Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

The Dearomative Annulation between N-2-Pyridylamidine and CO₂ toward Pyrido[1,2-*a*]-1,3,5-triazin-4-ones

Minfang Xia, Weiming Hu, Song Sun, Jin-Tao Yu, Jiang Cheng *

School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, and Institute for Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, P. R. China.

Email: jiangcheng@cczu.edu.cn

Table of Contents

1. General Considerations	S2
2. General Procedure for the Preparation of <i>N</i> -Substituted Amidines 1	S2
3. Experimental Procedures	S2
4. The Synthesis of 3	S3
5. The Procedures of 2p toward Artificial Nucleosides	S3- S4
6. Characterization Data for the Products	S5-S9
7. References	S10
8. Copies of the ¹ H NMR and ¹³ C NMR Spectra	S11-S30

1. General Considerations

Unless otherwise noted, all chemicals were purchased from commercial suppliers (Adamas, Aladdin, etc) and used without further purification. ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature on a 300, 400 or 500 MHz NMR spectrometer (75, 100 or 125 MHz for ¹³C). NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 or 77.0 ppm) or DMSO-d₆ (δ 2.50 or 39.52 ppm) as the internal standard. The coupling constants *J* are given in Hz. Column chromatography was performed using EM Silica gel 60 (300-400 mesh). All melting points were uncorrected.

2. General Procedure for the Preparation of N-Substituted Amidines 1¹

To a stirred solution of substituted 2-aminopyridine (10 mmol) in DMF (5.0 mL) was added NaH (60% dispersion in mineral oil, 12 mmol) at 0 °C, and the mixture was stirred at the same temperature for 30 min. Substituted benzonitrile (12 mmol) was then added to the reaction mixture and the mixture stirred at room temperature until TLC indicated the total consumption of the substituted 2-aminopyridine. The reaction was quenched by the addition of 5% aqueous NaHCO₃ (10 mL) and the mixture extracted with EtOAc. The extract was washed with brine and dried over Na₂SO₄. The solvent was then evaporated, and the residue was purified by column chromatography using a mixture of petroleum ether and EtOAc as the eluent to afford the desired *N*-substituted amidine 1.

3. Experimental Procedures

In a glovebox, a 20 mL Schlenk tube equipped with a stir bar was charged with 1 (0.1 mmol), base (0.3 mmol, 3 eq.) and toluene (2 mL). The tube was sealed with a Teflon lined cap. The tube was then evacuated and back-filled with carbon dioxide for 3 times. The reaction mixture was stirred at 120 °C for 24 h in oil bath. After the completion of the reaction, the solvent was concentrated in vacuum and the residue was purified by flash column chromatography on silica gel with petroleum ether-EtOAc as the eluent to give the desired product.

4. The Synthesis of 3²

Procedures a: mixture of 2-deoxythymidine (10.0 g, 41.3 mmol) and imidazole (11.8 g, 173 mmol) in anhydrous DMF was stirred at room temperature for 5 min. Then *tert*-butyldimethylsilyl chloride (13.1 g, 86.7 mmol) was added, and the mixture was stirred for another 12 h. After adding water (100 mL), the reaction mixture was extracted with hexane, dried with Na₂SO₄ and concentrated under vacuum to give **3a** as a white solid. Mp = 141-143 °C.

Procedures b: A mixture of **3a** (3.00 g, 6.40 mmol) and ammonium sulfate (337 mg, 2.55 mmol) was dissolved in hexamethyldisilazane (11.7 g, 72.5 mmol) in a dry flask, and the resulting mixture was heated at reflux for 4 h. After the solvents were removed under vacuum, the residue was dissolved in CH_2Cl_2 . The solution was washed with saturated NaHCO₃ solution, water, and brine, dried with Na₂SO₄, and concentrated under vacuum. The crude product was purified by silica gel column chromatography (hexane/Et₂O, 19:1) to give **3** as a yellow oil.

5. The Procedures of 2p toward Artificial Nucleosides

Under N₂, a 20 mL Schlenk tube equipped with a stir bar was charged with 2p (0.1 mmol), **3** (0.12 mmol, 1.2 eq.), triethylamine (0.3 mmol, 3 eq.), Pd(OAc)₂ (0.01mmol, 0.1 eq.), dry acetonitrile (2 mL). The mixture was heated at 60 °C for 20 h. The reaction was concentrated under vacuum, and the crude product was purified by silica gel column chromatography (hexane/EtOAc, 3:1 + 0.1% of Et₃N) to give **4a** and **4b**.

6. Characterization Data for the Products

2-Phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2a)³:

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2a** (18.9 mg, 85% yield) as white solid. Mp. 190-191 °C.

¹H NMR (CDCl₃, 400 MHz): δ 9.07 (d, J = 6.9 Hz, 1H), 8.57 (d, J = 7.9 Hz, 2H), 8.01 (t, J = 7.8 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H),

7.55 (t, J = 8.8 Hz, 1H), 7.50-7.46 (m, 2H), 7.31 (t, J = 6.9 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 169.6, 155.5, 151.3, 141.5, 135.8, 132.6, 129.9, 129.5, 128.4, 125.5, 117.7.

2-(*p*-Tolyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2b):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2b** (19.2 mg, 81% yield) as white solid. Mp. 228-229 °C.

¹H NMR (CDCl₃, 400 MHz): δ 9.05 (d, J = 6.9 Hz, 1H), 8.46

(d, J = 7.9 Hz, 2H), 7.99 (t, J = 7.8 Hz, 1H), 7.66 (d, J = 8.8 Hz, 1H), 7.30-7.26 (m, 3H), 2.43 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 169.6, 155.5, 151.3, 143.4, 141.3, 133.1, 129.9, 129.6, 129.2, 125.4, 117.4, 21.7; HRMS (ESI) m/z calcd for C₁₄H₁₂N₃O⁺ (M + H)⁺ 238.0975, found 238.0976.

2-(*o*-Tolyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2c):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2c** (20.0 mg, 84% yield) as white solid. Mp. 164-166 °C.

¹H NMR (CDCl₃, 400 MHz) δ 9.09 (d, J = 6.8 Hz, 1H), 8.05-8.01 (m, 2H), 7.68 (d, J = 8.8 Hz, 1H), 7.39-7.34 (m, 2H), 7.30-

7.26 (m, 2H), 2.68 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 173.1, 155.1, 150.1, 141.6, 138.5, 136.3, 131.5, 130.7, 129.7,125.8, 125.3, 117.9, 21.6; HRMS (ESI) m/z calcd for C₁₄H₁₂N₃O⁺ (M + H)⁺ 238.0975, found 238.0980.

2-(Naphthalen-1-yl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2d):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2d** (19.7 mg, 72% yield) as white solid. Mp. 171-173 °C.

¹H NMR (CDCl₃, 400 MHz): δ 9.07 (d, J = 6.8 Hz, 1H), 8.98 (d, J = 8.5 Hz, 1H), 8.32 (d, J = 7.2 Hz, 1H), 7.99-7.96 (m,

2H), 7.88 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.58-7.54 (m, 2H), 7.50 (t, J = 7.4 Hz, 1H), 7.30 (t, J = 6.9 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 172.4, 155.0, 150.7, 141.7, 133.9, 133.9, 132.1, 130.9, 130.4, 129.6, 128.5, 127.1, 126.0, 125.9, 125.3, 124.9, 118.1 HRMS (ESI) m/z calcd for C₁₇H₁₂N₃O⁺ (M + H)⁺ 274.0975, found 274.0977.

2-(4-Chlorophenyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2e):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2e** (21.3 mg, 83% yield) as white solid. Mp. > 250 °C.

¹H NMR (CDCl₃, 300 MHz) δ 9.11-9.08 (m, 1H), 8.56-8.51 (m, 1H), 8.08-8.02 (m, 1H), 7.70 (d, *J* = 8.5 Hz, 1H), 7.48-7.45 (m, 2H), 7.37-7.32 (m, 1H); ¹³C NMR (CDCl₃, 100

MHz) δ 168.6, 155.5, 151.2, 141.7, 139.1, 134.3, 130.9, 130.0, 128.7, 125.5, 117.8; HRMS (ESI) m/z calcd for C₁₃H₉ClN₃O⁺ (M + H)⁺ 258.0429, found 258.0432.

2-(4-Bromophenyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2f):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2f** (26.0 mg, 86% yield) as white solid. Mp. > 250 °C.

¹H NMR (CDCl₃, 400 MHz) δ 9.09 (d, J = 6.7 Hz, 1H), 8.45 (d, J = 8.1 Hz, 2H), 8.05 (t, J = 7.8 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.35 (t, J = 6.7 Hz, 1H);

 13 C NMR (CDCl₃, 100 MHz) δ 168.7, 155.5, 151.2, 141.7, 134.8, 131.7, 131.1, 130.0, 127.8, 125.5, 117.9; HRMS (ESI) m/z calcd for C₁₃H₉BrN₃O⁺ (M + H)⁺ 301.9924, found 301.9924.

2-(4-Fluorophenyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2g):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2g** (16.9 mg, 70% yield) as white solid. Mp. 232-234 °C.

¹H NMR (DMSO-d₆, 400 MHz): δ 9.03 (d, J = 6.7 Hz, 1H), 8.55-8.51 (m, 2H), 8.32 (t, J = 7.8 Hz, 1H), 7.81 (d, 1H, J = 8.7 Hz), 7.60 (t, 1H, J = 6.8 Hz), 7.41 (t, 2H, J = 8.7 Hz); ¹³C

NMR (DMSO-d₆, 75 MHz): δ 167.5, 165.8 (d, J_{C-F} = 249.0 Hz), 156.1, 151.5, 144.2, 133.5 (d, J_{C-F} = 2.3 Hz), 132.3 (d, J_{C-F} = 9.0 Hz), 131.0, 125.8, 119.9, 116.6 (d, J_{C-F} = 21.8 Hz); HRMS (ESI) m/z calcd for C₁₃H₉FN₃O⁺ (M + H)⁺ 242.0724, found 242.0726.

2-(4-(Trifluoromethyl)phenyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2h):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2h** (21.8 mg, 75% yield) as white solid. Mp. 169-172 °C.

¹H NMR (CDCl₃, 400 MHz) δ 9.08 (d, J = 6.8 Hz, 1H), 8.66 (d, J = 8.1 Hz, 2H), 8.07 (t, J = 7.8 Hz, 1H), 7.72 (d, J = 8.0 Hz, 3H), 7.38 (t, J = 6.9 Hz, 1H); ¹³C NMR (CDCl₃,

100 MHz) δ 168.1, 155.5, 151.1, 142.0, 139.1, 133.7 (q, J_{C-F} = 32.0 Hz), 130.0, 129.7, 125.6, 125.2 (q, J_{C-F} = 4.0 Hz), 123.9 (q, J_{C-F} = 271.0 Hz), 118.3; HRMS (ESI) m/z calcd for C₁₄H₉F₃N₃O⁺ (M + H)⁺ 292.0692, found 292.0692.

2-(Furan-2-yl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2i):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2i** (15.1 mg, 71% yield) as white solid. Mp. 209-210 °C.

¹H NMR (CDCl₃, 400 MHz): δ 9.02 (d, J = 6.9 Hz, 1H), 8.01 (t, J = 7.8 Hz, 1H), 7.68 (br, 2H), 7.54 (d, J = 3.0 Hz, 1H), 7.30 (t, J =

6.8 Hz, 1H), 6.57 (br, 1H); ¹³C NMR (CDCl₃, 75 MHz): δ 161.3, 155.7, 150.50, 150.47, 147.0, 142.0, 130.0, 125.1, 118.2, 117.7, 112.8; HRMS (ESI) m/z calcd for C₁₁H₈N₃O₂⁺ (M + H)⁺ 214.0611, found 214.0613.

2-(Thiophen-2-yl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2j):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2j** (17.6 mg, 77% yield) as white solid. Mp. 192-193 °C.

¹H NMR (CDCl₃, 400 MHz): δ 9.02 (d, J = 6.8 Hz, 1H), 8.18 (d, J = 3.7 Hz, 1H), 7.98 (t, J = 7.8 Hz 1H), 7.62-7.60 (m, 2H), 7.27

(t, J = 6.9 Hz, 1H), 7.16 (t, J = 4.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.6, 155.5, 150.7, 141.63, 141.58, 133.3, 132.6, 130.0, 128.6, 125.0, 117.3; HRMS (ESI) m/z calcd for C₁₁H₈N₃OS⁺ (M + H)⁺ 230.0383, found 230.0385.

7-Methyl-2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2k):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2k** (19.4 mg, 82% yield) as white solid. Mp. 200-201 °C.

¹H NMR (CDCl₃, 400 MHz): δ 8.88 (s, 1H), 8.54 (d, J = 7.9 Hz, 2H), 7.85 (d, J = 8.9 Hz, 1H), 7.60 (d, J = 8.9 Hz, 1H),

7.54 (t, J = 7.0 Hz, 1H), 7.49-7.45 (m, 2H), 2.45 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 168.9, 154.1, 151.3, 144.1, 135.9, 132.4, 129.4, 128.40, 128.35, 127.6, 124.9, 18.3; HRMS (ESI) m/z calcd for C₁₄H₁₂N₃O⁺ (M + H)⁺ 238.0975, found 238.0980.

7-Chloro-2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2l):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 8 + 0.1% of Et₃N) give **2l** (18.0 mg, 70% yield) as yellow solid. Mp. 232-234 °C.

¹H NMR (CDCl₃, 400 MHz) δ 9.09 (s, 1H), 8.56 (d, J = 7.9 Hz, 2H), 7.94 (d, J = 9.2 Hz, 1H), 7.65 (d, J = 9.3 Hz, 1H),

7.58 (t, J = 7.2 Hz, 1H), 7.50 (t, J = 7.5 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 169.7, 154.1, 150.3, 142.5, 135.4, 133.0, 129.6, 128.5, 127.8, 126.5, 125.8; HRMS (ESI) m/z calcd for C₁₃H₉ClN₃O⁺ (M + H)⁺ 258.0429, found 258.0436.

7-Bromo-2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2m):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 8 + 0.1% of Et₃N) give **2m** (17.8 mg, 59% yield) as yellow solid. Mp. 242-244 °C.

¹H NMR (CDCl₃, 400 MHz) δ 9.20 (s, 1H), 8.56 (d, *J* = 7.7

Hz, 2H), 8.04 (d, J = 8.2 Hz, 1H), 7.58 (d, J = 9.2 Hz, 2H), 7.50 (t, J = 7.5 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 169.7, 154.2, 150.2, 144.7, 135.4, 133.0, 130.1, 129.6, 128.5, 126.5, 112.3; HRMS (ESI) m/z calcd for C₁₃H₉BrN₃O⁺ (M + H)⁺ 301.9924, found 301.9921.

2,7-Diphenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2n):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 8 + 0.1% of Et₃N) give **2n** (13.7 mg, 46% yield) as yellow solid. Mp. 245-247 °C.

¹H NMR (CDCl₃, 300 MHz) δ 9.30 (d, J = 2.2 Hz, 1H), 8.62-8.58 (m, 2H), 8.30 (dd, J = 9.1 Hz, 1H), 7.78 (d, J = 9.1

Hz, 1H), 7.68-7.64 (m, 2H), 7.57-7.46 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 169.2, 154.3, 151.4 141.1, 135.8, 134.5, 132.6, 131.9, 129.53, 129.50, 129.4, 128.4, 126.84, 126.78, 125.5; HRMS (ESI) m/z calcd for C₁₉H₁₄N₃O⁺ (M + H)⁺ 300.1131, found 300.1133.

9-Methyl-2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (20):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **20** (20.9 mg, 88% yield) as white solid. Mp. 171-174 °C.

¹H NMR (CDCl₃, 400 MHz) δ 8.94 (d, J = 6.8 Hz, 1H), 8.59 (d, J = 7.7 Hz, 2H), 7.83 (d, J = 6.8 Hz, 1H), 7.56-7.52 (m, 1H),

7.49-7.45 (m, 2H), 7.19 (t, J = 6.8 Hz, 1H), 2.66 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 168.4, 154.8, 151.9, 140.1, 136.0, 134.7, 132.5, 129.5 128.3, 127.6, 117.0, 17.4; HRMS (ESI) m/z calcd for C₁₄H₁₂N₃O⁺ (M + H)⁺ 238.0975, found 238.0982.

9-Iodo-2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2p):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2p** (20.2 mg, 58% yield) as white solid. Mp. 214-215 °C.

¹H NMR (CDCl₃, 400 MHz): δ 9.04 (d, J = 6.6 Hz, 1H), 8.64 (d, J = 7.4 Hz, 2H), 8.53 (d, J = 7.2 Hz, 1H), 7.59-7.56 (m, 1H),

7.52-7.48 (m, 2H), 7.03 (t, J = 6.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 169.9, 153.9, 151.7, 151.2, 135.5, 133.1, 130.3, 130.0, 128.5, 118.1, 96.7; HRMS (ESI) m/z calcd for C₁₃H₉IN₃O⁺ (M + H)⁺ 349.9785, found 349.9783.

2-Phenyl-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2q):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2q** (18.3 mg, 63% yield) as white solid. Mp. 181-183 °C.

¹H NMR (CDCl₃, 400 MHz) δ 9.10 (d, J = 7.2 Hz, 1H),

8.53 (d, J = 7.9 Hz, 2H), 7.88 (s, 1H), 7.57 (t, J = 7.0 Hz,

1H), 7.49-7.46 (m, 2H), 7.36 (d, J = 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 170.3, 155.4, 150.4, 142.2 (q, $J_{C-F} = 36.0$ Hz), 135.0, 133.2, 131.6, 129.7, 128.5,

123.3 (q, $J_{C-F} = 5.0$ Hz), 121.3 (q, $J_{C-F} = 273.0$ Hz), 112.5 (q, $J_{C-F} = 3.0$ Hz); HRMS (ESI) m/z calcd for C₁₄H₉F₃N₃O⁺ (M + H)⁺ 292.0692, found 292.0699.

8-Methoxy-2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2r):

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1: 3 + 0.1% of Et₃N) give **2r** (17.7 mg, 70% yield) as white solid. Mp. 221-223 °C.

¹H NMR (CDCl₃, 400 MHz): δ 8.87 (d, J = 7.1 Hz, 1H), 8.49 (d, J = 7.8 Hz, 2H), 7.52 (t, J = 7.2 Hz, 1H), 7.47-7.43

(m, 2H), 6.85-6.83 (br, 2H), 4.00 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 169.4, 169.0, 157.4, 151.4, 153.9, 132.3, 131.1, 129.3, 128.3, 111.6, 101.7, 56.9; HRMS (ESI) m/z calcd for C₁₄H₁₂N₃O₂⁺ (M + H)⁺ 254.0924, found 254.0934.

9-((2*R*,5*R*)-4-((*tert*-butyldimethylsilyl)oxy)-5-(((*tert*-butyldimethylsilyl)oxy)methyl)-2,5-dihydrofuran-2-yl)-2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (4a):

Flash column chromatography on a silica gel (ethyl acetate: hexane, 1: 3 + 0.1% of Et₃N) give **4a** (16.0 mg, 31% yield) as white solid. Mp. 158-160 °C.

¹H NMR (CDCl₃, 400 MHz) δ 9.00 (d, J = 6.7 Hz, 1H), 8.61 (t, J = 8.0 Hz, 3H), 7.57 (t, J = 7.0

Hz, 1H), 7.51-7.48 (m, 2H), 7.29 (t, J = 7.0 Hz, 1H), 6.49 (s, 1H), 5.19 (s, 1H), 4.71 (s, 1H), 3.98 (d, J = 11.2 Hz, 1H), 3.84 (d, J = 10.7 Hz, 1H), 0.94 (s, 9H), 0.88 (s, 9H), 0.24 (s, 3H), 0.15 (s, 3H), 0.10 (s, 3H), 0.03 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 168.2, 152.7, 151.6, 150.5, 139.1, 138.9, 136.1, 132.5, 129.5, 128.4, 128.0, 117.6, 100.7, 84.3, 79.4, 63.1, 25.9, 25.6, 18.5, 18.1, -4.9, -5.1, -5.3, -5.4; HRMS (ESI) m/z calcd for C₃₀H₄₄N₃O₄Si₂⁺ (M + H)⁺ 566.2865, found 566.2905.

9-((2*R*,5*R*)-5-(((*tert*-butyldimethylsilyl)oxy)methyl)-4-oxotetrahydrofuran-2-yl)-2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (4b):

Flash column chromatography on a silica gel (ethyl acetate: hexane, 1: 3 + 0.1% of Et₃N) give **4b** (12.7 mg, 28% yield) as yellow oil.

¹H NMR (CDCl₃, 500 MHz) δ 9.05 (dd, J = 1.3, 6.9 Hz, 1H), 8.53-8.51 (m, 3H), 7.59-7.56 (m, 1H), 7.51-7.48 (m, 2H), 7.37 (t, J = 7.1 Hz, 1H),

5.95-5.92 (m, 1H), 4.21 (t, J = 2.3 Hz, 1H), 4.08-4.00 (m, 2H), 3.45-3.40 (m, 1H), 2.33-2.27 (m, 1H), 0.83 (s, 9H), 0.10 (s, 3H), 0.05 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 213.1, 168.7, 152.8, 151.2, 137.6, 137.3, 132.9, 132.5, 129.5, 128.7, 128.5, 117.2, 82.4, 72.4, 62.6, 44.9, 25.7, 18.2, -5.5, -5.7; HRMS (ESI) m/z calcd for C₂₄H₃₀N₃O₄Si⁺ (M + H)⁺ 452.2000, found 452.2007.

7. References

1. Z.-S. Zheng, S.-Y. Ma, L.-L. Tang, D. Zhang-Negrerie, Y.-F. Du and K. Zhao, J. Org. Chem., 2014, **79**, 4687.

- 2. N. Gaß and H. A. Wagenknecht, Eur. J. Org. Chem., 2015, 2015, 6661.
- 3. A. S. Kiselyov and L. Strekowski, Tetrahedron Lett., 1994, 35, 207.

8. Copies of the ¹H NMR and ¹³C NMR Spectra 2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2a)

2-(*p*-tolyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2b)

2-(*o*-tolyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2c)

2-(naphthalen-1-yl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2d)

2-(4-chlorophenyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2e)

2-(4-bromophenyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2f)

2-(4-fluorophenyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2g)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

2-(4-(trifluoromethyl)phenyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2h)

2-(furan-2-yl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2i)

0304 0132 0273 9883 9883	6848 6651 5484 5410	3163 2992 2821	5752 5710
တ္တထိတ်က		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ώĢ

9642525	88228
61. 550. 41.	30. 17. 12.
73773	77575

2-(thiophen-2-yl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2j)

0321 0150 1840	1748	9847	6193	6073 5970	2842	2499	1746	1640	1534
တံ့တဲ့ ထိ	တ်ထု		5	2	1-1	-1-	5	5	5

170 160 150 140 130 120 110 100 90 80 70 fl (ppm) 210 200 Ó -10

7-chloro-2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2l):

7-bromo-2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2m)

2,7-diphenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2n)

9-iodo-2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2p)

2-phenyl-8-(trifluoromethyl)-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (2q)

9-((2*R*,5*R*)-4-((*tert*-butyldimethylsilyl)oxy)-5-(((*tert*-butyldimethylsilyl)oxy)methyl)-2,5-dihydrofuran-2-yl)-2-phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (4a)

f1 (ppm) -10

Ó

9-((2*R*,5*R*)-5-(((*tert*-butyldimethylsilyl)oxy)methyl)-4-oxotetrahydrofuran-2-yl)-2phenyl-4*H*-pyrido[1,2-*a*][1,3,5]triazin-4-one (4b)