Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Pd(0)-catalysed asymmetric reductive Heck-type cyclization of (Z)-1iodo-1,6-diene: enantioselective synthesis of quaternary tetrahydropyridines

Longlei Hou^a, YuejieYuan^a and Xiaofeng Tong*^{a,b}

^{*a*}Key Laboratory for Advanced Materials and Institute of fine Chemicals, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, China ^{*b*}Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, Changzhou 213164, China

Table of Contents

1. General Information	S2
2. Optimization of Reaction Conditions	S3
3. Synthesis of Products 2 and Their Analytic Data	S4
4. Synthetic Application	S15
5. NMR and HPLC Spectra of New Compounds	S16
6. X-ray Analysis	S66

1. General Information

Unless otherwise noted, all reagents were obtained commercially and used without further purification.

NMR spectrum: ¹H and ¹³C spectra are recorded on the Bruker AVANCEspectrometer, operating at 400 MHz (300 MHz or 500 MHz) for ¹H NMR and 100 MHz (75 MHz or 125 MHz) for ¹³C NMR. Chemical shifts are reported in parts per million (ppm).Chemical shifts are reported downfield from CDCl₃ (δ : 7.26 ppm) for ¹H NMR. Chemical shifts of ¹³C NMR are reported in the scale relative to the solvent of CDCl₃ (δ : 77.0 ppm) used as an internal reference. Data are respresented as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz), intergration.

Mass spectroscopy: Mass spectra were in general recorded on an AMD 402/3 or a HP 5989A mass selective detector.

High Performance Liquid Chromatography: HPLC analysis was performed on Waters equipment using Daicel Chiralpak AD-H, OD-H, OJ-Hcolumn.

Spectropolarimeter: Optical rotations were measured on a AutopolIV-T polarimeter.

Chromatography: Column chromatography was performed with silica gel (200-300 mesh ASTM).

2. Optimization of Reaction Conditions

	_: ا ر		10 mmol% [Pc	i]	ⁱ Bu		
	Ph-	u ▶	15 mmol% Ligan	id Ph	-Me		
		/ 1.2	2 equiv hydride s	ource	J		
	Ts 10		solvent, T	Ts 2a			
entry	catalyst	Ligand	"H"source	solvent	T/ºC	vield/%	ee/%
1	Pdedbae		HCO ₂ H/Et ₂ N	toluene	40	46	52
2	Pd ₂ (dba-OMe) ₂	(R)-BINAP	HCO ₂ H/Et ₃ N	toluene	40	53	55
3	Pd ₂ (dba-OMe) ₂	L1	HCO ₂ H/Et ₂ N	toluene	40	55	65
4	Pd ₂ (dba-OMe) ₃	12	HCO ₂ H/Et ₂ N	toluene	40	55	60
5	Pd ₂ (dba-OMe) ₃		HCO ₂ H/Et ₂ N	toluene	40	67	43
6	Pd (dba OMe)	14		toluono	40	61	64
7	$Pd_2(dba-OMe)_3$	1.5		toluene	40	62	70
	Pu ₂ (uba-Owe) ₃	LJ			40	02 	
8	PdCl ₂	L5	HCO ₂ H/Et ₃ N	toluene	40	40	55
9	Pd(OAc) ₂	L5	HCO ₂ H/Et ₃ N	toluene	40	42	63
10	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ H/Et ₃ N	toluene	40	75	79
11	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ H/DIPEA	toluene	40	80	82
12	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ H/DIPEA	THF	40	50	70
13	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ H/DIPEA	MeCN	40	91	69
14	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ H/DIPEA	DMF	40	68	72
15	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ H/DIPEA	dioxane	40	63	76
16	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ H/DIPEA	MeCN/toluene(1:1)	40	87	85
17 ^a	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ H/DIPEA	MeCN/toluene(1:1)	40	80	67
18	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ H/DIPEA	MeCN/toluene(2:1)	40	80	76
19	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ H/DIPEA	MeCN/toluene(1:2)	40	77	64
20	Pd ₂ (dba-OMe) ₃	L5	HCO₂H/DIPEA	MeCN/toluene(1:1)	20	63	76
21	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ H/DIPEA	MeCN/toluene(1:1)	60	70	77
22	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ Na	MeCN/toluene(1:1)	40	80	68
23	Pd ₂ (dba-OMe) ₃	L5	(HCO ₂) ₂ Ca	MeCN/toluene(1:1)	40	76	57
24	Pd ₂ (dba-OMe) ₃	L5	HCO ₂ NH ₄	MeCN/toluene(1:1)	40	89	61

^{*a*}**1a** (0.2 mmol), Pd₂(dba-OMe)₃ (0.01 mmol), ligand (0.03 mmol), hydride source (1.2 equiv), toluene:MeCN(1+1 mL), Ag₂CO₃ (2 equiv).

3.Synthesis of Products 2 and Their Analytic Data

In a 25 mL Schlenk tube, the mixture of 1 (0.2 mmol), Pd₂(MeO-dba)₃ (0.01 mmol, 10.8 mg),L5 (0.03 mmol, 14.7 mg) and HCO₂H (0.24 mmol, 11 mg), DIPEA (0.24 mmol, 31mg) were dissolved in MeCN:toluene (v/v = 1:1, v+v = 2.0mL). The reaction mixture was thoroughly degassed by vacuum purge-and-refill with argon. The mixture was stirred at 40 °C. After completion of the reaction (monitored by TLC), the solvent was removed and the residue was directly subjected to silica gel column chromatography (petroleum ether/ethyl acetate as eluent) to give product 2.

2a: 89% yield, 68.2mg, yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 0.84 (d, *J* = 7.2 Hz, 3H), 0.87 (d, *J* = 7.2 Hz, 3H), 1.06 (s, 3H), 1.30 (dd, *J* = 6.0 Hz, *J* = 14.1 Hz, 1H), 1.43 (dd, J = 5.7 Hz, J = 14.1 Hz, 1H), 1.63-1.75 (m, 1H), 2.35 (s, 3H), 2.72 (d, J = 11.4)Hz, 1H), 2.92 (d, J = 11.4 Hz, 1H), 3.75-3.77 (m, 2H), 5.81 (dd, J = 1.8 Hz, J = 3.0 Hz, 1H), 7.17-7.28 (m, 7H), 7.64 (d, J = 8.4 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 21.58, 24.42, 24.92, 25.37, 25.41, 37.00, 46.46, 49.09, 53.63, 125.33, 127.72, 128.55, 129.76, 130.72, 132.73, 133.08, 138.62, 143.61. ESI-MS: Calcd forC₂₃H₂₉NO₂S: [M+K⁺] 422.1551, found 422.1550.

 $[\alpha]^{25}_{D} = 36.3$ (c = 0.34 in CH₂Cl₂); 85% ee [Chiralcel OD-H column, n-hexane/i-PrOH = 99:1, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 13.9 min and 15.3 min].

2b: 90% yield, 68.9 mg, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 0.80-0.85 (m, 3H), 1.02 (s, 3H), 1.18-1.22 (m, 4H), 1.30-1.44 (m, 2H), 2.35 (s, 3H), 2.73 (d, J = 11.1)

Hz, 1H), 2.91 (d, J = 11.1 Hz, 1H), 3.73 (dd, J = 1.8 Hz, J = 15.6 Hz, 1H), 3.80 (dd,

J= 1.8 Hz, *J* = 15.6 Hz, 1H), 5.79 (s, 1H), 7.18-7.28 (m, 7H), 7.64 (d, *J* = 8.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 14.12, 21.57, 23.46, 24.44, 26.18, 36.49, 39.82, 46.50, 53.00, 125.38, 127.73, 128.53, 129.75, 131.14, 132.52, 133.30, 138.62, 143.57. ESI-MS: Calcd forC₂₃H₂₉NO₂S: [M+K⁺] 422.1551, found 422.1555. [α]²⁵_D = 4.5 (c = 3.4 in CH₂Cl₂); 84% ee [Chiralcel OD-H column, n-hexane/i-PrOH = 98:2, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 12.7 min and 15.7 min].

Ph $\stackrel{\text{Et}}{\underset{\text{Ts}}{}}$ 2c: 92% yield, 65.3 mg, yellow oil. ¹H NMR (400 MHz, CDCl₃): δ 0.94 (t, J = 7.2 Hz, 3H), 1.11 (s, 3H), 1.53 (q, J = 7.2 Hz, 2H), 2.45 (s, 3H), 2.82 (d, J = 11.2 Hz, 1H), 3.03

(d, *J* = 11.2 Hz, 1H), 3.84 (d, *J* = 15.6 Hz, 1H), 3.90 (d, *J* = 15.6 Hz, 1H), 5.88 (s, 1H), 7.26-7.37 (m, 7H), 7.74 (d, *J* = 8.0 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 8.37, 21.57, 23.82, 32.39, 36.61, 46.51, 52.56, 125.38, 127.71, 128.52, 129.75, 131.33, 132.29, 133.16, 138.58, 143.58.

ESI-MS: Calcd forC₂₁H₂₅NO₂S: [M+H⁺] 356.1679, found 356.1680.

 $[\alpha]^{25}_{D} = 7.7 \text{ (c} = 3.3 \text{ in CH}_2\text{Cl}_2); 87\% \text{ ee} [Chiralcel AD-H column, n-hexane/i-PrOH = 98:2, 0.8 mL/min, <math>\lambda_{max} 254 \text{ nm}, t_R = 19.8 \text{ min and } 21.8 \text{ min}].$

2d:83% yield, 75.1 mg, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 0.94 (s, 3H), 2.36 (s, 3H), 2.47 (d, *J* = 11.4 Hz, 1H), 2.73 (d, *J* = 13.2 Hz, 1H), 2.78 (d, *J* = 13.2 Hz, 1H),

3.25 (d, *J* = 11.4 Hz, 1H), 3.58 (dd, *J* = 1.8 Hz, *J* = 15.3 Hz, 1H), 4.03 (dd, *J* = 1.5 Hz, *J* = 15.3 Hz, 1H), 5.71 (s, 1H), 7.14-7.29 (m, 12H), 7.64 (d, *J* = 8.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 21.57, 24.01, 37.51, 45.51, 46.71, 52.84, 125.36, 126.36, 127.83, 128.04, 128.57, 129.78, 130.84, 131.96, 132.92, 137.39, 138.44, 143.71.

ESI-MS: Calcd forC₂₆H₂₇NO₂S: [M+H⁺] 418.1835, found 418.1837.

 $[\alpha]^{25}_{D} = 23.6 \text{ (c} = 3.7 \text{ in CH}_2\text{Cl}_2); 90\% \text{ ee} [Chiralcel OD-H column, n-hexane/i-PrOH} = 98:2, 0.8 \text{ mL/min}, \lambda_{\text{max}} 254 \text{ nm}, t_{\text{R}} = 22.8 \text{ min and } 28.3 \text{ min}].$

Ph

2e: 80% yield, 64.1 mg, yellow oil.

 $\begin{array}{c} & \begin{array}{c} & & \\ & &$

¹³C NMR (75 MHz, CDCl₃): δ 21.55, 25.23, 41.22, 46.36, 55.47, 125.43, 126.45, 126.79, 127.30, 127.69, 128.02, 128.43, 128.52, 128.65, 129.75, 131.51, 132.19, 133.22, 138.32, 143.62, 145.46.

ESI-MS: Calcd forC₂₅H₂₅NO₂S: [M+H⁺] 404.1679, found 404.1679.

 $[\alpha]^{25}_{D} = 29.3$ (c = 3.2 in CH₂Cl₂); 85% ee [Chiralcel AD-H column, n-hexane/i-PrOH = 98:2, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 30.3 min and 38.4 min].

2f:81% yield, 72.9 mg, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 1.07 (s, 3H), 2.46-2.49 (m, 4H), 3.59 (d, J = 15.6 Hz, 1H), 3.67 (d, J = 11.2 Hz, 1H), 4.26-4.36 (m, 3H), 5.79 (s, 1H), 6.57 (d, J = 2.4 Hz, 1H), 7.10-7.14 (m, 1H), 7.19-7.40 (m, 10H), 7.65 (d, J = 7.6 Hz, 1H), 7.76 (d, J = 8.4 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 21.60, 23.44, 40.03, 46.84, 51.52, 52.92, 101.76, 110.12, 119.31, 120.85, 121.50, 125.39, 127.83, 128.18, 128.31, 128.63, 129.23, 129.74, 129.92, 132.40, 133.56, 137.22, 137.88, 144.04.

ESI-MS: Calcd forC₂₈H₂₈N₂O₂S [M+H⁺] 457.1944, found 457.1943.

 $[\alpha]^{25}_{D} = -7.2 \text{ (c} = 3.6 \text{ in CH}_2\text{Cl}_2\text{)}; 85\% \text{ ee} [Chiralcel OJ-H column, n-hexane/i-PrOH = 95:5, 0.8 mL/min, <math>\lambda_{max} 254 \text{ nm}, t_R = 9.1 \text{ min and } 10.9 \text{ min}].$

nBu 2g:87% yield, 58.2 mg, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 0.89 (t, J = 7.2 Hz, 3H), 0.98 (t, J = 7.5 Hz, 6H), 1.18-1.36 (m, 6H), 1.92 (q, J = 7.2 Hz, 2H), 2.43 (s, 3H),

2.68 (d, J = 11.1 Hz, 1H), 2.86 (d, J = 11.1 Hz, 1H), 3.32 (dd, J = 1.5 Hz, J = 18.0 Hz,

1H), 3.38 (dd, *J* = 1.2 Hz, *J* = 18.0 Hz, 1H), 5.21 (s, 1H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.67 (d, *J*= 8.1 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 12.15, 14.12, 21.55, 23.45, 24.50, 26.08, 27.15, 35.65, 39.84, 47.33, 53.34, 127.69, 128.12, 129.63, 132.95, 143.36.

ESI-MS: Calcd forC₁₉H₂₉NO₂S: [M+H⁺] 336.1992, found 336.1995.

 $[\alpha]^{25}_{D} = -4.0 \text{ (c} = 2.9 \text{ in CH}_2\text{Cl}_2); 71\% \text{ ee} [Chiralcel AD-H column, n-hexane/i-PrOH} = 98:2, 0.8 \text{ mL/min}, \lambda_{max} 254 \text{ nm}, t_R = 16.4 \text{ min and } 27.1 \text{ min}].$

Bn **2h:** 82% yield, 79.4 mg, yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 0.90 (s, 3H), 1.00 (t, *J* = 7.6 Hz, 3H), 1.95 (q, *J* = 7.6 Hz, 2H), 2.42-2.46 (m, 4H), 2.70 (d, *J* = 13.2 Hz, 1H), 2.74 (d, *J* = 13.2 Hz, 1H), 3.18-3.25 (m, 2H), 3.61 (d, *J* = 15.6 Hz, 1H), 5.17 (s, 1H),

7.20-7.36 (m, 7H), 7.69 (d, *J* = 8.0 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 12.11, 21.57, 24.08, 27.12, 36.73, 45.46, 47.55, 53.04, 126.16, 127.80, 127.87, 129.67, 130.84, 132.83, 133.32, 137.72, 143.53.

ESI-MS: Calcd forC₂₂H₂₇NO₂S: [M+ Na⁺] 392.1655, found 392.1653.

 $[\alpha]^{25}_{D} = -53.0 \text{ (c} = 3.9 \text{ in CH}_2\text{Cl}_2); 71\% \text{ ee} [Chiralcel AD-H column, n-hexane/i-PrOH} = 98:2, 0.8 \text{ mL/min}, \lambda_{max} 254 \text{ nm}, t_R = 14.3 \text{ min and } 16.6 \text{ min}].$

^{*i*Bu} **2i:** 75% yield, 46.0 mg, yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 0.90 (d, J = 6.8 Hz, 3H), 0.93 (d, J = 6.8 Hz, 3H), 1.05 (s, 3H), 1.29 (dd, J = 5.6 Hz, J = 14.0 Hz, 1H), 1.42 (dd, J = 5.6 Hz, J = 14.0 Hz, 1H), 1.42 (dd, J = 5.6 Hz, J = 14.0 Hz, 1H), 1.66-1.77 (m, 4H), 2.45 (s, 3H), 2.74 (d, J = 10.8 Hz, 1H), 2.95 (d, J = 10.8 Hz, 1H), 3.43-3.54 (m, 2H), 5.47-5.52 (m, 1H), 5.59 (d, J = 10.4 Hz, 1H), 7.33 (d, J = 7.6 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 21.55, 24.29, 24.93, 25.05, 25.28, 36.64, 44.84, 48.74, 53.94, 119.84, 127.68, 129.63, 133.18, 135.51, 143.44.

ESI-MS: Calcd forC₁₇H₂₅NO₂S: [M+ Na⁺] 330.1498, found 330.1500.

 $[\alpha]^{25}_{D}$ = -13.1 (c = 2.3 in CH₂Cl₂); 77% ee [Chiralcel OD-H column, n-hexane/i-

PrOH= 98:2, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 24.2 min and 27.8 min].

Ph Ph Ph Ph **2j:** 88% yield, 71.7 mg, yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 0.94 (s, 3H), 2.36 (s, 3H), 2.47 (d, J = 11.4 Hz, 1H), 2.73 (d, J = 13.2 Hz, 1H), 2.78 (d, J = 13.2 Hz, 1H), 3.25 (d, J = 11.4 Hz, 1H), 3.58 (dd, J = 1.8 Hz, J = 15.3 Hz, 1H), 4.03 (dd, J = 1.5 Hz, J = 15.3 Hz, 1H), 5.71 (s, 1H), 7.14-7.29 (m, 12H), 7.64 (d, J = 8.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 21.57, 24.01, 37.51, 45.51, 46.71, 52.84, 125.36, 126.36, 127.83, 128.04, 128.57, 129.78, 130.84, 131.96, 132.92, 137.39, 138.44, 143.71.

ESI-MS: Calcd forC₂₆H₂₇NO₂S: [M+H⁺] 418.1835, found 418.1837.

 $[\alpha]^{25}_{D} = -29.3$ (c = 3.5 in CH₂Cl₂); 98% ee [Chiralcel OD-H column, n-hexane/i-PrOH = 98:2, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 22.6 min and 28.7 min].

2k:80% yield, 68.6 mg, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 0.94 (s, 3H), 2.27 (s, 3H), 2.36 (s, 3H), 2.47 (d, *J* = 11.4 Hz, 1H), 2.71 (s, 2H), 3.22 (d, *J* = 11.4 Hz, 1H), 3.59 (dd, *J* = 1.8 Hz, *J* = 15.6 Hz, 1H), 4.01 (dd, *J* = 0.9 Hz, *J* = 15.6 Hz, 1H), 5.72 (s, 1H), 7.05 (s, 4H), 7.18-7.29 (m, 7H), 7.65 (d, *J* = 8.4 Hz,

2H).

¹³C NMR (75 MHz, CDCl₃): δ 21.10, 21.58, 23.97, 37.48, 45.03, 46.69, 52.80, 125.34, 127.82, 128.55, 128.73, 129.77, 130.72, 131.17, 132.07, 132.81, 134.18, 135.84, 138.45, 143.70.

ESI-MS: Calcd forC₂₇H₂₉NO₂S: [M+ Na⁺] 454.1811, found 454.1812.

 $[\alpha]^{25}_{D} = 42.7 \text{ (c} = 3.4 \text{ in CH}_2\text{Cl}_2); 98\% \text{ ee} [Chiralcel OD-H column, n-hexane/i-PrOH} = 98:2, 0.8 \text{ mL/min}, \lambda_{max} 254 \text{ nm}, t_R = 21.6 \text{ min and } 26.2 \text{ min}].$

21: 75% yield, 64.6 mg, yellow oil.

2H).

¹³C NMR (75 MHz, CDCl₃): δ 21.46, 21.58, 24.05, 37.44, 45.43, 46.70, 52.82, 125.33, 127.07, 127.83, 127.88, 128.55, 129.76, 131.17, 131.74, 132.09, 132.80, 137.24, 137.52, 138.47, 143.71.

ESI-MS: Calcd forC₂₇H₂₉NO₂S: [M+ Na⁺] 454.1811, found 454.1808.

 $[\alpha]^{25}_{D} = 22.6 \text{ (c} = 3.2 \text{ in CH}_2\text{Cl}_2); 89\% \text{ ee} [Chiralcel OD-H column, n-hexane/i-PrOH} = 98:2, 0.8 \text{ mL/min}, \lambda_{max} 254 \text{ nm}, t_R = 14.0 \text{ min and } 15.4 \text{ min}].$

2m: 60% yield, 51.2 mg, yellow oil.

¹H NMR (300 MHz, CDCl₃): δ 1.02 (s, 3H), 2.22 (s, 3H), 2.37 (s, 3H), 2.62 (d, *J* = 11.2 Hz, 1H), 2.64 (d, *J* = 13.2 Hz, 1H), 3.04 (d, *J* = 13.2 Hz, 1H), 3.26 (d, *J* = 11.3 Hz, 1H), 3.64 (dd, *J* = 1.5 Hz, *J* = 15.6 Hz,

1H), 4.01 (dd, *J* = 1.8 Hz, *J* = 15.6 Hz, 1H), 5.62-5.64 (m, 1H), 7.06-7.08 (m, 2H), 7.12-7.21 (m, 3H), 7.21-7.30 (m, 6H), 7.67 (d, *J* = 8.1 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 20.39, 21.58, 24.31, 38.35, 41.91, 46.65, 54.01, 77.24, 125.24, 125.47, 126.43, 127.79, 128.56, 129.79, 130.52, 131.21, 131.56, 131.62, 132.98, 135.94, 137.21, 138.39, 143.73.

ESI-MS: Calcd forC₂₇H₂₉NO₂S: [M+ Na⁺] 454.1811, found 454.1811.

 $[\alpha]^{25}_{D} = 0.27$ (c = 2.5 in CH₂Cl₂); 98% ee [Chiralcel AD-H column, n-hexane/i-PrOH = 98:2, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 17.4 min and 20.0 min]

(d, *J* = 11.2 Hz, 1H), 3.66 (d, *J* = 15.6 Hz, 1H), 3.83 (s, 3H), 4.12 (d, *J* = 15.6 Hz, 1H), 5.80 (s, 1H), 6.87 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 7.27-7.38 (m, 7H), 7.74 (d, *J* = 8.0 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 21.58, 23.94, 37.55, 44.45, 46.69, 52.62, 55.25, 113.42, 125.33, 127.82, 128.56, 129.36, 129.77, 131.21, 131.76, 132.09, 132.78, 138.43, 143.71, 158.18.

ESI-MS: Calcd forC₂₇H₂₉NO₃S: [M+ Na⁺] 470.1760, found 470.1760.

 $[\alpha]^{25}_{D} = 19.2 \text{ (c} = 3.9 \text{ in CH}_2\text{Cl}_2\text{); } 89\% \text{ ee [Chiralcel OD-Hcolumn, n-hexane/i-PrOH} = 95:5, 1.0 \text{ mL/min, } \lambda_{\text{max}} 254 \text{ nm}, t_{\text{R}} = 11.9 \text{ min and } 13.0 \text{ min}]$

20: 82% yield, 72.1mg, yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 1.00 (s, 3H), 2.45-2.48 (m, 4H), 2.84 (s, 2H), 3.39 (d, *J* = 11.2 Hz, 1H), 3.59 (d, *J* = 15.6 Hz, 1H), 4.20 (d, *J* = 15.6 Hz, 1H), 5.76 (s, 1H), 7.20 (d, *J* = 8.4 Hz, 2H), 7.27-7.38 (m, 9H), 7.73 (d, *J* = 8.0 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 21.58, 23.87, 37.44, 44.62, 46.70, 52.51, 125.32, 127.80, 127.95, 128.17, 128.61, 129.62, 131.56, 131.68, 132.13, 132.89, 132.67, 135.85, 138.23, 143.81.

ESI-MS: Calcd forC₂₆H₂₆ClNO₂S: [M+ Na⁺] 474.1265, found 474.1264.

 $[\alpha]^{25}_{D} = 29.9 \text{ (c} = 3.6 \text{ in CH}_2\text{Cl}_2); 92\%$ ee [Chiralcel AD-H column, n-hexane/i-PrOH = 98:2, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 28.1min and 30.5 min].

2p:60% yield, 71.0 mg, yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 1.12 (s, 3H), 2.45 (s, 3H), 2.66 (d, J = 11.2 Hz, 1H), 3.07 (s, 2H), 3.32 (d, J = 11.2 Hz, 1H), 3.73 (d, J = 15.6

Ts Hz, 1H), 4.05 (d, J = 15.6 Hz, 1H), 5.88 (s, 1H), 6.94-6.96 (m, 1H), 6.98-7.01 (m, 1H), 7.18 (d, J = 4.8 Hz, 1H), 7.29-7.38 (m, 7H), 7.74 (d, J = 8.0 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 21.58, 24.19, 37.36, 39.52, 46.64, 52.54, 124.14,

125.40, 126.90, 127.67, 127.77, 127.91, 128.57, 129.80, 131.40, 131.99, 132.87, 138.30, 139.09, 143.75.

ESI-MS: Calcd forC₂₄H₂₅NO₂S₂: [M+ Na⁺] 446.1219, found 446.1218.

 $[\alpha]^{25}_{D} = 0.53$ (c = 3.6 in CH₂Cl₂); 89% ee [Chiralcel AD-H column, n-hexane/i-PrOH = 98:2, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 21.4 min and 23.2 min].

Ph $\stackrel{\text{Et}}{\underset{\text{Ts}}{}}$ Ph $\stackrel{\text{Et}}{\underset{\text{Ts}}{}}$ Ph $\stackrel{\text{2q: 80\% yield, 68.7 mg, yellow oil.}}{\underset{\text{1H NMR (400 MHz, CDCl_3): <math>\delta 0.92 \text{ (t, } J = 7.2 \text{ Hz, 3H), 1.50 (q, } J = 7.2 \text{ Hz, 2H), 2.46 (s, 3H), 2.75 (d, } J = 11.2 \text{ Hz, 1H), 2.86 (d, } J =$

13.6 Hz, 1H), 2.93 (d, *J* = 13.6 Hz, 1H), 3.24 (d, *J* = 11.2 Hz, 1H), 3.70 (d, *J* = 15.6 Hz, 1H), 4.07 (d, *J* = 15.6 Hz, 1H), 5.77 (s, 1H), 7.22-7.38 (m, 12H), 7.74 (d, *J* = 8.0 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃): δ 8.42, 21.59, 29.14, 40.39, 43.27, 46.70, 50.59, 125.33, 126.30, 127.78, 128.00, 128.56, 129.79, 130.75, 131.05, 132.06, 132.88, 137.48, 138.56, 143.70.

ESI-MS: Calcd forC₂₇H₂₉NO₂S: [M+ Na⁺] 454.1811, found 454.1810.

 $[\alpha]^{25}_{D} = 41.3$ (c = 3.4 in CH₂Cl₂); 99% ee [Chiralcel OD-H column, n-hexane/i-PrOH = 99:1, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 79.7 min and 86.6 min].

OTBS **2r:** 86% yield, 96.5 mg, yellow oil.

Ph N_{Ts} Ph IH NMR (400 MHz, CDCl₃): δ 0.01 (s, 3H), 0.01 (s, 3H), 0.84 (s, 9H), 1.72 (t, J = 6.4 Hz, 2H), 2.46 (s, 3H), 2.91 (d, J = 13.2 Hz, 1H), 2.93 (d, J = 11.6 Hz, 1H), 3.04 (d, J = 13.2 Hz, 1H), 3.30 (d, J = 11.6 Hz, 1H), 3.67-3.72 (m, 3H), 4.10 (d, J = 15.2 Hz, 1H), 5.79 (s, 1H), 7.23-

7.37 (m, 12H), 7.74 (d, *J* = 8.0 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 24.42, 24.91, 25.51, 28.44, 32.98, 35.77, 38.38, 52.39, 52.72, 52.88, 53.05, 125.85, 126.97, 128.30, 132.27, 133.26, 142.02, 172.22, 172.62. ESI-MS: Calcd forC₃₃H₄₃NO₃SSi: [M+ Na⁺] 584.2625, found 584.2621. [α]²⁵_D = 0.8 (c = 4.8 in CH₂Cl₂); 93% ee [Chiralcel AD-H column, n-hexane/i-PrOH= 98:2, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 38.3 min and 47.3 min].

1H), 5.75 (s, 1H), 7.22-7.38 (m, 12H), 7.73 (d, J = 8.0 Hz, 2H).
¹³C NMR (75 MHz, CDCl₃): δ 5.29, 18.41, 21.58, 26.01, 27.35, 32.70, 40.02, 43.88, 46.70, 50.91, 63.45, 125.32, 126.32, 127.79, 127.82, 128.03, 128.55, 129.80, 130.79, 131.04, 132.02, 132.77, 137.34, 138.48, 143.73.

ESI-MS: Calcd forC₃₄H₄₅NO₃SSi [M+ Na⁺] 598.2782, found 598.2780.

 $[\alpha]^{25}_{D} = 90 \text{ (c} = 4.6 \text{ in CH}_2\text{Cl}_2);85\%$ ee [Chiralcel AD-H column, n-hexane/i-PrOH = 98:2, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 31.7 min and 37.6 min].

¹³C NMR (100 MHz, CDCl₃): δ 21.56, 37.90, 39.42, 46.68, 46.81, 125.38, 126.39, 127.78, 127.89, 128.58, 129.31, 129.75, 133.43, 138.48, 139.34, 143.69. ESI-MS: Calcd forC₂₅H₂₅NO₂S: [M+ Na⁺] 426.1498, found 426.1496. [α]²⁵_D = 0.6 (c = 2.7 in CH₂Cl₂); 49% ee [Chiralcel AD-H column, n-hexane/i-PrOH =

99:1, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 17.0 min and 19.4 min].

Ph
$$iBu$$
 2v: 73% yield, 33.6 mg, yellow oil.
¹H NMR (400 MHz, CDCl₃): δ 0.96 (d, $J = 5.6$ Hz, 6H), 1.09 (s, 3H),

1.33 (dd, *J* = 6.4 Hz, *J* = 14.0 Hz, 1H), 1.47 (dd, *J* = 5.2 Hz, *J* = 14.0 Hz, 1H), 1.78-1.89 (m, 1H), 3.46 (d, *J* = 10.8 Hz, 1H), 3.63 (d, *J* = 10.8 Hz, 1H), 4.45 (d, *J* = 16.8 Hz, 1H), 4.49 (d, *J* = 16.8 Hz, 1H), 6.02 (s, 1H), 7.27-7.37 (m, 5H).

¹³C NMR (75 MHz, CDCl₃): δ 24.45, 24.74,

24.96, 25.41, 35.32, 48.86, 66.91, 74.77, 124.83, 127.37, 128.51, 131.62, 133.45, 138.28.

ESI-MS: Calcd forC₁₆H₂₂O: [M+H⁺] 231.1743, found 231.1743.

 $[\alpha]^{25}_{D} = 6.2 \text{ (c} = 1.7 \text{ in CH}_2\text{Cl}_2); 58\% \text{ ee} [Chiralcel AD-H column, n-hexane/i-PrOH = 99:1, 0.8 mL/min, <math>\lambda_{max} 254 \text{ nm}, t_R = 4.0 \text{ min and } 4.7 \text{ min}].$

2w: 75% yield, 34.5 mg, yellow oil.

Ph

¹H NMR (400 MHz, CDCl₃): δ 0.80-0.86 (m, 3H), 0.97 (s, 3H), 1.18-1.32 (m, 6H), 3.36 (d, J = 11.1 Hz, 1H), 3.52 (d, J = 11.1 Hz,

1H), 4.38 (s, 1H), 4.38 (s, 1H), 5.91 (t, *J* = 1.5 Hz, 1H), 7.18-7.26 (m, 5H).

¹³C NMR (75 MHz, CDCl₃): δ14.16, 23.61, 23.75, 26.28, 34.73, 39.43, 66.96, 74.36, 124.86, 127.40, 128.50, 131.26, 133.81, 138.23.

ESI-MS: Calcd forC₁₆H₂₂O [M+H⁺] 231.1743, found 231.1743.

 $[\alpha]^{25}_{D} = 5.2 \text{ (c} = 1.7 \text{ in CH}_2\text{Cl}_2); 63\% \text{ ee} [Chiralcel AD-H column, n-hexane/i-PrOH = 99:1, 0.8 mL/min, <math>\lambda_{max} 254 \text{ nm}, t_R = 3.8 \text{ min and } 4.8 \text{ min}].$

2x: 75% yield, 41.7 mg, yellow oil.

¹H NMR (400 MHz, CDCl₃): δ 1.00 (s, 3H), 2.36 (s, 3H), 2.71 (d, *J* = 13.2 Hz, 1H), 2.80 (d, *J* = 13.2 Hz, 1H), 3.41 (d, *J* = 11.2 Hz, 1H), 3.70 (d, *J* = 11.2 Hz, 1H), 4.50 (d, *J* = 16.0 Hz, 1H), 4.54 (d, *J* = 16.0 Hz, 1H), 5.93 (s, 1H), 7.08-7.14 (m, 4H), 7.27-7.37 (m, 5H).

¹³C NMR (75 MHz, CDCl₃): δ 21.07, 22.76, 29.73, 35.69, 44.96, 67.12, 73.88, 124.84,
127.48, 128.52, 128.63, 130.53, 130.93, 133.87, 134.70, 135.63, 138.10.
ESI-MS: Calcd forC₂₇H₂₉NO₂S: [M+ Na⁺] 301.1563, found 301.1563.

 $[\alpha]^{25}_{D} = -0.4$ (c = 2.1 in CH₂Cl₂); 53% ee [Chiralcel OD-H column, n-hexane/i-PrOH = 99:1, 0.8 mL/min, λ_{max} 254 nm, t_{R} = 6.3 min and 10.6 min].

 \sim /^{*i*Bu} **2y:** 70% yield, 48.1mg, yellow oil.

Ph

¹H NMR (300 MHz, CDCl₃): $\delta 0.94$ (d, J = 3.9 Hz, 3H), 0.96 (d, J = 4.2 Hz, 3H), 0.98 (s, 3H), 1.28 (dd, J = 6.3 Hz, J = 14.1 Hz, 1H), 1.37 (dd, J = 4.8 Hz, J = 14.1 Hz, 1H), 1.69-1.87 (m, 1H), 2.21 (d, J = 15.2 Hz, 1H), 2.27 (d, J = 15.2 Hz, 1H), 2.55 (dd, J = 3.6 Hz, J = 16.8 Hz, 1H), 3.12 (d, J = 16.8 Hz, 1H), 3.73 (s, 3H), 3.76 (s, 3H), 5.71 (d, J = 2.1 Hz, 1H), 7.23-7.27 (m, 1H), 7.32-7.38 (m, 2H), 7.42-7.46 (m, 2H).

¹³C NMR (125 MHz, CDCl₃): δ 24.42, 24.91, 25.31, 28.44, 32.98, 35.77, 38.38, 52.39, 52.72, 52.88, 53.05, 125.85, 126.97, 128.30, 132.27, 133.26, 142.02, 172.22, 172.62.
ESI-MS: Calcd forC₂₁H₂₈O₄ [M+ Na⁺] 367.1880, found 367.1881.

 $[\alpha]^{25}_{D} = 20 \text{ (c} = 2.4 \text{ in CH}_2\text{Cl}_2); 8\% \text{ ee [Chiralcel AD-H column, n-hexane/i-PrOH = 99:1, 0.8 mL/min, } \lambda_{max} 254 \text{ nm}, t_R = 6.3 \text{ min and } 14.6 \text{ min}].$

4. Synthetic Application

To a solution of 2r (0.19mmol) in Et₂O (2mL) at 0°C was added of TBAF (0.3mL, 1 mol/L). After 2 h,the reaction was concentrated in vacuum. The residue was used for the next stepwithoutpurification.

To a solution of NBS (35.5 mg,0.2 mmol) in CH_2Cl_2 (5.0 mL) was added the solution of alcoholin CH_2Cl_2 (2.0 mL). The reaction was stirred atroom temperature for 5 min, and then was quenched by aq.Na₂S₂O₃solution (5 mL). The resulted mixture was diluted with H₂O, and was extracted with CH_2Cl_2 . The combined organic extracts were dried over MgSO₄ and then was concentrated in vacuum. The residue waspurified by column chromatography (silica gel, PE/EA) to give a white solid (79.4 mg 71%).

Br Br Br

¹³C NMR (75 MHz, CDCl₃): δ 21.67, 35.82, 38.69, 45.05, 47.19, 49.31, 63.31, 63.92,
73.98, 125.41, 127.15, 127.58, 128.24, 128.35, 128.52, 129.99, 130.61, 132.41,
135.03, 141.54, 143.97.

ESI-MS: Calcd forC₂₇H₂₈BrNO₃S [M+Na⁺] 548.0865, found 548.0863.

 $[\alpha]^{25}_{D} = 0.7 \text{ (c} = 3.3 \text{ in CH}_2\text{Cl}_2); 93.6\% \text{ ee} [Chiralcel AD-H column, n-hexane/i-PrOH} = 98:2, 0.8 \text{ mL/min}, \lambda_{\text{max}} 254 \text{ nm}, t_{\text{R}} = 9.3 \text{ min and } 10.0 \text{ min}].$

5. NMR and HPLC Spectra of New Compounds

2a

Results

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		13.815	436262.156	14477421.000	49.5977
2		15.342	410956.125	14712297.000	50.4023
Total			847218.281	29189718.000	100.0000

	Results							
Peak No.	Peak ID	Ret Time	Height	Area	Conc.			
1		13.922	45563.320	1609037.625	7.4097			
2		15.303	528522.313	20106362.000	92.5903			
Total			574085.633	21715399.625	100.0000			

S18

2c

Results

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		19.552	350231.688	15567532.000	48.2326
2		21.827	341480.938	16708432.000	51.7674
Total			691712.625	32275964.000	100.0000

1000	
Door	100
IN ENL	III S

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		19.787	57194.172	2465226.500	6.4011
2		21.823	653859.000	36047516.000	93.5989
Total			711053.172	38512742.500	100.0000

2d

S24

S26

分钟 - Channel: W2489 ChA; Channel Desc.: W2489 ChA 254nm; Processing Method: 01

10.00

14.00

16.00

8.00

	Channel Description	RT (min)	Area (礦*sec)	% Area	Height (礦)
1	W2489 ChA 254nm	9.118	955922	7.30	37326
2	W2489 ChA 254nm	10.970	12146196	92.70	483620

0.00

S28

	Channel Description	RT (min)	Area (礦*sec)	% Area	Height (礦)
1	W2489 ChA 254nm	16.433	644029	14.49	16431
2	W2489 ChA 254nm	27.131	3801367	85.51	51372

2h

	Description	(min)	(礦*sec)	/0 Alea	(礦)
1	W2489 ChA 254nm	24.205	506998	11.40	11884
2	W2489 ChA 254nm	27.783	3940250	88.60	63427

S34

2k

S38

21

S40

20

2p

2q

Results

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		80.358	75453.719	8814077.000	50.8892
2		87.748	66999.938	8506042.000	49.1108
Total			142453.656	17320119.000	100.0000

Results

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		79.705	540.892	18083.471	0.2807
2		86.603	49151.117	6425236.000	99.7193
Total			49692.009	6443319.471	100.0000

S50

Peak No.	Peak ID	Ret Time	Height	Area	Conc.	
1		38.537	111599.125	7828119.000	50.9268	-
2		48.045	84537.555	7543199.000	49.0732	
Total			196136.680	15371318.000	100.0000	_

2000		100
D		 14.
к	ρc	ITS
-		

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		38.382	5565.415	367045.750	2.8879
2		47.353	138102.984	12342545.000	97.1121
Total			143668.399	12709590.750	100.0000

2s

Results

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		31.667	158576.563	19849586.000	50.1570
2		38.030	124517.281	19725304.000	49.8430
Total			283093.844	39574890.000	100.0000

R	00	m	te
-	C 3	uu	11.5

Peak No.	Peak ID	Ret Time	Height	Area	Conc.
1		31.652	15418.680	1574257.375	7.2891
2		37.613	145029.328	20022086.000	92.7061
Total			160759.784	21597388.083	100.0000

S54

C	_	_
	.,	
\sim	~	-

S60

S64

6.X-ray Analysis

Identification code	20170314cz_0m_b
Empirical formula	C ₂₇ H ₂₈ BrNO ₃ S
Formula weight	526.47
Temperature	296 K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space_group_IT_number	4
Space_group_name_H-M_alt	'P 21'
Space_group_name_Hall	'P 2yb
Unit cell dimensions	a = 10.207(9) Å= 90°.
	b = 10.425(3) Å= 97.286°.
	$c = 11.403(2) \text{ Å} = 90^{\circ}.$
Volume	1203.7(3) Å ³
Z	2
Density (calculated)	1.453 Mg/m ³
Absorption coefficient	1.824 mm ⁻¹

F(000)	544
Crystal size	0.26 x 0.24 x 0.22 mm ³
Theta range for data collection	2.52 to 27.40°.
Index ranges	-8<=h<=12, -12<=k<=12, -13<=l<=13
Reflections collected	8311
Independent reflections	3751 [R(int) = 0.0512]
Completeness to theta = 25.003°	99.8 %
Max. and min. transmission	0.648 and 0.690
Refinement method	f and w scans
Data / restraints / parameters	4132 / 1 / 299
Final R indices [I>2sigma(I)]	R1 = 0.0592, wR2 = 0.1217
R indices (all data)	R1 = 0.1601, wR2 = 0.1545
Absolute structure parameter	0.092(9)
Extinction coefficient	MoK/a
Largest diff. peak and hole	0.356and -0.445 e.Å ⁻³