Selective Construction of Quaternary Stereocentres in Radical Cyclisation Cascades Triggered by Electron-Transfer Reduction of Amide-Type Carbonyls

Huan-Ming Huang, Pablo Bonilla and David J. Procter*

School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL,

United Kingdom.

Email: david.j.procter@manchester.ac.uk;

Fax: +44 (0)161 2754939; Tel: +44 (0)161 2751425.

Contents

General experimental
Preparation of samarium diiodide (SmI ₂)
Preparation of starting materials
General procedure A: formation of the cascade substrates by Mitsunobu reaction S 5
General procedure B: formation of the cascade substrates by N-alkylation with an alkyl
halide S 5
Radical cyclisation cascades that construct quaternary all carbon stereocentres
mediated by SmI ₂ -H ₂ O-LiBr
General procedure C: SmI ₂ -H ₂ O-LiBr mediated radical cyclisation cascades to give
hemiaminal products (2) S 16
General procedure D: SmI2-LiBr-H2O mediated radical cyclisation cascades to give
enamine products (3) S 23
X-ray structure of 3i
X-ray structure of 3j
References
Crude ¹ H NMR Spectra of Compounds 2a and 3a
¹ H and ¹³ C NMR Spectra of Compounds

General experimental

All experiments were performed under nitrogen atmosphere unless stated otherwise. All solvents were purchased at the highest commercial grade and used as received or after purification by passing through activated alumina columns or distillation from sodium/benzophenone under nitrogen. All other chemicals were purchased at the highest commercial grade and used as received. ¹H NMR spectra were recorded on NMR spectrometers at 400 MHz and 500 MHz and ¹³C NMR at 100 MHz and 125 MHz. ¹H NMR chemical shifts ($\delta_{\rm H}$) and ¹³C NMR chemical shifts ($\delta_{\rm C}$) are quoted in parts per million (ppm) downfield from trimethylsilane (TMS) and coupling constants (J) are quoted in Hertz (Hz). Abbreviations for NMR data are s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), sxt (sextet). Infrared (IR) spectra were recorded on a FTIR spectrometer and mass spectra were obtained using positive or negative electrospray ionisation (ESI), atmospheric pressure chemical ionisation (APCI), electron impact ionisation (EI) or chemical ionisation (CI) techniques. ¹H NMR and ¹³C NMR spectra were assigned with the aid of COSY, HSQC, HMBC, DEPT 135 and nOe NMR techniques and stereochemistry assigned with the aid of X-ray crystallography. Flash column chromatography was carried out using silica gel 60 Angstrom (Å), 240 – 400 mesh. Thin layer chromatography (TLC) was performed on aluminium sheets pre-coated with silica gel, 0.20 mm (Macherey-Nagel, Polygram[®] Sil G/UV254). TLC plates were visualised by UV absorption, phosphomolybdic acid, vanillin or potassium permanganate solution and heating. Diiodoethane was washed with diethyl ether and sodium thiosulfate before use.

For details of the preparation of related compounds (and associated characterisation data) in Table 2 (**1a-c**, **1e**, **2a-c**, **2e**, **3a-c**, **3e**), see: H.-M. Huang and D. J. Procter, *J. Am. Chem. Soc.*, 2016, **138**, 7770.

Preparation of samarium diiodide (SmI₂)

An oven-dried flask equipped with a dry stirrer bar was flushed with a strong flow of N_2 for 30 minutes and loaded with samarium metal (-40 mesh, 1.4 equiv) and diiodoethane (1 equiv). The flask was flushed for another 30 minutes, after which freshly distilled and degassed THF (0.1 M) was added under stirring. Stirring was continued under a positive pressure of N_2 overnight at room temperature. The mixture was allowed to settle for one hour and titrated prior to use.^{1–5}

Preparation of starting materials

General procedure A: formation of the cascade substrates by Mitsunobu reaction^{6,7}

To a solution of the barbituric acid (1.0 mmol, 1.0 equiv), alcohol (2.2 mmol, 2.2 equiv) and PPh₃ (3.0 mmol, 3.0 equiv) in anhydrous CH_2Cl_2 (10 mL) was added DIAD (diisopropyl azodicarboxylate) (3.0 mmol, 3.0 equiv) dropwise at 0 °C. The mixure was warmed to room temperature and stirred under a N₂ atmosphere for 24 h, then concentrated *in vacuo* to give the crude product, which after purification by flash chromatography on silica gel gave the desired product.

General procedure B: formation of the cascade substrates by *N*-alkylation with an alkyl halide⁸

NaH (60%) (2.2 mmol, 2.2 equiv) was added to an oven-dried flask under N₂, and then DMF (4 mL) was added and the mixture cooled to 0 °C. The barbiturate derivative was added. After the generation of H₂, the alkyl halide (2.2 mmol, 2.2 equiv) was added, and the reaction mixture was allowed to stir at 80 °C for 16 h. After cooling to room temperature, H₂O (5 mL) and ethyl acetate (20 mL) were added. The organic phases were combined, washed with brine (× 5), dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by flash

column chromatography.

5-(But-3-en-1-yl)-5-isopentyl-1,3-bis((*E*)-2-methyl-3-phenylallyl)pyrimidine-2,4,6(1*H*,3*H*, 5*H*)-trione (1d)

General procedure A was followed: using 5-(but-3-enyl)-5isopentylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (1.0 mmol, 1.0 equiv), (*E*)-2-methyl-3-phenylprop-2-en-1-ol (2.2 mmol, 2.2 equiv), PPh₃ (3.0 mmol, 3.0 equiv) and DIAD (3.0 mmol, 3.0

equiv) in anhydrous CH₂Cl₂ (10 mL) for 24 h. The mixture was

purified by chromatography (10% EtOAc/hexanes) and gave **1d** (0.442 g, 0.863 mmol, 86%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.26 - 7.32 (5 H, m, Ar*H*), 7.18 - 7.23 (5 H, m, Ar*H*), 6.43 (2 H, s, 2 × C(CH₃)C*H*Ar), 5.61 - 5.75 (1 H, m, C*H*=CH₂), 4.88 - 5.00 (2 H, m, CH=CH₂), 4.65 (4 H, d, *J* = 6.72 Hz, 2 × NC*H*₂), 2.15 - 2.21 (2 H, m, CH₂C*H*₂CH=CH₂), 1.96 - 2.09 (4 H, m, CH₂C*H*₂CH(CH₃)₂ and C*H*₂C*H*₂CH=CH₂), 1.92 (6 H, s, 2 × C(C*H*₃)CHAr), 1.46 (1 H, m, C*H*(CH₃)₂), 1.02 - 1.10 (2 H, m, C*H*₂CH₂CH(CH₃)₂), 0.79 (6 H, d, *J* = 6.6 Hz, CH(C*H*₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.7 (2 × NC(O)C), 150.8 (NC(O)N), 137.0 (2 × C(CH₃)CHAr), 136.5 (CH₂CH₂CH=CH₂), 132.0 (2 × ArC⁴), 128.9 (4 × ArCH), 128.1 (4 × ArCH), 127.2 (2 × C(CH₃)CHAr), 126.6 (2 × ArCH), 116.0 (CH₂CH₂CH=CH₂), 56.4 (C⁴), 48.7 (2 × NCH₂), 39.0 (CH₂CH₂CH=CH₂), 38.8 (CH₂CH₂CH(CH₃)₂), 16.6 (2 × C(CH₃)CHAr). v_{max} (thin film/cm⁻¹): 2955, 1673, 1430, 1397, 1269, 1182, 916, 762, 740, 697. MS (ESI⁺) *m*/*z* (%): 513.3 (M + H⁺); HRMS (ESI⁺) calcd. for C₃₃H₄₁N₂O₃ (M + H⁺): 513.3117. Found: 513.3118.

1,3-Bis((*E*)-3-(4-bromophenyl)-2-methylallyl)-5-(but-3-enyl)-5-isopropylpyrimidine-2,4,6 (1*H*,3*H*,5*H*)-trione (1f)

General	procedure	А	was	followed:	using
---------	-----------	---	-----	-----------	-------

5-(but-3-enyl)-5-isopropylpyrimidine-2,4,6(1H,3H,5H)-tr ione (1.0 mmol, 1.0 equiv), (E)-3-(4-bromophenyl)-2-methylprop-2-en-1-ol (2.2 mmol, 2.2 equiv), PPh₃ (3.0 mmol, 3.0 equiv) and DIAD

R' = CH₂C(CH₃)=CH(4-BrC₆H₄) (3.0 mmol, 3.0 equiv) in anhydrous CH₂Cl₂ (10 mL) for 24 h. The mixture was purified by chromatography (10% EtOAc/hexanes) and gave **1f** (0.500 g, 0.722 mmol, 72%) as a colourless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.38 - 7.45 (4 H, m, Ar*H*), 7.00 - 7.07 (4 H, m, Ar*H*), 6.36 (2 H, s, 2 × ArC*H*=C), 5.65 - 5.74 (1 H, m, CH₂=C*H*), 4.89 - 4.95 (2 H, m, CH₂=CH), 4.62 (4 H, s, 2 × NC*H*₂), 2.33 - 2.40 (1 H, m, C*H*(CH₃)₂), 2.17 - 2.25 (2 H, m, CH₂=CHC*H*₂CH₂), 1.91 - 1.98 (2 H, m, CH₂=CHCH₂C*H*₂), 1.88 (6 H, s, 2 × CH=CC*H*₃), 1.02 (6 H, d, *J* = 6.9 Hz, CH(C*H*₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.0 (2 × NC(O)C), 151.0 (NC(O)N), 136.8 (CH₂=CH), 135.9 (2 × ArCH=C), 120.5 (2 × ArC⁴), 115.9 (CH₂=CH), 59.7 (*C*⁴), 48.6 (2 × NCH₂), 39.2 (CH(CH₃)₂), 34.9 (CH₂=CHCH₂), 30.2 (CH₂=CHCH₂CH₂), 18.0 (CH(*C*H₃)₂), 16.6 (2 × CH=CCH₃). v_{max} (thin film/cm⁻¹): 2969, 2938, 1659, 1486, 1430, 1394, 1284, 1184, 1073, 1009, 911, 771. MS (ESI⁺) *m/z* (%): 677.1 (M + CI'); HRMS (ESI⁺) calcd. for C₃₁H₃₅N₂O₃Br₂ (M + H⁺): 641.1009. Found: 641.1005.

5-(But-3-enyl)-5-isopropyl-1,3-bis((*E*)-3-(4-methoxyphenyl)-2-methylallyl)pyrimidine-2, 4,6(1*H*,3*H*,5*H*)-trione (1g)

anhydrous DMF (4 mL) at 80 $^{\circ}$ C for 16 h. The mixture was purified by chromatography (20% EtOAc/hexanes) and gave **1g** (0.246 g, 0.452 mmol, 45%) as a colourless oil. ¹H NMR (500

MHz, CDCl₃) δ ppm 7.11 - 7.15 (4 H, m, ArH), 6.81 - 6.86 (4 H, m, ArH), 6.40 (2 H, s, 2 \times ArCH=C), 5.66 - 5.74 (1 H, m, CH₂=CH), 4.90 - 4.97 (2 H, m, CH₂=CH), 4.63 (4 H, s, 2 × NCH₂), 3.80 (6 H, s, 2 × OCH₃), 2.33 - 2.39 (1 H, m, CH(CH₃)₂), 2.17 - 2.22 (2 H, m, CH₂=CHCH₂CH₂), 1.92 - 1.98 (2 H, m, CH₂=CHCH₂CH₂), 1.90 (6 H, s, 2 × CH=CCH₃), 1.01 (6 H, d, J = 6.9 Hz, CH(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.1 (2 × NC(O)C), 158.2 (2 × Ar C^{q}), 151.1 (NC(O)N), 136.9 (CH₂=CH), 130.5 (2 × ArCH=C), 130.1 (4 × ArCH), 129.7 (2 × ArC⁴), 127.2 (2 × ArCH=C), 115.8 (CH₂=CH), 113.5 (4 × ArCH), 59.7 (C^{q}) , 55.2 (2 × OCH₃), 48.9 (2 × NCH₂), 39.2 (CH(CH₃)₂), 34.9 (CH₂=CHCH₂), 30.1 $(CH_2=CHCH_2CH_2)$, 18.0 $(CH(CH_3)_2)$, 16.6 $(2 \times CH=CCH_3)$. v_{max} (thin film/cm⁻¹): 2936, 2835, 1673, 1607, 1510, 1430, 1396, 1249, 1176, 1034, 909, 842, 730. MS (ESI⁺) m/z (%): 545.3 $(M + H^{+})$; HRMS (ESI⁺) calcd. for C₃₃H₄₀N₂O₅Na (M + Na⁺): 567.2829. Found: 567.2826.

5-(But-3-en-1-yl)-5-isopropyl-1,3-bis((*E*)-2-methyl-3-(4-(trifluoromethyl)phenyl)allyl)pyr imidine-2,4,6(1*H*,3*H*,5*H*)-trione (1h)

General procedure followed: using А was 5-(but-3-enyl)-5-isopropylpyrimidine-2,4,6(1H,3H,5H) -trione (1.0)mmol, 1.0 equiv), (*E*)-3-(4-trifluoromethylphenyl)-2-methylprop-2-en-1-o $\mathsf{R'} = \mathsf{CH}_2\mathsf{C}(\mathsf{CH}_3) = \mathsf{CH}(4 - \mathsf{CF}_3\mathsf{C}_6\mathsf{H}_4) \quad 1 \ (2.2 \text{ mmol}, \ 2.2 \text{ equiv}), \ \mathsf{PPh}_3 \ (3.0 \text{ mmol}, \ 3.0 \text{ equiv}) \ \mathsf{and}$ DIAD (3.0 mmol, 3.0 equiv) in anhydrous CH₂Cl₂ (10 mL) for 24 h. The mixture was purified by chromatography (10% EtOAc/hexanes) and gave 1h (0.330 g, 0.532 mmol, 53%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.54 (4 H, d, *J* = 8.3 Hz, Ar*H*), 7.27 (4 H, d, J = 8.0 Hz, ArH), 6.44 (2 H, s, 2 × ArCH=C), 5.60 - 5.79 (1 H, m, CH₂=CH), 4.85 - 4.99 (2 H, m, CH₂=CH), 4.66 (4 H, s, 2 × NCH₂), 2.31 - 2.43 (1 H, m, CH(CH₃)₂), 2.16 - 2.28 (2 H, m, CH₂=CHCH₂CH₂), 1.92 - 2.02 (2 H, m, CH₂=CHCH₂CH₂), 1.93 (6 H, s, 2 × CH=CCH₃), 1.03 (6 H, d, J = 6.8 Hz, CH(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.0 (2 × NC(O)C), 151.0 (NC(O)N), 140.6 (2 × ArCH=C), 136.7 (CH₂=CH), 134.5 (2 × ArC^q), 129.0 (4 ×

ArCH), 128.7 (q, J = 32 Hz, $2 \times ArC^{q}$), 126.1 ($2 \times ArCH$), 125.1 (q, J = 4 Hz, $2 \times ArCH$), 124.1 (q, J = 271 Hz, $2 \times CF_3$), 116.0 (CH₂=CH), 59.8 (C^q), 48.6 (2 × NCH₂), 39.3 $(CH(CH_3)_2)$, 34.9 $(CH_2=CHCH_2)$, 30.2 $(CH_2=CHCH_2CH_2)$, 18.0 $(CH(CH_3)_2)$, 16.6 (2×10^{-3}) CH=CCH₃). v_{max} (thin film/cm⁻¹): 2974, 1683, 1231, 1395, 1318, 1164, 1122, 1067, 1016, 908, 859, 731. MS (ESI⁺) m/z (%): 659.2 (M + K⁺); HRMS (ESI⁺) calcd. for C₃₃H₃₄N₂O₃F₆Cl (M + Cl⁻): 655.2168. Found: 655.2164.

5-(But-3-en-1-yl)-1,3-bis((E)-3-(3-fluorophenyl)-2-methylallyl)-5-isopropylpyrimidine-2, 4,6(1*H*,3*H*,5*H*)-trione (1i)

procedure

А

was

followed:

using

General

5-(but-3-enyl)-5-isopropylpyrimidine-2,4,6(1H,3H,5H)-trione (1.0 mmol, 1.0 equiv), (E)-3-(3-fluorophenyl)prop-2-en-1-ol (2.2 mmol, 2.2 equiv), PPh₃ (3.0 mmol, 3.0 equiv) and DIAD $R' = CH_2C(CH_3)=CH(3-FC_6H_4)$ (3.0 mmol, 3.0 equiv) in anhydrous CH_2Cl_2 (10 mL) for 24 h. The mixture was purified by chromatography (10% EtOAc/hexanes) and gave 1i (0.371 g, 0.713 mmol, 71%) as a colourless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.19 - 7.29 (2 H, m, ArH), 6.85 - 6.98 (6 H, m, ArH), 6.40 (2 H, s, $2 \times \text{ArCH=C}$), 5.63 - 5.79 (1 H, m, CH₂=CH), 4.82 - 5.02 (2 H, m, CH₂=CH), 4.64 (4 H, s, 2 × NCH₂), 2.32 - 2.43 (1 H, m, CH(CH₃)₂), 2.17 - 2.27 (2 H, m, CH₂=CHCH₂CH₂), 1.93 - 2.00 (2 H, m, CH₂=CHCH₂CH₂), 1.91 (6 H, s, 2 \times CH=CCH₃), 1.03 (6 H, d, J = 6.9 Hz, CH(CH₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.0 $(2 \times NC(O)C)$, 162.6 (d, J = 246 Hz, $2 \times ArC^{q}$), 151.0 (NC(O)N), 139.2 (d, J = 8.8 Hz, $2 \times C^{q}$) ArC^q), 136.8 (CH₂=CH), 133.5 (2 × ArCH=C), 129.6 (d, *J* = 7.6 Hz, 2 × ArCH), 126.4 (d, *J* = 2.5 Hz, 2 × Ar*C*H), 124.6 (d, *J* = 2.5 Hz, 2 × Ar*C*H), 115.9 (*C*H₂=CH), 115.5 (d, *J* = 21.4 Hz, $2 \times \text{ArCH}$, 59.7 (C⁴), 48.6 (2 × NCH₂), 39.3 (CH(CH₃)₂), 34.9 (CH₂=CHCH₂), 30.2 $(CH_2=CHCH_2CH_2)$, 18.0 $(CH(CH_3)_2)$, 16.6 $(2 \times CH=CCH_3)$. v_{max} (thin film/cm⁻¹): 2971, 1655, 1580, 1430, 1394, 1280, 1253, 1143, 949, 879, 756, 689. MS (ESI⁺) *m/z* (%): 521.2 (M + H⁺); HRMS (ESI⁺) calcd. for $C_{31}H_{34}N_2O_3F_2Na$ (M + Na⁺): 543.2430. Found: 543.2428.

5-(But-3-en-1-yl)-5-isopropyl-1,3-bis((*E*)-3-(3-methoxyphenyl)-2-methylallyl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (1j)

General procedure B was followed: using 5-(but-3-enyl)-5-isopropylpyrimidine-2,4,6(1*H*,3*H*,5*H*)trione (1.0 mmol, 1.0 equiv), (*E*)-1-(3-chloro-2-methylprop-1-en-1-yl)-3-methoxyben zene (2.2 mmol, 2.2 equiv), NaH (2.2 mmol, 2.2 equiv)

in anhydrous DMF (4 mL) at 80 °C for 16 h. The mixture was purified by chromatography (20% EtOAc/hexanes) and gave **1j** (0.219 g, 0.402 mmol, 40%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.21 (2 H, t, *J* = 7.9 Hz, Ar*H*), 6.72 - 6.81 (6 H, m, Ar*H*), 6.43 (2 H, s, 2 × ArC*H*=C), 5.63 - 5.77 (1 H, m, CH₂=C*H*), 4.90 - 4.98 (2 H, m, CH₂=CH), 4.64 (4 H, s, 2 × NC*H*₂), 3.77 (6 H, s, 2 × OC*H*₃), 2.33 - 2.40 (1 H, m, C*H*(CH₃)₂), 2.17 - 2.24 (2 H, m, CH₂=CHC*H*₂CH₂), 1.94 - 2.00 (2 H, m, CH₂=CHCH₂C*H*₂), 1.92 (6 H, s, 2 × CH=CC*H*₃), 1.02 (6 H, d, *J* = 7.0 Hz, CH(C*H*₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.0 (2 × NC(O)C), 159.4 (2 × ArC⁴), 151.1 (NC(O)N), 138.5 (2 × ArCH=C), 136.9 (CH₂=CH), 132.4 (2 × ArC⁴), 129.1 (2 × ArCH), 127.4 (2 × ArCH=C), 121.4 (2 × ArCH), 115.9 (CH₂=CH), 114.3 (2 × ArCH), 112.2 (2 × ArCH), 59.7 (C⁶), 55.2 (2 × OCH₃), 48.7 (2 × NCH₂), 39.3 (CH(CH₃)₂), 34.9 (CH₂=CHCH₂), 30.2 (CH₂=CHCH₂CH₂), 18.0 (CH(CH₃)₂), 16.7 (2 × CH=CCH₃). ν_{max} (thin film/cm⁻¹): 2938, 1635, 1576, 1429, 1394, 1273, 1159, 1044, 910, 782, 694. MS (ESI⁺) m/z (%): 545.3 (M + H⁺); HRMS (ESI⁺) calcd. for C₃₃H₄₀N₂O₅Na (M + Na⁺): 567.2829. Found: 567.2822.

5-(But-3-en-1-yl)-5-isopropyl-1,3-bis((*E*)-2-methyl-3-(naphthalen-1-yl)allyl)pyrimidine-2 ,4,6(1*H*,3*H*,5*H*)-trione (1k)

GeneralprocedureAwasfollowed:using5-(but-3-enyl)-5-isopropylpyrimidine-2,4,6(1H,3H,5H)-trione(1.0mmol,1.0equiv),

(*E*)-2-methyl-3-(naphthalen-2-yl)prop-2-en-1-ol (2.2 mmol, 2.2 equiv), PPh₃ (3.0 mmol, 3.0 equiv) and DIAD (3.0 mmol, 3.0 equiv) in anhydrous CH_2Cl_2 (10 mL) for 24 h. The mixture was purified by chromatography (10%

R' = CH₂C(CH₃)=CHC₁₀H₇ EtOAc/hexanes) and gave **1k** (0.349 g, 0.598 mmol, 60%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.89 - 7.96 (2 H, m, Ar*H*), 7.80 - 7.87 (2 H, m, Ar*H*), 7.75 (2 H, d, *J* = 8.3 Hz, Ar*H*), 7.36 - 7.48 (6 H, m, Ar*H*), 7.25 (2 H, d, *J* = 7.0 Hz, Ar*H*), 6.94 (2 H, s, 2 × ArC*H*=C), 5.63 - 5.82 (1 H, m, CH₂=C*H*), 4.89 - 4.97 (2 H, m, CH₂=CH), 4.82 (4 H, s, 2 × NC*H*₂), 2.41 - 2.49 (1 H, m, C*H*(CH₃)₂), 2.27 - 2.33 (2 H, m, CH₂=CHC*H*₂CH₂), 1.97 - 2.05 (2 H, m, CH₂=CHCH₂C*H*₂), 1.76 (6 H, s, 2 × CH=CC*H*₃), 1.08 (6 H, d, *J* = 7.0 Hz, CH(C*H*₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.2 (2 × NC(O)C), 151.3 (NC(O)N), 136.9 (CH₂=CH), 134.5 (2 × ArCH=C), 133.8 (2 × ArC⁴), 133.5 (2 × ArC⁴), 132.0 (2 × ArC⁴), 128.3 (2 × ArCH), 127.3 (2 × ArCH), 126.4 (2 × ArCH), 126.4 (2 × ArCH=C), 126.0 (2 × ArCH), 125.8 (2 × ArCH), 125.2 (2 × ArCH), 125.1 (2 × ArCH), 115.9 (CH₂=CHCH₂CH₂), 18.1 (CH(CH₃)₂), 16.5 (2 × CH=CCH₃). v_{max} (thin film/cm⁻¹): 3058, 2937, 1645, 1430, 1393, 1283, 1184, 907, 781, 730. MS (ESI⁺) *m/z* (%): 585.3 (M + H⁺); HRMS (ESI⁺) calcd. for C₃₉H₄₀N₂O₃Na (M + Na⁺): 607.2931. Found: 607.2926.

5-(But-3-en-1-yl)-5-isopropyl-1,3-bis((*E*)-2-methyl-3-(o-tolyl)allyl)pyrimidine-2,4,6(1*H*,3 *H*,5*H*)-trione (11)

chromatography (10% EtOAc/hexanes) and gave **11** (0.299 g, 0.584 mmol, 58%) as a colourless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.10 - 7.17 (6 H, m, Ar*H*), 7.05 - 7.10 (2 H, m, Ar*H*), 6.49 (2 H, s, 2 × ArC*H*=C), 5.66 - 5.75 (1 H, m, CH₂=C*H*), 4.90 - 4.97 (2 H, m, CH₂=CH), 4.67 (4 H, s, 2 × NCH₂), 2.34 - 2.41 (1 H, m, C*H*(CH₃)₂), 2.16 - 2.25 (8 H, m, 2 × ArC*H*₃ and CH₂=CHC*H*₂CH₂), 1.91 - 1.98 (2 H, m, CH₂=CHCH₂C*H*₂), 1.73 (6 H, s, 2 × CH=CC*H*₃), 1.03 (6 H, d, *J* = 6.9 Hz, CH(C*H*₃)₂). ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.1 (2 × NC(O)C), 151.1 (NC(O)N), 136.8 (CH₂=CH), 136.4 (2 × ArCH=C), 136.4 (2 × ArC^q), 132.0 (2 × ArC^q), 129.7 (2 × ArCH), 129.1 (2 × ArCH), 127.4 (2 × ArCH=C), 126.9 (2 × ArCH), 125.3 (2 × ArCH), 115.8 (CH₂=CH), 59.7 (C⁴), 48.4 (2 × NCH₂), 39.3 (CH(CH₃)₂), 34.8 (CH₂=CHCH₂), 30.1 (CH₂=CHCH₂CH₂), 19.8 (2 × ArCH₃), 18.0 (CH(CH₃)₂), 16.2 (2 × CH=CCH₃). v_{max} (thin film/cm⁻¹): 2938, 1612, 1429, 1395, 1283, 1184, 1046, 910, 742. MS (ESI⁺) *m/z* (%): 513.3 (M + H⁺); HRMS (ESI⁺) calcd. for C₃₃H₄₁N₂O₃ (M + H⁺): 513.3112. Found: 513.3109.

5-(But-3-en-1-yl)-1,3-bis((*E*)-2-methyl-3-phenylallyl)-5-phenethylpyrimidine-2,4,6(1*H*,3 *H*,5*H*)-trione (1m)

General procedure A was followed: using 5-(but-3-en-1-yl)-5-phenethylpyrimidine-2,4,6(1*H*,3*H* ,5H)-trione (1.0 mmol, 1.0 equiv), (*E*)-2-methyl-3-phenylprop-2-en-1-ol (2.2 mmol, 2.2 equiv), PPh₃ (3.0 mmol, 3.0 equiv) and DIAD (3.0

mmol, 3.0 equiv) in anhydrous CH₂Cl₂ (10 mL) for 24 h. The mixture was purified by chromatography (10% EtOAc/hexanes) and gave **1m** (0.289 g, 0.528 mmol, 53%) as a colourless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.14 - 7.33 (13 H, m, Ar*H*), 7.03 - 7.11 (2 H, m, Ar*H*), 6.48 (2 H, s, 2 × ArC*H*=C), 5.62 - 5.73 (1 H, m, CH₂=C*H*), 4.90 - 4.98 (2 H, m, CH₂=CH), 4.63 (4 H, s, 2 × NC*H*₂), 2.47 - 2.59 (2 H, m, ArC*H*₂), 2.33 - 2.43 (2 H, m, ArCH₂C*H*₂), 2.15 - 2.24 (2 H, m, CH₂=CHC*H*₂C*H*₂), 1.99 - 2.10 (2 H, m, CH₂=CHCH₂C*H*₂),

1.93 (6 H, s, 2 × CH=CCH₃). ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.3 (2 × NC(O)C), 150.7 (NC(O)N), 139.7 (ArC^q), 137.0 (2 × ArCH=C), 136.3 (CH₂=CH), 132.0 (2 × ArC^q), 128.9 (4 × ArCH), 128.5 (2 × ArCH), 128.3 (2 × ArCH), 128.1 (4 × ArCH), 127.5 (2 × ArCH=C), 126.6 (2 × ArCH), 126.5 (ArCH), 116.1 (CH₂=CH), 56.2 (C^q), 48.8 (2 × NCH₂), 41.7 (ArCH₂CH₂), 39.2 (CH₂=CHCH₂), 31.5 (ArCH₂CH₂), 29.6 (CH₂=CHCH₂CH₂), 16.6 (2 × CH=CCH₃). v_{max} (thin film/cm⁻¹): 3024, 2936, 1667, 1430, 1398, 1168, 1021, 917, 741, 696. MS (ESI⁺) *m*/*z* (%): 547.2 (M + H⁺); HRMS (ESI⁺) calcd. for C₃₆H₃₈N₂O₃Na (M + Na⁺): 569.2775. Found: 569.2771.

5-(But-3-yn-1-yl)-5-methyl-1,3-bis((*E*)-2-methyl-3-phenylallyl)pyrimidine-2,4,6(1*H*,3*H*,5 *H*)-trione (1n)

General procedure A was followed: using 5-(but-3-yn-1-yl)-5-methylpyrimidine-2,4,6(1H,3H,5H)-trione (1.0 mmol, 1.0 equiv), (*E*)-2-methyl-3-phenylprop-2-en-1-ol (2.2 mmol, 2.2 equiv), PPh₃ (3.0 mmol, 3.0 equiv) and DIAD (3.0 mmol, 3.0 equiv) in anhydrous CH₂Cl₂ (10 mL) for 24 h.

The mixture was purified by chromatography (10% EtOAc/hexanes) and gave **1n** (0.232 g, 0.51 mmol, 51%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.28 - 7.32 (4 H, m, Ar*H*), 7.19 - 7.22 (6 H, m, Ar*H*), 6.40 (2 H, s, 2 × C(Ar)C*H*=C), 4.58 - 4.68 (4 H, m, 2 × NC*H*₂), 2.36 - 2.39 (2 H, m, CH₂C*H*₂C≡CH), 2.25 - 2.29 (2 H, m, C*H*₂C*H*₂C≡CH), 1.92 (1 H, m, CH₂C=C*H*), 1.91 (6 H, m, 2 × CH=CC*H*₃), 1.62 (3 H, s, C*H*₃). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.5 (2 × NC(O)C), 150.6 (NC(O)N), 137.1 (2 × CH=C^q(CH₃)), 132.0 (2 × ArC^q), 129.0 (4 × ArCH), 128.1 (2 × ArCH), 126.7 (2 × ArCH), 126.6 (2 × ArC^qCH=C), 81.8 (CH₂C≡CH), 70.8 (CH₂C≡CH), 51.1 (*C*^q), 48.7 (2 × NCH₂CH=CH₂), 29.9 (C*H*₂CH₂C≡CH), 27.1 (C(O)CCH₃), 16.4 (C=CCH₃), 14.8 (CH₂C≡CH). v_{max} (thin film/cm⁻¹): 3431, 2973, 2112, 1680, 1429, 1395, 759. MS (ESI⁺) *m*/*z* (%): 455 (M + H⁺, 100); HRMS (ESI) calcd. for C₂₉H₃₀N₂O₃Na (M + Na⁺): 477.2149. Found: 477.2145.

5-Isopropyl-1,3-bis((E)-2-methyl-3-phenylallyl)-5-(pent-4-en-1-yl)pyrimidine-2,4,6(1H,3 *H*,5*H*)-trione (10)

procedure

А

was

followed:

using

General

5-isopropyl-5-(pent-4-en-1-yl)pyrimidine-2,4,6(1H,3H,5H)-trio ne (1.0 mmol, 1.0 equiv), (E)-2-methyl-3-phenylprop-2-en-1-ol (2.2 mmol, 2.2 equiv), PPh₃ (3.0 mmol, 3.0 equiv) and DIAD 10 (3.0 mmol, 3.0 equiv) in anhydrous CH_2Cl_2 (10 mL) for 24 h. $[R' = CH_2C(CH_3)=CHPh]$ The mixture was purified by chromatography (10% EtOAc/hexanes) and gave 10 (0.224 g, 0.45 mmol, 22%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.28 - 7.34 (4 H, m, ArH), 7.19 - 7.25 (6 H, m, ArH), 6.47 (2 H, s, 2 × C(Ar)CH=C), 5.72 (1 H, m, CH=CH₂), 4.92 - 5.02 (2 H, m, CH=CH₂), 4.70 (4 H, s, $2 \times NCH_2$), 2.36 - 2.48 (1 H, m, CH(CH₃)₂), 2.12- 2.19 (2 H, m, CH₂CH₂CH₂CH₂CH=CH₂), 2.07 (2 H, q, J = 7.3 Hz, CH₂CH₂CH₂CH=CH₂), 1.95 (6 H, s, 2 × CH=CCH₃), 1.25 - 1.36 (2 H, m, CH₂CH₂CH₂CH=CH₂), 1.07 (6 H, d, *J* = 6.8 Hz, CH(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.2 (2 ×NC(O)C), 151.0 (NC(O)N), 137.5 $(CH_2CH_2CH_2CH_2CH_2CH_2)$, 137.1 (2 × CH= $C^q(CH_3)$), 132.1 (2 × Ar C^q), 129.0 (4 × ArCH), 128.1 (2 × ArCH), 127.2 (2 × ArCH), 127.1 (2 × ArC^qCH=C), 126.6 (2 × ArCH), 115.3 (CH₂CH₂CH₂CH₂CH₂CH₂), 60.2 (CCH₂CH₂CH₂), 48.7 (2 × NCH₂), 39.0 (CH(CH₃)₂), 35.4 C=CCH₃), 16.6 (C(CH₃)₂). v_{max} (thin film/cm⁻¹): 2971, 1679, 1429, 1393, 1278, 740, 697. MS (ESI^+) m/z (%): 499 (M + H⁺, 100); HRMS (ESI) calcd. for $C_{32}H_{38}N_2O_3Na$ (M + Na⁺): 521.2780. Found: 521.2775.

1,3-Bis((E)-3-(2-allylphenyl)-2-methylallyl)-5-(but-3-en-1-yl)-5-isopropylpyrimidine-2,4, 6(1*H*,3*H*,5*H*)-trione (1p)

General procedure А was followed: using 5-(but-3-en-1-yl)-5-isopropylpyrimidine-2,4,6(1H,3H,5H)-trione (1.0 mmol, 1.0 equiv), (E)-3-(2-allylphenyl)-2-methylprop-2-en-1-ol (2.2 mmol, 2.2 equiv), PPh₃ (3.0 mmol, 3.0 S 14

equiv) and DIAD (3.0 mmol, 3.0 equiv) in anhydrous CH_2Cl_2 (10 mL) for 24 h. The mixture was purified by chromatography (10% EtOAc/hexanes) and gave **1p** (0.410 g, 0.73

mmol, 73%) as a colourless oil. ¹H NMR (400

 $[\mathsf{R'} = \mathsf{CH}_2\mathsf{C}(\mathsf{CH}_3) = \mathsf{CH}(2 - \mathsf{CH}_2\mathsf{CH} = \mathsf{CH}_2\mathsf{C}_6\mathsf{H}_4)]$

MHz, CDCl₃) δ ppm 7.16 - 7.34 (8 H, m, Ar*H*), 6.63 (2 H, s, 2 × ArC*H*=C), 5.97 (2 H, m, 2 × ArCH₂CH₂CH₂CH₂), 5.73 - 5.87 (1 H, m, CH₂CH₂CH₂CH₂CH₂), 4.99 - 5.11 (6 H, m, 4 H from CH₂CH₂CH₂CH₂CH₂CH₂CH₂ and 2 H from CH₂CH=C*H*₂), 4.75 (4 H, s, 2 × NC*H*₂), 3.39 (4 H, d, *J* = 6.3 Hz, 2 × C(Ar)C*H*₂CH=CH₂), 2.39 - 2.53 (1 H, m, C*H*(CH₃)₂), 2.27 - 2.34 (2 H, m, CC*H*₂CH₂CH=CH₂), 1.98 - 2.07 (2 H, m, CCH₂C*H*₂CH=CH₂), 1.81 (6 H, s, 2 × CH=C(C*H*₃)), 1.09 - 1.15 (6 H, d, *J* = 1.3 Hz CH(C*H*₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.1 (2 × NC(O)C), 151.1 (NC(O)N), 138.3 (2 × C(Ar)CH₂CH=CH₂), 138.3 (2 × CH=C⁴(CH₃)), 136.9 (2 × C(Ar)⁴CH₂C*H*=CH₂), 136.8 (CH₂CH₂C*H*=CH₂), 132.6 (2 × ArC⁴), 129.5 (2 × ArCH), 129.1 (2 × ArCH), 127.2 (2 × ArCH), 127.1 (2 × ArC⁴CH=C), 125.9 (2 × ArCH), 115.8 (2 × C(Ar)CH₂CH=CH₂), 137.6 (2 × C(Ar)CH₂CH=CH₂), 34.8 (CCH₂CH₂CH=CH₂), 30.2 (CCH₂CH₂CH=CH₂), 18.1 (2 × C=CCH₃), 16.3 (C(CH₃)₂). v_{max} (thin film/cm⁻¹): 2976, 1682, 1429, 1396, 914, 751. MS (ESI⁺) *m/z* (%): 565 (M + H⁺, 100); HRMS (ESI) calcd. for C₃₇H₄₅N₂O₃ (M + H⁺): 565.3425. Found: 565.3428.

Radical cyclisation cascades that construct quaternary all carbon

stereocentres mediated by SmI₂-H₂O-LiBr

General procedure C: SmI₂-H₂O-LiBr mediated radical cyclisation cascades to give hemiaminal products (2)

To an oven-dried vial charged with anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) was added freshly prepared SmI₂ (0.3 mmol, 3.0 mL, 0.1 M, 3 equiv) in THF, under a nitrogen atmosphere. The solution was stirred for 30 min at room temperature. An oven-dried vial containing a stir bar was charged with substrate (0.1 mmol, 1 equiv) and placed under a positive pressure of nitrogen. THF (0.05 M, typically, 2.0 mL) and water (typically, 100 equiv) were added, followed by the syringe pump addition of the mixture of SmI₂ and LiBr over 1 h with vigorous stirring. After the specified time (typically, 3 h), the reaction was quenched by bubbling air through the mixture before dilution with CH₂Cl₂ (30 mL) and aqueous HCl (0.1 M, 20 mL). The aqueous layer was extracted with CH₂Cl₂ (3 × 20 mL) and the combined organic phases were dried over Mg₂SO₄, filtered and concentrated. The crude product was purified by chromatography on silica gel.

(2aS,2a¹S,7R,8aS)-7-Benzyl-2a¹-hydroxy-2a-isopentyl-7-methyl-4-((*E*)-2-methyl-3-pheny lallyl)octahydro-3*H*-4,5a-diazaacenaphthylene-3,5(4*H*)-dione (2d). According to the general procedure C, 1d (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) and H₂O (0.18 mL, 100 equiv), stirring for 3 h and purification by chromatography (1/4 EtOAc/hexanes), gave 2d (36 mg, 0.070 mmol, 70%, >

95:5 dr) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.27 - 7.33 (4 H, m, ArH), 7.19 - 7.25 (3 H, m, ArH), 7.14 - 7.19 (3 H, m, ArH), 6.26 (1 H, s, C(CH₃)=CHAr), 4.52 (2 H, d, J = 3.5 Hz, NCH₂), 4.12 (1 H, dd, J = 13.1, 2.3 Hz, 1 H from NCH₂), 3.01 (1 H, d, J = 13.1 Hz, 1 H from NCH₂), 2.60 (2 H, s, CH₂Ar), 2.56 - 2.59 (1 H, m, CH₂CH₂CH_CH₂), 2.15 (1 H, s, OH), 2.03 - 2.13 (1 H, m, 1 H from CH₂CH₂CH(CH₃)₂), 1.90 - 2.03 (3 H, m, 1 H from CH₂CH₂CH(CH₃)₂ and 1 H from CH₂CH₂CHCH₂ and 1 H from CH₂CH₂CHCH₂), 1.86 (3 H, s, CH=CCH₃), 1.62 - 1.79 (3 H, m, 1 H from CH₂CH₂CH(CH₃)₂ and 1 H from CH₂CH₂CHCH₂ and 1 H from CH₂CH₂CHCH₂), 1.43 - 1.58 (3 H, m, 1 H from CH(CH₃)₂ and 1 H from $CH_2CH_2CHCH_2$ and 1 H from $CH_2CH_2CHCH_2$), 1.30 (1 H, dd, J = 6.8, 3.5 Hz, 1 H from CH₂CH₂CH(CH₃)₂), 1.04 (3 H, s, CH₃), 0.92 (6 H, dd, J = 6.5, 4.5 Hz, CH(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ ppm 172.5 (NC(O)C), 152.5 (NC(O)N), 137.7 (ArCH=C), 137.0 (ArC^{q}) , 133.5 (ArC^{q}) , 130.6 $(2 \times ArCH)$, 129.0 $(2 \times ArCH)$, 128.0 $(2 \times ArCH)$, 127.9 $(2 \times ArCH)$ ArCH), 126.4 (ArCH), 126.2 (ArCH), 124.8 (C=CHAr), 91.6 (COH), 55.2 (C^q), 49.1 (CH₂Ar), 48.2 (NCH₂), 47.6 (NCH₂), 42.3 (CH₂CH₂CHCH₂), 34.9 (CH₂CH(CH₃)₂), 34.8 (CH₂CH₂CHCH₂), 34.4 (CH₂CH₂CH(CH₃)₂), 33.7 (C^q), 30.7 (CH₂CH₂CHCH₂), 29.1 (CH(CH₃)₂), 26.5 (CH₂CH₂CHCH₂), 23.0 (CH₃), 22.6 (CH₃), 22.5 (CH₃), 16.3 (CH₃). v_{max} (thin film/cm⁻¹): 3409, 2955, 1705, 1664, 1440, 1367, 1259, 1021, 909, 733, 700. MS (ESI⁺) m/z (%): 513.3 (M+H⁺, 100); HRMS (ESI⁺) calcd. for C₃₃H₄₃N₂O₃ (M + H⁺): 515.3268. Found: 515.3266.

 $(2aR,2a^{1}S,7R,8aS)$ -7-(4-Bromobenzyl)-4-((E)-3-(4-bromophenyl)-2-methylallyl)-2a^{1}-hydr oxy-2a-isopropyl-7-methyloctahydro-3*H*-4,5a-diazaacenaphthylene-3,5(4H)-dione (2f). According to the general procedure C, 1f (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL,

0.10 M), anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) and H₂O (0.18 mL, 100 equiv), stirring for 3 h and purification by chromatography (1/4 EtOAc/hexanes), gave 2f (43 mg, 0.066 mmol, 66%, >95:5 dr) as a colourless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.37 -7.45 (4 H, m, ArH), 6.94 - 7.10 (4 H, m, ArH), 6.20 (1 H, s, ArCH=C), 4.43 - 4.56 (2 H, m, CH=C(CH₃)CH₂N), 4.07 (1 H, d, J = 13.2 Hz, 1 H from NCH₂), 3.10 (1 H, d, J = 13.6 Hz, 1 H from NCH₂), 2.52 - 2.63 (2 H, m, ArCH₂), 2.43 - 2.48 (1 H, m, COHCH), 2.13 - 2.28 (3 H, m, CH(CH₃)₂ and 1 H from C(O)CCH₂CH₂ and COH), 1.87 - 2.03 (2 H, m, 1 H from $C(O)CCH_2CH_2$ and 1 H from $C(O)CCH_2CH_2$, 1.83 (3 H, s, $CH=CCH_3$), 1.75 (1 H, dd, J =14.3, 6.5 Hz, 1 H from CHCH₂), 1.31 - 1.39 (1 H, m, 1 H from C(O)CCH₂CH₂), 1.16 - 1.26 (4 H, m, 1 H from CHCH₂ and CH₃(CH₃)CH), 1.11 (3 H, d, J = 6.9 Hz, CH₃(CH₃)CH), 1.00 (3 H, s, ArCH₂CCH₃). ¹³C NMR (126 MHz, CDCl₃) δ ppm 171.3 (NC(O)C), 152.7 (NC(O)N), 136.5 (ArCH=C), 136.2 (ArC^q), 134.5 (ArC^q), 132.2 ($2 \times ArCH$), 131.2 ($2 \times ArCH$), 131.1 (2) ×ArCH), 130.5 (2 ×ArCH), 124.1 (ArCH=C), 120.5 (ArC^q), 120.1 (ArC^q), 91.9 (COH), 58.4 (C^q), 48.4 (NCH₂C(CH₃)CH₂), 47.5 (NCH₂C(CH₃)=CH), 47.3 (ArCH₂), 44.0 (COHCH), 36.0 (COHCHCH₂), 34.0 (C^q), 33.9 (C(*i*Pr)CH₂CH₂), 31.0 (CH(CH₃)₂), 27.7 (C(*i*Pr)CH₂CH₂), 24.7 (ArCH₂CCH₃), 19.8 (CH(CH₃)CH₃), 19.7 (CH(CH₃)CH₃), 16.4 (CH=CCH₃). v_{max} (thin film/cm⁻¹): 2228, 2031, 2007, 1219, 908, 772, 623. MS (ESI⁺) *m/z* (%): 679.0 (M+Cl⁻, 100); HRMS (ESI⁺) calcd. for $C_{31}H_{35}N_2O_3Br_2$ (M - H⁺): 641.1009. Found: 641.1016.

(2aR,2a¹S,7R,8aS)-2a¹-Hydroxy-2a-isopropyl-7-(4-methoxybenzyl)-4-((*E*)-3-(4-methoxyp henyl)-2-methylallyl)-7-methyloctahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)-dione (2g). According to the general procedure C, 1g (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) and H₂O (0.18 mL, 100 equiv),

stirring for 3 h, and purification by chromatography (1/4 EtOAc/hexanes), gave 2g (32 mg, 0.058 mmol, 58%, > 95:5 dr) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.12 -7.16 (2 H, m, ArH), 7.05 - 7.09 (2 H, m, ArH), 6.82 - 6.85 (4 H, m, ArH), 6.25 (1 H, s, ArCH=C), 4.45 - 4.60 (2 H, m, CH=C(CH₃)CH₂N), 4.08 (1 H, dd, J = 13.3, 1.3 Hz, 1 H from NCH₂), 3.80 (6 H, s, 2 × OCH₃), 3.11 (1 H, d, J = 13.3 Hz, 1 H from NCH₂), 2.57 (2 H, d, J = 5.0 Hz, ArCH₂), 2.39 - 2.50 (1 H, m, COHCH), 2.15 - 2.30 (2 H, m, CH(CH₃)₂ and 1 H from C(O)CCH₂CH₂), 2.10 (1 H, s, COH), 1.92 - 1.99 (2 H, m, 1 H from C(O)CCH₂CH₂ and 1 H from C(O)CCH₂CH₂), 1.85 (3 H, s, CH=CCH₃), 1.76 (1 H, dd, J = 14.3, 6.3 Hz, 1 H from CHCH₂), 1.31 - 1.39 (1 H, m, 1 H from C(O)CCH₂CH₂), 1.17 - 1.22 (4 H, m, 1 H from CHCH₂ and CH₃(CH₃)CH), 1.11 (3 H, d, J = 6.8 Hz, CH₃(CH₃)CH), 1.01 (3 H, s, ArCH₂CCH₃). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.3 (NC(O)C), 158.2 (ArC^q), 157.9 (ArC^q), 152.8 (NC(O)N), 132.0 (ArCH=C), 131.5 (2 × ArCH), 130.3 (ArC^q), 130.1 (2 × ArCH), 129.3 (ArC^q), 125.0 (ArCH=C), 113.5 (2 × ArCH), 113.4 (2 × ArCH), 91.9 (COH), 58.5 (C^{9}), 55.2 (2 × OCH₃), 48.4 (NCH₂), 47.7 (NCH₂C(CH₃)=CH), 47.1 (ArCH₂), 44.2 (COHCH), 36.1 (CHCH₂), 34.1 (C^q), 33.9 (C(*i*Pr)CH₂CH₂), 31.0 (CH(CH₃)₂), 27.8 (C(*i*Pr)CH₂CH₂), 24.9 (CH₃), 19.8 (CH(CH₃)CH₃), 19.7 (CH(CH₃)CH₃), 16.4 (CH=CCH₃). v_{max} (thin film/cm⁻¹): 3431, 2932, 1645, 1510, 1438, 1366, 1230, 1177, 1034, 909, 824, 730. MS (ESI⁺) m/z (%): 547.3 (M + H⁺, 100); HRMS (ESI⁺) calcd. for C₃₃H₄₂N₂O₅Na (M + Na⁺): 569.2986. Found: 569.2981.

(2a*R*,2a¹*S*,7*R*,8a*S*)-2a¹-Hydroxy-2a-isopropyl-7-methyl-4-((*E*)-2-methyl-3-(4-(trifluorome thyl)phenyl)allyl)-7-(4-(trifluoromethyl)benzyl)octahydro-3*H*-4,5a-diazaacenaphthylene-3,5(4*H*)-dione (2h). According to the general procedure C, 1h (0.10 mmol), SmI₂ (0.30 mmol,

3 equiv, 3.0 mL, 0.10 M), anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) and H₂O (0.18 mL, 100 equiv), stirring for 3 h and purification by chromatography (1/4 EtOAc/hexanes), gave 2h (47 mg, 0.075 mmol, 75%, > 95:5 dr) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.54 (4 H, t, J = 7.3 Hz, ArH), 7.19 - 7.34 (4 H, m, ArH), 6.29 (1 H, s, ArCH=C), 4.47 - 4.58 (2 H, m, CH=C(CH₃)CH₂N), 4.04 - 4.16 (1 H, m, 1 H from NCH₂), 3.14 (1 H, d, J = 13.3 Hz 1 H from NCH₂), 2.60 - 2.76 (2 H, m, ArCH₂), 2.41 - 2.56 (1 H, m, CH), 2.33 (1 H, s, COH), 2.16 - 2.30 (2 H, m, 1 H from C(O)CCH₂CH₂ and CH₃(CH₃)CH), 1.90 - 2.06 (2 H, m, 1 H from C(O)CCH₂CH₂ and 1 H from CHCH₂), 1.86 (3 H, s, CH=CCH₃), 1.79 (1 H, dd, J = 14.3, 6.3 Hz, 1 H from C(O)CCH₂CH₂), 1.31 - 1.43 (1 H, m, 1 H from CHCH₂), 1.26 (1 H, d, J =5.0 Hz, 1 H from C(O)CCH₂CH₂), 1.21 (3 H, d, J = 6.8 Hz, CH₃(CH₃)CH), 1.13 (3 H, d, J = 6.8 Hz, CH₃(CH₃)CH), 1.02 (3 H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.3 (NC(O)C), 152.8 (NC(O)N), 141.3 (ArC^{q}) , 141.2 (ArC^{q}) , 135.9 (ArCH=C), 130.8 $(2 \times ArCH)$, 129.1 (4 × ArCH), 128.6 (q, J = 32 Hz, 2 ×ArC^q), 124.9 (q, J = 3.0 Hz, 2 × ArCH), 124.3 (q, J = 3.0 Hz, J = 3.0= 270 Hz, 2 \times ArC⁹), 123.9 (ArCH=C), 92.0 (COH), 58.4 (C⁹), 48.5 (NCH₂), 47.7 (NCH₂C(CH₃)=CH), 47.5 (ArCH₂), 44.0 (CH), 36.0 (CHCH₂), 34.1 (C^q), 33.9 (C(*i*Pr)CH₂CH₂), 30.9 (CH(CH₃)₂), 27.7 (C(*i*Pr)CH₂CH₂), 24.6 (CH₃), 19.8 (CH(CH₃)CH₃), 19.7 (CH(CH₃)CH₃), 16.4 (CH=CCH₃). v_{max} (thin film/cm⁻¹): 2966, 1673, 1344, 1164, 1067, 908, 732. MS (ESI⁺) m/z (%): 623.2 (M + H⁺, 100); HRMS (ESI⁺) calcd. for $C_{33}H_{37}N_2O_3F_6$ (M + H⁺): 623.2703. Found: 627.2702.

(2aR,2a¹S,7R,8aS)-7-(3-Fluorobenzyl)-4-((E)-3-(3-fluorophenyl)-2-methylallyl)-2a¹-hydr
oxy-2a-isopropyl-7-methyloctahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)-dione (2i).
According to the general procedure C, 1i (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) and H₂O (0.18 mL, 100 equiv),

stirring for 3 h and purification by chromatography (1/4 EtOAc/hexanes), gave 2i (27 mg, 0.051 mmol, 51%, > 95:5 dr) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.19 -7.28 (2 H, m, ArH), 6.81 - 7.01 (6 H, m, ArH), 6.24 (1 H, s, ArCH=C), 4.43 - 4.59 (2 H, m, CH=C(CH₃)CH₂N), 4.09 (1 H, dd, J = 13.3, 1.5 Hz, 1 H from NCH₂), 3.12 (1 H, d, J = 13.6 Hz, 1 H from NCH₂), 2.59 - 2.65 (2 H, m, ArCH₂), 2.39 - 2.52 (1 H, m, CH), 2.31 (1 H, s, COH), 2.14 - 2.29 (2 H, m, 1 H from C(O)CCH₂CH₂ and CH₃(CH₃)CH), 1.89 - 2.03 (2 H, m, 1 H from C(O)CCH₂CH₂ and 1 H from CHCH₂), 1.86 (3 H, s, CH=CCH₃), 1.78 (1 H, dd, J =14.3, 6.3 Hz, 1 H from C(O)CCH₂CH₂), 1.32 - 1.42 (1 H, m, 1 H from CHCH₂), 1.23 - 1.28 (1 H, m, 1 H from C(O)CCH₂CH₂), 1.20 (3 H, d, J = 7.0 Hz, CH₃(CH₃)CH), 1.13 (3 H, d, J = 6.8 Hz, CH₃(CH₃)CH), 1.03 (3 H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.3 (NC(O)C), 162.6 (d, J = 244 Hz, ArC^q), 162.5 (d, J = 244 Hz, ArC^q), 152.7 (NC(O)N), 139.9 (d, J = 11Hz, ArC^{q}), 139.8 (d, J = 11 Hz, ArC^{q}), 134.9 (C^{q}), 129.4 (d, J = 4 Hz, ArCH), 129.3 (d, J = 4Hz, ArCH), 126.2 (d, J = 2 Hz, ArCH=C), 124.7 (d, J = 3 Hz, ArCH), 124.1 (d, J = 2 Hz, Ar*C*H), 117.3 (d, *J* = 21 Hz, Ar*C*H), 115.6 (d, *J* = 22 Hz, Ar*C*H), 113.4 (d, *J* = 21 Hz, Ar*C*H), 113.1 (d, *J* = 21 Hz, Ar*C*H), 91.9 (*C*OH), 58.4 (*C*^q), 48.4 (N*C*H₂), 47.7 (N*C*H₂C(CH₃)=CH), 47.5 (ArCH₂), 44.0 (CH), 36.1 (CHCH₂), 34.1 (C^q), 33.9 (C(*i*Pr)CH₂CH₂), 30.9 (CH(CH₃)₂), 27.7 (C(*i*Pr)CH₂CH₂), 24.7 (CH₃), 19.8 (CH(CH₃)CH₃), 19.7 (CH(CH₃)CH₃), 16.5 (CH=CCH₃). v_{max} (thin film/cm⁻¹): 3432, 2931, 1703, 1659, 1582, 1439, 1367, 1254, 1143, 1020, 910, 734. MS (ESI⁺) m/z (%): 523.2 (M + H⁺, 100); HRMS (ESI⁺) calcd. for $C_{31}H_{36}N_2O_3F_2Na (M + Na^+)$: 545.2586. Found: 545.2581.

 $(2aR,2a^1S,7R,8aS)-2a^1-Hydroxy-2a-isopropyl-7-(3-methoxybenzyl)-4-((E)-3-(3-methoxyp-henyl)-2-methylallyl)-7-methyloctahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)-dione$

(2j). According to the general procedure C, 1j (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) and H₂O (0.18 mL, 100 equiv), stirring for 3 h and purification by chromatography (1/4 EtOAc/hexanes), gave 2j (33 mg, 0.061 mmol, 61%, > 95:5 dr) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.17 -7.24 (2 H, m, ArH), 6.68 - 6.83 (6 H, m, ArH), 6.27 (1 H, s, C(CH₃)=CHAr), 4.51 (2 H, s, NCH₂), 4.07 - 4.13 (1 H, m, 1 H from NCH₂), 3.78 (3 H, s, OCH₃), 3.80 (3 H, s, OCH₃), 3.13 (1 H, d, J = 13.3 Hz, 1 H from NCH₂), 2.59 (2 H, d, J = 2.0 Hz, CH₂Ar), 2.40 - 2.51 (1 H, m, CH), 2.32 (1 H, s, COH), 2.17 - 2.29 (2 H, m, 1 H from CH₂CH₂CHCH₂ and CH(CH₃)₂), 1.88 - 2.01 (2 H, m, 1 H from CH₂CH₂CHCH₂ and 1 H from CH₂CH₂CHCH₂), 1.87 (3 H, s, $=C(CH_3)$, 1.80 (1 H, dd, J = 14.2, 6.4 Hz, 1 H from $CH_2CH_2CHCH_2$), 1.35 (1 H, d, J = 7.5Hz, 1 H from CH₂CH₂CHCH₂), 1.25 (1 H, d, *J* = 4.3 Hz, 1 H from CH₂CH₂CHCH₂), 1.20 (3 H, d, J = 7.0 Hz, CH_3), 1.12 (3 H, d, J = 6.8 Hz, CH_3), 1.04 (3 H, s, CH_3). ¹³C NMR (101 MHz, CDCl₃) δ ppm 171.4 (NC(O)C), 159.2 (2 × ArC⁴), 152.8 (NC(O)N), 139.1 (ArCH=C), 138.9 (Ar C^{q}), 133.8 (Ar C^{q}), 128.9 (2 × ArCH), 125.1 (ArCH=C), 123.1 (ArCH), 121.5 (ArCH), 116.8 (ArCH), 114.5 (ArCH), 111.8 (ArCH), 111.3 (ArCH), 91.9 (COH), 58.4 (C^q), 55.2 (2 × OCH₃), 48.6 (NCH₂), 48.0 (ArCH₂), 47.5 (NCH₂C(CH₃)=CH), 44.1 (CH), 36.2 (CHCH₂), 34.1 (C⁴), 33.9 (C(*i*Pr)CH₂CH₂), 31.0 (CH(CH₃)₂), 27.8 (C(*i*Pr)CH₂CH₂), 25.0 (CH₃), 19.8 (CH₃), 19.7 (CH₃), 16.5 (CH=CCH₃). v_{max} (thin film/cm⁻¹): 3430, 1936, 1644, 1581, 1435, 1366, 1258, 1156, 1049, 908, 732, 696. MS (ESI⁺) *m/z* (%): 547.3 (M + H⁺, 100); HRMS (ESI⁺) calcd. for $C_{33}H_{42}N_2O_5Na$ (M + Na⁺): 559.2986. Found: 569.2980.

(4aS,7aS)-7a-Hydroxy-4a-methyl-1,3-bis((*E*)-2-methyl-3-phenylallyl)-7-methylenehexah ydro-2*H*-cyclopenta[*d*]pyrimidine-2,4(3*H*)-dione (2n). According to the general procedure

C, **1n** (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) and H₂O (0.18 mL, 100 equiv), stirring for 3 h and purification by chromatography (1/4 EtOAc/hexanes), gave 2n (12.8 mg, 0.026 mmol, 26%, >95:5 dr) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.29 - 7.36 (4 H, m, ArH), 7.15 - 7.26 (6 H, m, ArH), 6.33 (2 H, d, J = 6.3 Hz, 2 × ArCH=C(CH₃)), 5.38 - 5.47 (1 H, m, 1 H from C=CH₂), 5.31 (1 H, s, 1 H from C=CH₂), 4.59 (2 H, s, NCH₂), 4.35 (1 H, d, J = 16.1 Hz, 1 H from NCH₂), 4.23 (1 H, d, J = 16.1 Hz, 1 H from NCH₂), 2.60 (1 H, s, OH), 2.47 - 2.55 (2 H, m, CH₂CH₂C=CH₂), 2.19 (1 H, m, 1 H from CH₂CH₂C=CH₂), 1.85 - 1.90 (7 H, m, 1 H from $CH_2CH_2C=CH_2$ and 2 × CH_3), 1.30 (3 H, s, CH_3). ¹³C NMR (126 MHz, $CDCl_3$) δ ppm 172.6 (NC(O)C), 152.7 (NC(O)N), 149.3 (C=CH₂), 137.7 (ArC^q), 137.3 (ArC^q), 135.5 (=C^q), 133.4 (=*C*^q), 129.0 (2 × ArC*H*), 128.9 (ArC*H*), 128.8 (ArC*H*), 128.2 (ArC*H*), 128.0 (ArC*H*), 126.5 (ArCH), 126.2 (ArCH), 125.7 (ArCH), 124.8 (ArCH), 112.2 (C=CH₂), 92.5 (COH), 50.9 (C^q), 50.4 (NCH₂), 47.6 (NCH₂), 32.7 (CH₂CH₂C=CH₂), 26.0 (CH₂CH₂C=CH₂), 17.5 (CH₃), 16.2 (CH₃), 16.0 (CH₃). v_{max} (thin film/cm⁻¹): 3398, 2942, 1710, 1652, 1444, 1358, 1253, 699. MS (ESI⁻) m/z (%): 491 (M + Cl⁻, 100); HRMS (ESI⁺) calcd. for C₂₉H₃₃N₂O₃ (M + H⁺): 457.2486. Found: 457.2490.

General procedure D: SmI₂-LiBr-H₂O mediated radical cyclisation cascades to give enamine products (3)

To an oven-dried flask charged with anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) was added freshly prepared SmI₂ (0.3 mmol, 3.0 mL, 0.1 M) in THF, under a nitrogen atmosphere. The solution was stirred for 30 min at room temperature. To an oven-dried vial containing a stir bar was added substrate (0.1 mmol, 1 equiv) and the vial placed under a positive pressure of nitrogen. THF (0.05 M, typically, 2.0 mL) and water (typically, 100 equiv) were added, followed by syringe pump addition of the mixture of SmI₂ and LiBr over 1 h with vigorous stirring. After 3 h, HCl (2 M in Et₂O, 2 mL) was added and the resulting solution stirred for 2 h. The reaction was then diluted with CH₂Cl₂ (30 mL) and HCl (0.1 M, 20 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 20 mL), the organic layers were combined, dried over Mg_2SO_4 and concentrated. The crude product was purified by chromatography on silica gel.

(2aS,7S)-7-Benzyl-2a-isopentyl-7-methyl-4-((E)-2-methyl-3-phenylallyl)-1,2,2a,6,7,8-hex ahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)-dione (3d). According to the general procedure D, 1d (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), LiBr (521 mg, 6.0 mmol) and H₂O (0.18 mL, 100 equiv), stirring for 3 h, addition of HCl (2 M in Et₂O, 2 mL), stirring for 2 h and purification by chromatography (1/4 EtOAc/hexanes), gave 3d (35 mg, 0.071 mmol, 71%, > 95:5 dr) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.28 -7.34 (4 H, m, ArH), 7.22 - 7.26 (1 H, m, ArH), 7.14 - 7.22 (5 H, m, ArH), 6.26 (1 H, s, C(CH₃)=CHAr), 4.54 (1 H, d, J = 14.6 Hz, 1 H from NCH₂), 4.42 (1 H, d, J = 15.1 Hz, 1 H from NCH₂), 3.96 (1 H, d, J = 12.3 Hz, 1 H from NCH₂), 3.11 (1 H, d, J = 12.5 Hz, 1 H from NCH₂), 2.68 (2 H, d, J = 4.8 Hz, CH₂Ar), 2.45 (1 H, d, J = 8.5 Hz, 1 H from CCH₂(*i*Bu)CH₂CH₂), 2.17 - 2.26 (2 H, m, 1 H from CCH₂(*i*Bu)CH₂CH₂ and 1 H from CCH₂(*i*Bu)CH₂CH₂), 2.07 - 2.17 (2 H, m, 1 H from CCH₂(*i*Bu)CH₂CH₂ and 1 H from CH₂), 1.83 - 1.87 (3 H, m, CH₃), 1.66 - 1.77 (2 H, m, CH₂CH(CH₃)₂), 1.57 - 1.63 (1 H, m, 1 H from CH₂), 1.37 - 1.48 (1 H, m, CH₂CH(CH₃)₂), 1.19 - 1.29 (1 H, m, 1 H from CH₂CH₂CH(CH₃)₂), 1.11 - 1.17 (1 H, m, 1 H from CH₂CH₂CH(CH₃)₂), 0.90 (3 H, s, CH₃), 0.81 (6 H, d, J = 10.9 Hz, CH(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ ppm 173.9 (NC(O)C), 151.3 (NC(O)N), 137.7 (ArCH=C), 136.9 (ArC^q), 133.7 (ArC^q), 131.0 (C^q), 130.5 (2 × ArCH), 128.9 (2 × ArCH), 128.1 (2 × ArCH), 127.9 (2 × ArCH), 126.6 (ArCH), 126.2 (ArCH), 125.2 (CH₂C(CH₃)=CHAr), 117.6 (C^q), 53.4 (C^q), 51.4 (NCH₂), 47.8 (NCH₂), 46.6 (CH₂Ar), 35.4 (CH₂CH(CH₃)₂), 35.3 (CH₂), 34.1 (C⁴), 33.1 (CH₂CH₂CH₂CH(CH₃)₂), 31.4 (CCH₂(*i*Bu)CH₂CH₂),

30.9 (CCH₂(*i*Bu)CH₂CH₂), 28.3 (CH(CH₃)₂), 22.8 (CH₃), 22.5 (CH₃), 22.4 (CH₃), 16.3 (CH₃). v_{max} (thin film/cm⁻¹): 2954, 1676, 1419, 1327, 1169, 753, 700. MS (ESI⁺) *m*/*z* (%): 497.3 (M + H⁺, 100); HRMS (ESI⁺) calcd. for C₃₃H₄₁N₂O₂ (M + H⁺): 497.3163. Found: 497.3162.

(2aR,7S)-7-(4-Bromobenzyl)-4-((E)-3-(4-bromophenyl)-2-methylallyl)-2a-isopropyl-7-me thyl-1,2,2a,6,7,8-hexahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)-dione (3f). According to the general procedure D, 1f (0.10 mmol), SmI_2 (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), LiBr (521 mg, 6.0 mmol) and H_2O (0.18 mL, 100 equiv), stirring for 3 h, addition of HCl (2 M in Et₂O, 2 mL), stirring for 2 h and purification by chromatography (1/4 EtOAc/hexanes), gave **3f** (46 mg, 0.073 mmol, 73%, >95:5 dr) as a colourless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.36 - 7.46 (4 H, m, Ar*H*), 7.04 (4 H, m, Ar*H*), 6.17 (1 H, s, ArCH=C), 4.51 (1 H, d, J = 15.5 Hz, 1 H from CH=C(CH₃)CH₂N), 4.39 (1 H, d, J = 15.1 Hz, 1 H from CH=C(CH₃)CH₂N), 3.97 - 4.05 (1 H, m, 1 H from NCH₂), 3.02 (1 H, d, J = 12.6 Hz, 1 H from NCH₂), 2.58 - 2.69 (2 H, m, ArCH₂), 2.34 - 2.44 (1 H, m, 1 H from C(*i*Pr)CH₂CH₂), 2.09 -2.25 (4 H, m, 1 H from C(iPr)CH₂CH₂ and C(iPr)CH₂ and 1 H from CH₂), 2.05 (1 H, m, CH(CH₃)₂), 1.82 (3 H, s, CH=CCH₃), 1.70 (1 H, d, J = 17.0 Hz, 1 H from CH₂), 0.94 (3 H, d, J = 6.6 Hz, $CH_3(CH_3)CH$), 0.89 (3 H, d, J = 6.9 Hz, $CH_3(CH_3)CH$), 0.84 (3 H, s, CH_3). ¹³C NMR (126 MHz, CDCl₃) δ ppm 173.6 (NC(O)C), 151.3 (NC(O)N), 136.6 (ArCH=C), 135.7 (ArC^{q}) , 134.8 (ArC^{q}) , 132.1 (2 × ArCH), 131.3 (2 × ArCH), 131.1 (2 × ArCH), 130.5 (2 × ArCH), 130.0 (C^q), 124.2 (ArCH=C), 120.7 (ArC^q), 120.0 (ArC^q), 118.9 (C^q), 57.8 (C^q), 51.3 (NCH₂), 48.0 (NCH₂C(CH₃)=CH), 46.3 (ArCH₂), 35.6 (CH₂), 34.7 (CH(CH₃)₂), 34.1 (C^q), 32.6 (C(*i*Pr)CH₂CH₂), 26.9 (C(*i*Pr)CH₂CH₂), 22.4 (CH₃), 17.6 (CH(CH₃)CH₃), 17.1 (CH(CH₃)CH₃), 16.3 (CH=CCH₃). v_{max} (thin film/cm⁻¹): 2962, 1760, 1486, 1418, 1327, 1175,

1071, 1010, 907, 729. MS (ESI⁺) m/z (%): 625.3 (M+H⁺, 100); HRMS (ESI⁺) calcd. for $C_{31}H_{35}N_2O_2Br_2$ (M + H⁺): 625.1060. Found: 625.1056.

(2aR,7S)-2a-Isopropyl-7-(4-methoxybenzyl)-4-((E)-3-(4-methoxyphenyl)-2-methylallyl)-7 -methyl-1,2,2a,6,7,8-hexahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)-dione (**3g**). According to the general procedure D, 1g (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), LiBr (521 mg, 6.0 mmol) and H_2O (0.18 mL, 100 equiv), stirring for 3 h, addition of HCl (2 M in Et₂O, 2 mL), stirring for 2 h and purification by chromatography (1/4 EtOAc/hexanes), gave 3g (28 mg, 0.053 mmol, 53%, > 95:5 dr) as a white solid. M.p. = 76 -77.3 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.10 - 7.15 (2 H, m, ArH), 7.05 - 7.10 (2 H, m, ArH), 6.80 - 6.87 (4 H, m, ArH), 6.22 (1 H, s, ArCH=C), 4.37 - 4.54 (2 H, m, $CH=C(CH_3)CH_2N$, 3.99 - 4.05 (1 H, m, 1 H from NCH_2), 3.79 - 3.82 (6 H, s, 2 × OCH_3), 3.03 (1 H, d, J = 12.3 Hz, 1 H from NCH₂), 2.58 - 2.67 (2 H, m, ArCH₂), 2.33 - 2.45 (1 H, m, 1 H from C(*i*Pr)CH₂CH₂), 1.99 - 2.25 (5 H, m, 1 H from C(*i*Pr)CH₂CH₂ and C(*i*Pr)CH₂ and CH(CH₃)₂ and 1 H from CH₂), 1.84 (3 H, s, CH=CCH₃), 1.63 - 1.73 (1 H, m, 1 H from CH₂), 0.86 - 0.96 (6 H, m, CH(CH₃)₂), 0.85 (3 H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ ppm 173.7 (NC(O)C), 158.3 (ArC^q), 157.9 (ArC^q), 151.4 (NC(O)N), 132.2 (ArCH=C), 131.4 (2 \times ArCH), 130.3 (ArC^q), 130.1 (2 × ArCH), 129.9 (ArC^q), 128.9 (C^q), 125.0 (ArCH=C), 119.1 (C^{q}) , 113.6 (2 × ArCH), 113.4 (2 × ArCH), 57.8 (C^{q}), 55.2 (2 × OCH₃), 51.3 (NCH₂), 48.2 $(NCH_2C(CH_3)=CH), 46.1 (ArCH_2), 35.6 (CH_2), 34.7 (CH(CH_3)_2), 34.2 (C^q), 32.6$ $(C(iPr)CH_2CH_2)$, 26.8 $(C(iPr)CH_2CH_2)$, 22.5 (CH_3) , 17.7 $(CH(CH_3)CH_3)$, 17.1 (CH(CH₃)CH₃), 16.3 (CH=CCH₃). v_{max} (thin film/cm⁻¹): 2959, 1670, 1509, 1418, 1245, 1175, 1034, 908, 839, 729. MS (ESI⁺) m/z (%): 529.3 (M+H⁺, 100); HRMS (ESI⁺) calcd. for

(2aR,7S)-2a-Isopropyl-7-methyl-4-((E)-2-methyl-3-(4-(trifluoromethyl)phenyl)allyl)-7-(4 -(trifluoromethyl)benzyl)-1,2,2a,6,7,8-hexahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)dione (3h). According to the general procedure D, 1h (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), LiBr (521 mg, 6.0 mmol) and H₂O (0.18 mL, 100 equiv), stirring for 3 h, addition of HCl (2 M in Et₂O, 2 mL), stirring for 2 h and purification by chromatography (1/4 EtOAc/hexanes), gave **3h** (44 mg, 0.073 mmol, 73%, > 95:5 dr) as a white solid. M.p. = 85.6 - 86.8 °C. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.49 - 7.62 (4 H, m, ArH), 7.23 - 7.29 (4 H, m, ArH), 6.26 (1 H, s, ArCH=C), 4.54 (1 H, d, J = 15.6 Hz, 1 H from CH=C(CH₃)CH₂N), 4.42 $(1 \text{ H}, d, J = 15.3 \text{ Hz}, 1 \text{ H} \text{ from CH}=C(CH_3)CH_2N), 4.05 (1 \text{ H}, d, J = 12.5 \text{ Hz}, 1 \text{ H} \text{ from}$ NCH₂), 3.07 (1 H, d, J = 12.3 Hz, 1 H from NCH₂), 2.69 - 2.83 (2 H, m, ArCH₂), 2.32 - 2.47 (1 H, m, 1 H from CH₂), 2.11 - 2.28 (4 H, m, C(*i*Pr)CH₂CH₂ and C(*i*Pr)CH₂CH₂), 1.85 (3 H, s, CH=CCH₃), 1.73 (1 H, d, J = 17.1 Hz, 1 H from CH₂), 0.86 - 0.96 (9 H, m, CH(CH₃)₂ and *CH*₃). ¹³C NMR (101 MHz, CDCl₃) δ ppm 173.6 (N*C*(O)C), 151.3 (N*C*(O)N), 141.3 (Ar*C*⁹), 140.9 (Ar C^{q}), 136.2 (C^{q}), 130.7 (2 × ArCH), 130.0 (C^{q}), 129.1 (4 × ArCH), 128.6 (q, J = 54Hz, $2 \times ArC^{q}$), 125.1 (q, J = 4 Hz, ArCH), 124.9 (q, J = 4 Hz, ArCH), 124.7 (q, J = 263 Hz, 2 × ArC^q), 123.9 (ArCH=C), 118.9 (C^q), 57.9 (C^q), 51.3 (NCH₂), 47.9 (NCH₂C(CH₃)=CH), 46.7 (ArCH₂), 35.8 (CH₂), 34.7 (CH(CH₃)₂), 34.2 (C^q), 32.6 (C(*i*Pr)CH₂CH₂), 26.8 (C(*i*Pr)CH₂CH₂), 22.3 (CH₃), 17.6 (CH(CH₃)CH₃), 17.1 (CH(CH₃)CH₃), 16.3 (CH=CCH₃). v_{max} (thin film/cm⁻¹): 2966, 1675, 1419, 1365, 1122, 1067, 1018, 852, 748. MS (ESI⁺) m/z (%): 605.2 (M + H⁺, 100); HRMS (ESI⁺) calcd. for $C_{33}H_{35}N_2O_2F_6$ (M + H⁺): 605.2597. Found: 605.2596.

(2aR,7S)-7-(4-Fluorobenzyl)-4-((E)-3-(4-fluorophenyl)-2-methylallyl)-2a-isopropyl-7-met hyl-1,2,2a,6,7,8-hexahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)-dione (3i). According to the General procedure D, **1i** (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), LiBr (521 mg, 6.0 mmol) and H_2O (0.18 mL, 100 equiv), stirring for 3 h, addition of HCl (2 M in Et₂O, 2 mL), stirring for 2 h and purification by chromatography (1/4 EtOAc/hexanes), gave **3i** (31 mg, 0.062 mmol, 62%, > 95:5 dr) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.15 - 7.30 (2 H, m, ArH), 6.72 - 7.01 (6 H, m, ArH), 6.21 (1 H, s, ArCH=C), 4.46 - 4.57 (1 H, m, 1 H from CH=C(CH₃)CH₂N), 4.29 - 4.46 (1 H, m, 1 H from CH=C(CH₃)CH₂N), 4.04 (1 H, dd, J = 12.4, 1.4 Hz, 1 H from NCH₂), 3.04 (1 H, d, J = 12.5 Hz, 1 H from NCH₂), 2.56 - 2.77 (2 H, m, ArCH₂), 2.29 - 2.49 (1 H, m, 1 H from CH₂), 1.98 - 2.28 (4 H, m, $C(iPr)CH_2CH_2$ and $C(iPr)CH_2CH_2$, 1.85 (3 H, s, CH_3), 1.72 (1 H, d, J = 17.3 Hz, 1 H from CH₂), 0.93 - 0.99 (3 H, m, CH(CH₃)₂), 0.82 - 0.90 (6 H, m, CH(CH₃)₂ and CH₃). ¹³C NMR (101 MHz, CDCl₃) δ ppm 173.6 (NC(O)C), 162.6 (d, J = 244 Hz, 2 × ArC^q), 151.3 (NC(O)N), 140.0 (d, J = 8 Hz, ArC^q), 139.2 (d, J = 8 Hz, ArC^q), 135.2 (C^q), 130.0 (C^q), 129.6 (d, J = 8Hz, ArCH), 129.4 (d, J = 7 Hz, ArCH), 126.2 (d, J = 3 Hz, ArCH), 124.7 (d, J = 3 Hz, ArCH=C), 124.2 (d, J = 2 Hz, ArCH), 119.0 (C^q), 117.3 (d, J = 20 Hz, ArCH), 115.5 (d, J = 21 Hz, ArCH), 113.6 (d, J = 20 Hz, ArCH), 113.1 (d, J = 21 Hz, ArCH), 57.8 (C^q), 51.3 (NCH₂), 48.0 (NCH₂C(CH₃)=CH), 46.7 (ArCH₂), 35.7 (CH₂), 34.7 (CH(CH₃)₂), 34.2 (C⁴), 32.6 (C(*i*Pr)CH₂CH₂), 26.8 (C(*i*Pr)CH₂CH₂), 22.4 (CH₃), 17.6 (CH(CH₃)CH₃), 17.1 (CH(CH₃)CH₃), 16.3 (CH=CCH₃). v_{max} (thin film/cm⁻¹): 2963, 1671, 1581, 1419, 1254, 1143, 908, 731. MS (ESI⁺) m/z (%): 505.2 (M+H⁺, 100); HRMS (ESI⁺) calcd. for C₃₁H₃₄N₂O₂F₂Na (M + Na⁺): 527.2481. Found: 527.2476.

(2aR,7S)-2a-Isopropyl-7-(3-methoxybenzyl)-4-((E)-3-(3-methoxyphenyl)-2-methylallyl)-7 -methyl-1,2,2a,6,7,8-hexahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)-dione (**3j**). According to the general procedure D, 1j (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) and H₂O (0.18 mL, 100 equiv), stirring for 2 h, addition of HCl (2 M in Et₂O, 2 mL), stirring for 3 h and purification by chromatography (1/4 EtOAc/hexanes), gave 3j (30 mg, 0.057 mmol, 57%, > 95:5 dr) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.16 - 7.25 (2 H, m, ArH), 6.69 - 6.83 (6 H, m, ArH), 6.24 (1 H, s, C(CH₃)=CHAr), 4.37 - 4.56 (2 H, m, CH=C(CH₃)CH₂N), 4.01 - 4.07 (1 H, m, 1 H from NCH₂), 3.81 (3 H, s, OCH₃), 3.78 (3 H, s, OCH₃), 3.06 (1 H, d, J = 12.5 Hz, 1 H from NCH₂), 2.66 (2 H, d, J = 3.3 Hz, ArCH₂), 2.32 - 2.45 (1 H, m, 1 H from C(iPr)CH₂CH₂), 2.15 - 2.26 (3 H, m, 1 H from C(iPr)CH₂CH₂ and C(iPr)CH₂CH₂), 2.01 -2.15 (2 H, m, CH(CH₃)₂ and 1 H from CH₂), 1.85 (3 H, s, =C(CH₃)), 1.72 (1 H, d, J = 17.3 Hz, 1 H from CH₂), 0.92 - 0.97 (3 H, m, CH₃), 0.89 (6 H, d, J = 3.4 Hz, 2 × CH₃). ¹³C NMR (101 MHz, CDCl₃) δ ppm 173.6 (NC(O)C), 159.3 (ArC^q), 159.3 (ArC^q), 151.4 (NC(O)N), 139.1 (*C*(CH₃)=CHAr), 138.4 (Ar*C*^q), 134.1 (Ar*C*^q), 129.9 (*C*^q), 129.1 (Ar*C*H), 128.9 (Ar*C*H), 125.2 (C(CH₃)=CHAr), 123.0 (ArCH), 121.5 (ArCH), 119.1 (C^q), 116.7 (ArCH), 114.3 (ArCH), 111.9 (ArCH), 111.5 (ArCH), 57.8 (C^q), 55.2 (OCH₃), 55.2 (OCH₃), 51.4 (NCH₂), 48.0 (NCH₂), 47.0 (CH₂Ar), 35.8 (CH₂), 34.7 (CH(CH₃)₂), 34.2 (C⁴), 32.6 (C(*i*Pr)CH₂CH₂), 26.9 (C(*i*Pr)*C*H₂CH₂), 22.7 (*C*H₃), 17.7 (*C*H₃), 17.1 (*C*H₃), 16.4 (*C*H₃). v_{max} (thin film/cm⁻¹): 2960, 1672, 1598, 1420, 1259, 1156, 1047, 908, 746, 695. MS (ESI⁺) m/z (%): 529.3 (M+H⁺, 100); HRMS (ESI⁺) calcd. for $C_{33}H_{41}N_2O_4$ (M + H⁺): 529.3061. Found: 529.3057.

(2aR,7S)-2a-Isopropyl-7-methyl-4-((E)-2-methyl-3-(naphthalen-1-yl)allyl)-7-(naphthalen -1-ylmethyl)-1,2,2a,6,7,8-hexahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)-dione (**3k**). According to the general procedure D, 1k (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) and H₂O (0.18 mL, 100 equiv), stirring for 3 h, addition of HCl (2 M in Et₂O, 2 mL), stirring for 2 h and purification by chromatography (1/4 EtOAc/hexanes), gave 3k (39 mg, 0.068 mmol, 68%, > 95:5 dr) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 8.12 (1 H, d, J = 8.3 Hz, ArH), 7.86 - 7.94 (2 H, m, ArH), 7.82 (2 H, t, J = 8.4 Hz, ArH), 7.74 (1 H, d, J = 8.0 Hz, ArH), 7.33 - 7.58 (8 H, m, ArH), 6.67 (1 H, s, C(CH₃)=CHAr), 4.64 - 4.70 (1 H, m, 1 H from CH=C(CH₃)CH₂N), 4.51 - 4.58 (1 H, m, 1 H from CH=C(CH₃)CH₂N), 4.18 - 4.26 (1 H, m, 1 H from NCH₂), 3.23 (2 H, d, J = 3.5 Hz, ArCH₂), 3.14 - 3.20 (1 H, m, 1 H from NCH₂), 2.27 - 2.43 (2 H, m, 1 H from CH₂ and 1 H from C(*i*Pr)CH₂CH₂), 2.12 - 2.27 (3 H, m, 1 H from C(*i*Pr)CH₂CH₂ and $C(iPr)CH_2CH_2$, 2.04 - 2.11 (1 H, m, $CH(CH_3)_2$), 1.80 (1 H, d, J = 17.1 Hz, 1 H from CH₂CH₂CCH₂), 1.68 (3 H, s, =(CH₃)), 0.97 (3 H, d, J = 6.8 Hz, CH₃), 0.93 (3 H, s, CH₃), 0.88 (3 H, d, J = 6.8 Hz, CH_3). ¹³C NMR (101 MHz, $CDCl_3$) δ ppm 173.8 (NC(O)C), 151.5 (NC(O)N), 135.4 (C(CH₃)=CHAr), 135.2 (ArC^q), 134.0 (ArC^q), 133.4 (ArC^q), 133.4 (ArC^q), 133.2 (ArC^q), 132.1 (ArC^q), 129.9 (C^q), 129.1 (ArCH), 128.9 (ArCH), 128.1 (ArCH), 127.6 (ArCH), 126.9 (ArCH), 126.5 (ArCH), 125.9 (ArCH), 125.7 (ArCH), 125.7 (ArCH), 125.5 (ArCH), 125.5 (ArCH), 125.2 (ArCH), 125.1 (ArCH), 124.5 (ArCH), 123.6 (C(CH₃)=CHAr), 119.4 (C^q), 57.9 (C^q), 51.6 (NCH₂), 47.7 (NCH₂), 42.0 (CH₂Ar), 36.1 (CH₂), 35.3 (C^q), 34.7 (CH(CH₃)₂), 32.7 (C(*i*Pr)CH₂CH₂), 27.1 (C(*i*Pr)CH₂CH₂), 23.5 (CH₃), 17.8 (CH₃), 17.3 (CH₃), 16.2 (CH₃). v_{max} (thin film/cm⁻¹): 2962, 1672, 1420, 1327, 1175, 908, 781, 731. MS (ESI⁺) m/z(%): 569.3 (M+H⁺, 100); HRMS (ESI⁺) calcd. for $C_{39}H_{41}N_2O_2$ (M + H⁺): 569.3163. Found:

569.3163.

(2aR,7S)-2a-Isopropyl-7-methyl-4-((E)-2-methyl-3-(o-tolyl)allyl)-7-(2-methylbenzyl)-1,2, 2a,6,7,8-hexahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)-dione (31). According to the general procedure D, 11 (0.10 mmol), SmI₂ (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) and H₂O (0.18 mL, 100 equiv), stirring for 3 h, addition of HCl (2 M in Et₂O, 2 mL), stirring for 2 h and purification by chromatography (1/4 EtOAc/hexanes), gave **31** (23 mg, 0.047 mmol, 47%, > 95:5 dr) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.05 - 7.21 (8 H, m, ArH), 6.28 (1 H, s, C(CH₃)=CHAr), 4.58 (1 H, dd, J = 14.9, 0.9 Hz, 1 H from CH=C(CH₃)CH₂N), 4.41 (1 H, dd, J = 15.1, 0.8 Hz, 1 H from CH=C(CH₃)CH₂N), 4.09 (1 H, dd, J = 12.5, 1.3 Hz, 1 H from NCH₂), 3.10 (1 H, d, J = 12.5 Hz, 1 H from NCH₂), 2.75 (2 H, d, J = 6.3 Hz, ArCH₂), 2.38 - 2.45 (1 H, m, 1 H from C(*i*Pr)CH₂CH₂), 2.36 (3 H, s, ArCH₃), 2.20 - 2.23 (2 H, m, 1 H from C(*i*Pr)CH₂CH₂ and 1 H from CH₂CH₂CCH₂), 2.17 - 2.20 (4 H, m, 1 H from C(*i*Pr)CH₂CH₂ and ArCH₃), 2.12 - 2.17 (1 H, m, 1 H from $C(iPr)CH_2CH_2$, 2.00 - 2.09 (1 H, m, $CH(CH_3)_2$), 1.79 (1 H, d, J = 17.1 Hz, 1 H from CH₂), 1.67 (3 H, s, =C(CH₃)), 0.95 (3 H, d, J = 6.8 Hz, CH₃), 0.86 - 0.90 (6 H, m, 2 × CH₃). ¹³C NMR (101 MHz, CDCl₃) δ ppm 173.6 (NC(O)C), 151.4 (NC(O)N), 137.1 $(C(CH_3)=CHAr), 137.0 (ArC^{q}), 136.5 (ArC^{q}), 135.5 (ArC^{q}), 133.6 (ArC^{q}), 131.5 (ArCH),$ 130.8 (ArCH), 129.9 (C^q), 129.6 (ArCH), 129.3 (ArCH), 126.7 (ArCH), 126.5 (ArCH), 125.6 (ArCH), 125.2 (ArCH), 124.9 (C(CH₃)=CHAr), 119.1 (C⁴), 57.8 (C⁴), 51.3 (NCH₂), 47.8 (NCH₂), 42.8 (CH₂Ar), 35.8 (CH₂), 35.4 (C^q), 34.7 (CH(CH₃)₂), 32.6 (C(*i*Pr)CH₂CH₂), 27.1 (C(*i*Pr)CH₂CH₂), 22.8 (CH₃), 20.6 (CH₃), 19.8 (CH₃), 17.7 (CH₃), 17.2 (CH₃), 15.9 (CH₃). v_{max} (thin film/cm⁻¹): 2962, 1673, 1402, 1293, 1175, 908, 732. MS (ESI⁺) m/z (%): 569.3 $(M+H^+, 100)$; HRMS (ESI⁺) calcd. for $C_{33}H_{41}N_2O_2$ (M + H⁺): 497.3163. Found: 497.3156.

(2aR,7S)-7-Benzyl-7-methyl-4-((E)-2-methyl-3-phenylallyl)-2a-phenethyl-1,2,2a,6,7,8-he xahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)-dione (3m). According to the general procedure D, **1m** (0.10 mmol), SmI_2 (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) and H₂O (0.18 mL, 100 equiv), stirring for 3 h, addition of HCl (2 M in Et₂O, 2 mL), stirring for 2 h and purified by chromatography (1/4 EtOAc/hexanes), gave **3m** (21 mg, 0.040 mmol, 40%, > 95:5 dr) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.27 - 7.34 (4 H, m, ArH), 7.18 - 7.25 (6 H, m, ArH), 7.12 - 7.17 (3 H, m, ArH), 7.04 -7.09 (2 H, m, ArH), 6.26 (1 H, s, C(CH₃)=CHAr), 4.55 (1 H, d, J = 15.8 Hz, 1 H from CH=C(CH₃)CH₂N), 4.43 (1 H, d, J = 15.8 Hz, 1 H from CH=C(CH₃)CH₂N), 3.95 (1 H, d, J = 12.5 Hz, 1 H from NCH₂), 2.92 (1 H, d, J = 12.5 Hz, 1 H from NCH₂), 2.58 - 2.71 (4 H, m, 2 × ArCH₂), 2.46 - 2.57 (1 H, m, 1 H from CH₂CH₂CCH₂), 2.20 - 2.38 (3 H, m, 1 H from CH₂CH₂CCH₂ and CH₂CH₂CCH₂), 2.08 - 2.17 (1 H, m, 1 H from CH₂), 1.99 - 2.08 (1 H, m, 1 H from ArCH₂CH₂), 1.92 - 1.99 (1 H, m, 1 H from ArCH₂CH₂), 1.88 (3 H, s, =C(CH₃)), 1.71 (1 H, d, J = 16.6 Hz, 1 H from CH₂CH₂CCH₂), 0.90 (3 H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ ppm 173.6 (NC(O)C), 151.1 (NC(O)N), 140.9 (C(CH₃)=CHAr), 137.5 (ArC⁹), 136.8 (ArC^q), 133.7 (ArC^q), 130.6 (2 × ArCH), 129.0 (2 × ArCH), 128.5 (2 × ArCH), 128.2 (2 × ArCH), 128.2 (C^q), 128.0 (3 × ArCH), 126.6 (ArCH), 126.3 (2 × ArCH), 126.1 (ArCH), 124.9 (C(CH₃)=CHAr), 118.4 (C⁴), 53.5 (C⁴), 51.2 (NCH₂), 47.8 (NCH₂), 46.7 (CH₂Ar), 38.7 (CH₂CH₂Ar), 35.4 (CH₂), 34.0 (C⁴), 31.5 (CH₂CH₂CCH₂), 30.9 (CH₂CH₂CCH₂ and ArCH₂), 22.9 (CH₃), 16.4 (CH₃). v_{max} (thin film/cm⁻¹): 2926, 1674, 1420, 1327, 1149, 908, 732, 699. MS (ESI⁺) m/z (%): 531.3 (M+H⁺, 100); HRMS (ESI⁺) calcd. for $C_{36}H_{39}N_2O_2$ (M + H⁺):

(2aR,7S)-7-(2-Allylbenzyl)-4-((E)-3-(2-allylphenyl)-2-methylallyl)-2a-isopropyl-7-methyl-1,2,2a,6,7,8-hexahydro-3H-4,5a-diazaacenaphthylene-3,5(4H)-dione (3p). According to the general procedure C, 1p (0.10 mmol), SmI_2 (0.30 mmol, 3 equiv, 3.0 mL, 0.10 M), anhydrous LiBr (521 mg, 6.0 mmol, 60 equiv) and H₂O (0.18 mL, 100 equiv), stirring for 3 h and purification by chromatography (1/4 EtOAc/hexanes), gave **3p** (21 mg, 0.039 mmol, 39%, 83:17 dr) as a colourless oil. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.07 - 7.23 (8 H, m, ArH), 6.30 (1 H, s, ArCH=), 5.81 - 5.99 (2 H, m, 2 × CH₂CH=CH₂), 5.08 (1 H, dd, J = 10.1, 1.3 Hz, 1 H from CH₂CH=CH₂), 4.90 - 5.02 (3 H, m, 1 H from CH₂CH=CH₂ and CH₂CH=CH₂), 4.56 (1 H, d, J = 15.4 Hz, 1 H from NCH₂), 4.40 (1 H, d, J = 15.1 Hz, 1 H from NCH₂), 4.09 (1 H, d, J = 12.3 Hz, 1 H from NCH₂), 3.44 - 3.48 (1 H, m, 1 H from CH₂CH=CH₂), 3.22 - 3.33 (3 H, m, 1 H from $CH_2CH=CH_2$ and $CH_2CH=CH_2$), 3.10 (1 H, d, J = 12.6 Hz, 1 H from NCH₂), 2.76 (2 H, q, J = 13.9 Hz, CH₂Ar), 2.34 - 2.43 (1 H, m, 1 H from CH₂), 2.10 - 2.26 (4 H, m, 1 H from CH₂, 1 H from CH₂CH₂C=, 1 H from CH₂CH₂C= and CH(CH₃)₂), 1.98 - 2.08 (1 H, m, 1 H from CH₂CH₂C=), 1.78 (1 H, m, 1 H from CH₂CH₂C=), 1.63 - 1.68 (3 H, m, CH₃), 0.92 - $0.97 (3 \text{ H}, \text{d}, J = 10.0 \text{ Hz}, \text{CH}(\text{CH}_3)_2), 0.88 - 0.92 (3 \text{ H}, \text{d}, J = 5.0 \text{ Hz}, \text{CH}(\text{CH}_3)_2), 0.86 (3 \text{ H}, \text{s}, \text{CH}(\text{CH}_3)_2)$ CH₃). ¹³C NMR (126 MHz, CDCl₃) δ ppm 173.6 (NC(O)C), 151.4 (NC(O)N), 138.8 (CH=CH₂), 138.3 (CH=CH₂), 137.1 (C^q), 137.0 (C^q), 136.8 (C^q), 135.1 (C^q), 134.1 (C^q), 131.7 (ArCH), 130.1 (ArCH), 130.0 (C^q), 129.6 (ArCH), 128.9 (ArCH), 126.9 (ArCH), 126.8 (ArCH), 126.0 (ArCH), 125.7 (ArCH), 124.3 (ArCH=), 119.0 (C^q), 116.0 (CH=CH₂), 115.4 (CH=CH₂), 57.8 (C^q), 51.4 (NCH₂), 47.6 (NCH₂), 42.2 (CH₂), 37.6 (CH₂), 37.6 (CH₂), 36.0 (CH₂), 35.1 (C⁴), 34.7 (CH(CH₃)₂), 32.6 (CH₂), 27.2 (CH₂), 22.8 (CH₃), 17.7 (CH₃), 17.3 (CH₃), 16.0 (CH₃). v_{max} (thin film/cm⁻¹): 2962, 1683, 1432, 1293, 1125, 918, 752. MS (ESI⁺)

m/z (%): 549.4 (M+H⁺, 100); HRMS (ESI⁺) calcd. for C₃₇H₄₅N₂O₂ (M + H⁺): 549.3476. Found: 549.3469.

X-ray structure of 3i

CCDC 1529301

Table S1. Crystal data and details of data collection and refinement for compound 3i

Bond precision:	C-C = 0.0041 A	Wavelength = 0.7107	73
Cell:	a = 11.4817(6)	b = 11.8623(7)	c = 11.8623(7)
	alpha = 76.664(5)	beta = $63.649(6)$	gamma = 70.861(5)
Temperature:	150 K		
	Calculated	Reported	
Volume	1422.43(16)	1422.42(16)	
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	$C_{33}H_{40}N_2O_4$	$C_{33}H_{40}N_2O_4$	
Sum formula	$C_{33}H_{40}N_2O_4$	$C_{33}H_{40}N_2O_4$	
Mr	528.67	528.67	
Dx,g cm-3	1.234	1.234	
Ζ	2	2	
Mu (mm-1)	0.081	0.081	
F000	568.0	568.0	

F000'	568.24		
h,k,lmax	15,16,17	15,14,16	
Nref	8068	6621	
Tmin,Tmax	0.992,0.998	0.855,1.000	
Tmin'	0.992		
Correction method= MULTI-SCAN			
Data completeness= 0.821		Theta(max)= 29.687	
R(reflections)= 0.0741(3806)		wR2(reflections)= 0.2091(6621)	
S = 1.069		Npar= 368	

X-ray structure of 3j

CCDC 1529302

Table S2. Crystal data and details of data collection and refinement for compound 3j

Bond precision:	C-C = 0.0059 A	Wavelength = 0.7107	73
Cell:	a = 11.6196(7)	b = 13.8475(8)	c = 21.0449(12)
	alpha = 89.100(5)	beta = 83.969(5)	gamma = 83.670(5)
Temperature:	150 K		
	Calculated	Reported	
Volume	3346.9(3)	3346.9(3)	
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	$C_{33}H_{34}F_6N_2O_2,$	$2(C_{33}H_{34}F_6N_2O_2), C_{2.8}$	$_{1}H_{6.52},C_{3.19}H_{7.48}$
	$0.274(C_6H_{14}),$		
	$0.226(C_5H_{11}),$		
	0.226(CH ₃)		
Sum formula	$C_{36}H_{41}F_6N_2O_2$	$C_{72}H_{82}F_{12}N_4O_4$	
Mr	647.71	1295.41	
Dx,g cm-3	1.285	1.285	

Z	4	2
Mu (mm-1)	0.102	0.102
F000	1364.0	1364.0
F000'	1364.83	
h,k,lmax	15,19,28	15,18,26
Nref	18213	14966
Tmin,Tmax	0.982,0.990	0.882,1.000
Tmin'	0.970	
Correction method= MULTI-SCAN		
Data completeness= 0.822		Theta(max)= 29.254
R(reflections)= 0.0950(7852)		wR2(reflections)= 0.2787(14966)
S = 1.034		Npar= 866

References

- 1 P. Girard, J.-L. Namy and H. B. Kagan, J. Am. Chem. Soc., 1980, **102**, 2693–2698.
- 2 T. Imamoto and M. Ono, *Chem. Lett.*, 1987, 501–502.
- 3 A. Dahl én and G. Hilmersson, *Eur. J. Inorg. Chem.*, 2004, 3020–3024.
- J. A. Teprovich, P. K. S. Antharjanam, E. Prasad, E. N. Pesciotta and R. A. Flowers, *Eur. J. Inorg. Chem.*, 2008, 5015–5019.
- 5 M. Szostak, M. Spain and D. J. Procter, J. Org. Chem., 2012, 77, 3049–3059.
- 6 K. C. K. Swamy, N. N. B. Kumar, E. Balaraman and K. V. P. P. Kumar, *Chem. Rev.*, 2009, **109**, 2551–2651.
- 7 R. Wang, S.-C. Lu, Y.-M. Zhang, Z. Shi and W. Zhang, Org. Biomol. Chem., 2011, 9, 5802–5808.
- L. Lomlim, J. Einsiedel, F. W. Heinemann, K. Meyer and P. Gmeiner, *J. Org. Chem.*, 2008, 73, 3608–3611.

Crude ¹H NMR Spectra of Compounds 2a and 3a

Purified ¹H NMR (400 MHz, CDCl₃)

Purified ¹³C NMR (100 MHz, CDCl₃)

Purified ¹³C NMR (100 MHz, CDCl₃)

¹H and ¹³C NMR Spectra of Compounds

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (126 MHz, CDCl₃)

¹³C NMR (125 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

