Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

FeCl₃ catalysed 7-membered ring formation in a single pot: a new route to indole-fused oxepines/azepines and their cytotoxic activity

K. Shiva Kumar,^{a,*} Meesa Siddi Ramulu^a, Bandari Rajesham^a, N. Praveen Kumar^a Vani Voora^b, Rama Krishna Kancha^b
^aDepartment of Chemistry, Osmania University, Hyderabad 500 007, India. E-mail: shivakumarkota@yahoo.co.in; Tel: +91 40 27682337
^bMolecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad-500007.

Table of content

Page No

Table S-1: Synthesis of oxepine/azepine fused N-heterocycles	
General Procedure for the preparation of 2a-2f	S-6
Synthesis of 2-(5-methyl-1 <i>H</i> -indol-2-yl)aniline (2h)	S-6
References	S-7
Copies of ¹ H and ¹³ C NMR spectra	S-8

Table S-1. Synthesis of oxepine/azepine fused *N*-heterocycles via FeCl₃-catalysed C–C and C-O/N bond forming reaction between **1** and **2**.

10	1b	2e	N O Br N N Br 3j	81
11	1b	2f		83
12	Ic	2a		81
13	1c	2b	N O N NH N NH 3m	80
14	1c	2c	$N \rightarrow CI$ $N \rightarrow NH$ 3n	82

^aAll the reactions were carried out using compound **1** (1.0 equiv), **2** (1.0 equiv) and FeCl₃ (25 mol%) in a DCE (5 mL) at 80 °C for 3 h. ^bIsolated yield

Genereal procedure for the synthesis of 2-(2-phenylaryl)indoles (2a-f)¹

To a mixture of acetophenone (S-2) (15.00 mmol) in EtOH, phenylhydrazine (S-1) (1.47 mL, 15.00 mmol) was added, followed by 5 drops of AcOH. Then, the reaction mixture stirred at 80 °C for 1 h. After cooled to room temperarure, solvent was removed under reduced pressure. Polyphosphonic acid (PPA, 10.00 mL) was added then heated at 120 °C for 1 h. The reaction mixture then was poured on ice and neutralised with 2 M NaOH and extracted with EtOAc. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give indolyl phenol (**2**).

Synthesis of 2-(5-methyl-1H-indol-2-yl)aniline (2h)^{2,3}

To a solution of aromatic 2-ethynylaniline (S-4) (1.0 equiv.), 2,2,2-trifluoro-N-(2-iodo-5methylphenyl)acetamide (1.1 equiv.) (S-3) and 4 equiv. Et₃N in DMF (5 ml) was added PdCl₂(PPh₃)₂ (6 mol%) at room temperature with stirring. The mixture was warmed to 90 °C under stirring. After completion of the starting material, (the reaction was monitored by TLC) the reaction mixture was cooled to room temperature and then filtered through a short pad of silica gel. The filtrate was concentrated under reduced pressure. The residue was purified by chromatography (EtOAc/n-Hexane) to give the desired products (S-5) which were directly used for next step.

To a solution of S-5 in methanol- H_2O (9:1) was added 3 equiv. KOH. The mixture was stirred at at 65 °C for 10 h. After completion of the reaction (monitored by TLC), the

mixture was poured into cold water (10 mL) and extracted with EtOAc (3 × 20 mL). The organic layers were collected, combined, dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography using EtOAc/n-hexane to give the desired product (**2h**). Brown solid; Yield: 75%; mp: 163-165 °C (lit^{2a} 166-168 °C); $R_f = 0.3$ (20% EtOAc/*n*-hexane); ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.03 (s, 1H), 7.32-7.23 (m, 3H), 7.03 (t, *J* = 8.4 Hz, 1H), 6.88 (d, *J* = 6.8 Hz, 1H), 6.79 (d, *J* = 8 Hz, 1H), 6.65 (t, *J*= 7.6 Hz, 1H), 6.54 (s, 1H), 5.12 (s, 2H), 2.35 (s, 3H); Mass: m/z (CI) 223 (M + 1, 100%).

References

1. X.-H. Xu, M. Taniguchi, A. Azuma, G.-K. Liu, E. Tokunaga, N. Shibata, *Org. Lett.* 2013, **15**, 686-689.

2. (a) N. T. Patil, R. D. Kavthe, V. S. Shinde, B. Sridhar, J. Org. Chem. 2010, 75, 3371-3380;

(b) A. Arcadi, S. Cacchi, G. Fabrizi, F. Marinelli, L. Parisi, M. Heterocycles, 2004, 64, 475-482.

3. T. J. Snape, Synlett 2008, 2689–2691.

Copies of ¹H and ¹³C NMR spectra

3a ¹H NMR (400 MHz, DMSO-*d*₆)

3a ¹³C NMR (100 MHz, DMSO-*d*₆)

3b¹³C NMR (100 MHz, DMSO-*d*₆)

3d ¹H NMR (400 MHz, DMSO- d_6)

3d ¹³C NMR (100 MHz, DMSO- d_6)

3e ¹H NMR (400 MHz, DMSO-*d*₆)

3e ¹³C NMR (100 MHz, DMSO-*d*₆)

3f ¹H NMR (400 MHz, DMSO- d_6)

3f ¹³C NMR (100 MHz, DMSO- *d*₆)

3h ¹H NMR (400 MHz, DMSO- *d*₆)

3h ¹³C NMR (100 MHz, DMSO- *d*₆)

3i ¹H NMR (400 MHz, DMSO-*d*₆)

3i ¹³C NMR (100 MHz, DMSO-*d*₆)

3j ¹³C NMR (100 MHz, DMSO-*d*₆)

3k ¹³C NMR (100 MHz, DMSO-*d*₆)

31 ¹³C NMR (100 MHz, DMSO-*d*₆)

3m ¹³C NMR (100 MHz, DMSO-*d*₆)

3n ¹H NMR (400 MHz, DMSO-*d*₆)

30 ¹H NMR (400 MHz, DMSO-*d*₆)

30 ¹³C NMR (100 MHz, DMSO-*d*₆)

3p ¹³C NMR (100 MHz, DMSO-*d*₆)

3q ¹³C NMR (100 MHz, DMSO-*d*₆)

3r ¹³C NMR (100 MHz, DMSO-*d*₆)

3s ¹H NMR (400 MHz, DMSO-*d*₆)

3s ¹³C NMR (100 MHz, DMSO-*d*₆)

2c ¹H NMR (400 MHz, DMSO-*d*₆)

S-48

2d ¹³C NMR (100 MHz, CDCl₃)

2e ¹H NMR (400 MHz, DMSO-*d*₆)

