 508.2053, found 508.2052.

N-Benzyl-*N*-(1-benzyl-2,5-diphenyl-1*H*-imidazol-4-yl)-4-methylbenzenesulfonami de (3aj)

White solid; 90.4 mg; 79% yield; mp 161–162 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.2 Hz, 2H), 7.43 – 7.38 (m, 2H), 7.38 – 7.29 (m, 6H), 7.20 – 7.12 (m, 6H), 7.08 (t, J = 7.5 Hz, 2H), 6.98 (d, J = 7.1 Hz, 2H), 6.86 (d, J = 7.1 Hz, 2H), 6.63 – 6.56 (m, 2H), 4.98 (s, 2H), 4.54 (s,

2H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 143.6, 137.6, 136.4, 135.6, 134.2, 133.2, 130.7, 130.6, 129.8, 129.5, 129.0, 128.92, 128.91, 128.7, 128.6, 128.4, 128.0, 128.00, 127.95, 127.5, 127.4, 125.7, 54.4, 48.6, 21.8. HRMS (ESI) calcd. for $C_{36}H_{32}N_3O_2S$ [M + H]⁺ 570.2210, found 570.2217.

9. Further tranformations

Procedure for Eq 3: A flame-dried Schlenk tube (10 mL) was charged with an excess of sodium (1.0 mmol, 5.0 equiv), naphthalene (1.0 mmol, 5.0 equiv), and THF (2 mL). The reaction mixture was stirred at room temperature for 2 h and then was cooled to -50 °C. The imidazole **3aa** (0.2 mmol) was quickly transferred to the cooled tube and the resulting mixture was stirred at this temperature for 10 min. The reaction was then slowly quenched with water and extracted with DCM. The combined organic phase was dried with anhydrous sodium sulfate. The solvent was evaporated and the crude product was purified by silica gel column chromatography to give the detosylated product **4aa** (eluent: petroleum ether/ethyl acetate 4/1).

Procedure for Eq 4: A flame-dried Schlenk tube (10 mL) was charged with an excess of sodium (1.0 mmol, 5.0 equiv), naphthalene (1.0 mmol, 5.0 equiv), and THF (2 mL). The reaction mixture was stirred at room temperature for 2 h. The imidazole **3aa** (0.2 mmol) was then quickly added and the resulting mixture was stirred at room temperature for 1 h. The reaction was then slowly quenched with water and extracted with DCM. The combined organic phase was dried with anhydrous sodium sulfate. The solvent was evaporated and the crude product was purified by silica gel column chromatography to give the unprotected imidazole **5aa** (eluent: petroleum ether/ethyl acetate 4/1).

Procedure for Eq 5: In a 35 mL sealed tube, **3aa** (0.1 mmol, 49.3 mg), HCOONH₄ (1.0 mmol, 10 equiv), 5% Pd/C (98.6 mg), and MeOH (10 mL) were added in

sequence. The resulting mixture was stirred at 90 °C until the substrate was completely consumed (detected by TLC). The reaction mixture was filtered through a short pad of celite, and solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography to give the debenzylated product **6aa** (eluent: petroleum ether/ethyl acetate 1/1).

N-Benzyl-1-methyl-2,5-diphenyl-1*H*-imidazol-4-amine (4aa)

NHBn Yellow oil; 56.6 mg; 83% yield; ¹H NMR (400 MHz, d^{6} -DMSO) δ 7.67 (d, J = 7.6 Hz, 2H), 7.50 – 7.43 (m, 6H), 7.38 (t, J = 7.3 Hz, 1H), 7.32 (d, J = 7.5 Hz, 2H), 7.30 – 7.22 (m, 3H), 7.16 (t, J = 7.3 Hz, 1H), 5.22 (t, J = 6.5 Hz, 1H), 4.38 (d, J = 6.5 Hz, 2H), 3.54 (s, 3H). ¹³C NMR

 $(100 \text{ MHz}, d^6\text{-DMSO}) \delta 145.3, 143.5, 142.0, 130.8, 130.5, 128.7, 128.4, 128.3, 127.9, 127.9, 127.5, 126.2, 126.0, 113.7, 47.3, 34.0.$ **HRMS (ESI)**calcd. for C₂₃H₂₂N₃ [M + H]⁺ 340.1808, found 340.1803.

N-Benzyl-2,5-diphenyl-1*H*-imidazol-4-amine (5aa)

White solid; 51.3 mg; 79% yield; mp 107–108 °C; ¹H NMR (400 MHz, d^{6} -DMSO) δ 11.96 (s, 1H), 7.99 (d, J = 7.0 Hz, 2H), 7.68 (d, J = 7.2 Hz, 2H), 7.45 – 7.36 (m, 6H), 7.29 (t, J = 7.4 Hz, 3H), 7.21 – 7.08 (m, 2H), 5.51 (d, J = 5.9 Hz, 1H), 4.52 (s, 2H). ¹³C NMR (100 MHz, d^{6} -DMSO) δ 146.0, 142.1, 141.4, 131.5, 130.6, 128.6, 128.5, 128.0, 127.6, 127.5, 126.2, 124.8, 124.2, 124.1, 110.8, 47.4. HRMS (ESI) calcd. for C₂₂H₂₀N₃ [M + H]⁺ 326.1652, found 326.1652.

4-Methyl-*N*-(1-methyl-2,5-diphenyl-1*H*-imidazol-4-yl)benzenesulfonamide (6aa)

White solid; 37.7 mg; 94% yield; mp 154–155 °C; ¹H NMR (400 MHz, d^{6} -DMSO) δ 9.53 (s, 1H), 7.69 – 7.58 (m, 4H), 7.56 – 7.36 (m, 8H), Me f_{aa} 7.27 (d, J = 7.9 Hz, 2H), 3.54 (s, 3H), 2.36 (s, 3H). ¹³C NMR (100 MHz, d^{6} -DMSO) δ 144.5, 142.2, 139.1, 131.1, 130.2, 130.0, 129.7,

129.0, 128.7, 128.6, 128.5, 128.4, 127.9, 127.0, 34.0, 21.0. **HRMS (ESI)** calcd. for $C_{23}H_{22}N_3O_2S [M + H]^+ 404.1427$, found 404.1426.

10.References

- Y. S. Zhang, R. P. Hsung, M. R. Tracey, K. C. M. Kurtz and E. L. Vera, Org. Lett., 2004, 6, 1151.
- H. Harkat, S. Borghese, M. De Nigris, S. Kiselev, V. Beneteau and P. Pale, Adv. Synth. Catal., 2014, 356, 3842.
- T. Wezeman, S. Zhong, M. Nieger and S. Brase, Angew. Chem. Int. Ed., 2016, 55, 3823.
- 4. M. Chen, N. Sun, H. Y. Chen and Y. H. Liu, *Chem. Commun.*, 2016, **52**, 6324.
- 5. Y. Yang, X. Y. Zhang and Y. Liang, Tetrahedron Lett., 2012, 53, 6557.
- 6. K. Jouvin, A. Coste, A. Bayle, F. Legrand, G. Karthikeyan, K. Tadiparthi and G. Evano, *Organometallics*, 2012, **31**, 7933.
- 7. C. Schotes and A. Mezzetti, Angew. Chem. Int. Ed., 2011, 50, 3072.
- C. Theunissen, B. Metayer, N. Henry, G. Compain, J. Marrot, A. Martin-Mingot, S. Thibaudeau and G. Evano, J. Am. Chem. Soc., 2014, 136, 12528.
- (a) J. Charton, N. Cousaert, C. Bochu, N. Willand, B. Deprez and R. Deprez-Poulain, *Tetrahedron Lett.*, 2007, 48, 1479; (b) X. L. Yu, K. H. Chen, F. Yang, S. K. Zha and J. Zhu, *Org. Lett.*, 2016, 18, 5412.

11. NMR spectroscopy of ynamides

S42

ppm

12. NMR spectroscopy of oxadiazolones

S55

13. NMR spectroscopy of product 3aa'

8.00 9.00	4.81 4.27 3.74 3.55 3.55 3.55 3.55	2.46 2.27	1.57	0.00
	$\vee \lor \vee \vee \vee \vee$			

14. NMR spectroscopy of aminoimidazoles

— -111.93

¹⁹F NMR (376 MHz, DMSO)

S111

¹H NMR (400 MHz, CDCI₃)

15. NMR spectroscopy of products 4aa-6aa

