Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Alcohol-mediated direct dithioacetalization of alkynes with 2-chloro-1,3-dithiane for the synthesis of Markovnikov dithianes

Teng Liu,^a Lixia Tian,^a Junshan Lai,^a Deng Min,^a Mengnan Qu^{b*} and Shouchu Tang^{a*}

^aSchool of Pharmacy and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China. E-mail: <u>tangshch@lzu.edu.cn</u>

^bCollege of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China. E-mail: <u>mnanqu@gmail.com</u>

Table of Contents

1 General information	S2
2. Experimental section	S2
2.1 General procedure for the synthesis of Markovnikov dithianes	S2
2.2 The synthesis of dithiane 3q	
2.3 Optimization of acid, and temperature	
2.4 Optimization of solvent and alcohol	
3. Characterization of synthesized compounds 3a-3q	
4. References	
5. ¹ H NMR and ¹³ C NMR spectra data of	

products......S10

1. General information

Analytical grade solvents and commercially available reagents were used as received. Unless otherwise noted, materials were obtained from commercial suppliers and used without further purification. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were generally performed on silica gel (200-300 mesh) in petroleum (bp. 60-90 °C) and reactions were monitored by thin layer chromatography (TLC) using silica gel GF254 plates with UV light to visualize the course of reaction. ¹H and ¹³C NMR data were recorded with Bruker 300 MHz or 400 MHz with tetramethylsilane as internal standard. ¹⁹F NMR data was recorded with Bruker 400 MHz with tetramethylsilane as internal standard. All chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. All chemical shifts are reported relative to tetramethylsilane (0 ppm for ¹H) and CDCl₃ (77.00 ppm for ¹³C), respectively. MS were measured on a HP-5988 spectrometer by direct inlet at 70 eV.

2. Experimental section

2.1 General procedure for the synthesis of Markovnikov dithianes

To a flame-dried 10 mL flask were sequentially added 1,3-dithiane 4 (300 mg, 2.5 mmol) and N-chlorosuccinimide (NCS) (400 mg, 3 mmol), 1,2-dichloroethane (DCE) or dichloromethane (DCM) (3 mL), after dissolved the mixture was stirred at 0 °C for 40 mins. The mixture was allowed to stir at room temperature for 2 h. Then the reaction mixture can be used directly for dithioacetalization with a variety of alkynes in DCE/DCM solutions. Alternatively, the reaction mixture in DCE can be used directly for the dithioacetalization in a one-pot procedure without purification.¹

To a flame-dried 10 mL flask 2-chloro-1,3-dithiane **2** (31 mg, 0.2 mmol), **1a-1p** (0.18 mmol) and MsOH (19 mg, 0.2 mmol), MeOH (13 mg, 0.40 mmol) were added successively via syringe at room temperature. Reaction mixture was stirred at 50 °C for 8-24 h until TLC analysis showed the reaction was completed. The mixture was concentrated under reduced pressure, and then purified by column chromatography on silica gel with petroleum/ethyl acetate (EA/PE = 1: $50\sim2$: 50) to yield the product **3a-3p**.

2.2 The synthesis of dithiane 3q

To a flame-dried 10 mL flask 2-chloro-1,3-dithiane **2** (31 mg, 0.2 mmol), **1q** (15 mg, 0.18 mmol), MsOH (19 mg, 0.2 mmol), ROH (R = Me, Et, *t*-Bu; 0.40 mmol) were added successively via syringe at reaction temperature. Reaction mixture was stirred at 50 °C for 12 h until TLC analysis showed the reaction was completed. The mixture was concentrated under reduced pressure, and then purified by column chromatography on silica gel with petroleum/ethyl acetate (EA/PE = 2: 50) to yield the **3q** product.

2.3 Optimization of acid, and temperature

To a flame-dried 10 mL flask 2-chloro-1,3-dithiane **2** (31 mg, 0.2 mmol), **1a** (0.18 mmol), acid (*x* equiv) and MeOH (13mg, 0.40 mmol) were added successively via syringe at reaction temperature. Reaction mixture was stirred at 50 \sim 100 °C for 8-24 h until TLC analysis showed the reaction was completed. The mixture was concentrated under reduced pressure, and then purified by column chromatography on silica gel with petroleum/ethyl acetate (EA/PE = 1: 50) to yield the **3a** product.

Table S1. O	ptimization	of acid, a	and tem	perature
-------------	-------------	------------	---------	----------

entry a	acid (x equiv)	temp (°C)	time (h)	yield (%)
---------	----------------	-----------	----------	-----------

1	HCl (1.0)	50	24	trace
2	HBF ₄ (1.0)	50	24	trace
3	BF ₃ Et ₂ O (1.0)	50	10	82
4	FeCl ₃ (0.2)	50	10	68
5	TsOH (1.0)	50	10	50
6	MsOH (1.0)	50	8	84
7	MsOH (0.2)	50	8	32
8	MsOH (0.6)	50	8	46
9	MsOH (0.8)	50	8	76
10	MsOH (2.0)	50	8	40
11	MsOH (1.0)	25	12	45
12	MsOH (1.0)	80	12	55
13	MsOH (1.0)	100	12	50
14	MsOH (0.8)	80	12	64
15	MsOH (0)	50	24	trace

2.4 Optimization of solvent and alcohol

To a flame-dried 10 mL flask 2-chloro-1,3-dithiane **2** (31 mg,0.2 mmol), **1a** (0.18 mmol), MsOH (19 mg, 0.2 mmol) and MeOH (*x* equiv) were added successively via syringe at reaction temperature in solvent (2 mL). Reaction mixture was stirred at 50 °C for 8-24 h until TLC analysis showed the reaction was completed. The mixture was concentrated under reduced pressure, and then purified by column chromatography on silica gel with petroleum/ethyl acetate (EA/PE = 1: 50) to yield the **3a** product.

entry	ROH(<i>x</i> equiv)	Solvent	yield (%)
1	H ₂ O	DCE	trace
2	MeOH (1.0)	DCE	76
3	MeOH (2.0)	DCE	84
4	MeOH (3.0)	DCE	69
5	C ₂ H ₅ OH (2.0)	DCE	82
6	<i>n</i> -PrOH (2.0)	DCE	80
7	<i>i</i> -PrOH(2.0)	DCE	32

Table S2. O	ptimization o	f solven	t and	alcol	hol
-------------	---------------	----------	-------	-------	-----

8	<i>t</i> -BuOH (2.0)	DCE	56
9	MeOH (2.0)	DCM	79
10	MeOH (2.0)	THF	46
11	MeOH (2.0)	CH ₃ NO ₂	48

3. Characterization of synthesized compounds 3a-3q

2-methyl-2-phenyl-1,3-dithiane(3a)²

¹H NMR (300 MHz, CDCl₃) δ 7.93 (m, 2H), 7.40 – 7.29 (m, 2H), 7.25 (d, *J* = 7.5 Hz, 1H), 2.75 – 2.65 (m, 4H), 1.97 – 1.87 (m, 2H), 1.78 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) & 143.6, 128.4, 127.6, 126.9, 53.8, 32.6, 27.9, 24.5.

2-(4-methoxyphenyl)-2-methyl-1,3-dithiane(3b)³

3b

¹H NMR (300 MHz, CDCl₃) δ 7.77 (d, J = 9.0 Hz, 2H), 6.83 (d, J = 9.0 Hz, 2H), 3.75 (s, 3H), 2.71 – 2.65 (m, 4H), 1.91 – 1.85 (m, 2H), 1.74 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 158.3, 135.5, 128.8, 113.5, 55.0, 53.2, 32.4, 27.9, 24.5.

2-methyl-2-(p-tolyl)-1,3-dithiane(3c)²

3c

¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H), 2.72 (m, 4H), 2.35 (s, 3H), 1.94 (m, 2H), 1.79 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 140.7, 136.7, 129.2, 127.6, 53.7, 32.7, 28.0, 24.7, 20.9.

2-(4-fluorophenyl)-2-methyl-1,3-dithiane(3d)³

¹H NMR (400 MHz, CDCl₃) δ 7.91 (m, 2H), 7.04 (t, J = 8.8 Hz, 2H), 2.96 – 2.57 (m, 4H), 2.08 – 1.87 (m, 2H), 1.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.7 (d, J = 246.8 Hz), 139.5, 129.6 (d, J = 8.0 Hz), 115.1 (d, J = 21.2 Hz), 53.3, 32.8, 28.0, 24.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -116.0 (s, 1F).

2-(4-chlorophenyl)-2-methyl-1,3-dithiane(3e)²

3e

¹**H NMR (300 MHz, CDCl₃)** δ 7.88 (d, *J* = 8.7 Hz, 2H), 7.32 (d, *J* = 8.7 Hz, 2H), 2.74 – 2.62 (m, 4H), 1.99 – 1.87 (m, 2H), 1.75 (s, 3H). ¹³**C NMR (75 MHz, CDCl₃)** δ 142.4, 132.7, 129.2, 128.4, 53.2, 32.6, 27.9, 24.3.

2-(4-bromophenyl)-2-methyl-1,3-dithiane(3f)⁴

¹**H NMR (300 MHz, CDCl₃)** δ 7.83 (d, *J* = 9.0 Hz, 2H), 7.48 (d, *J* = 8.7 Hz, 2H), 2.78 – 2.61 (m, 4H), 2.00 – 1.88 (m, 2H), 1.75 (d, *J* = 0.9 Hz, 3H). ¹³**C NMR (75 MHz, CDCl₃)** δ 143.0, 131.5, 129.8, 121.1, 53.5, 32.8, 28.0, 24.4.

2-methyl-2-(4-nitrophenyl)-1,3-dithiane(3g)⁵

3g

¹**H NMR (300 MHz, CDCl₃)** δ 8.23 (d, *J* = 9.0 Hz, 2H), 8.16 (d, *J* = 9.0 Hz, 2H), 2.79 – 2.61 (m, 4H), 1.99 (m, 2H), 1.78 (s, 3H). ¹³**C NMR (75 MHz, CDCl₃)** δ 151.6, 146.7, 129.0, 123.7, 53.3, 32.7, 27.9, 24.1.

2-methyl-2-(o-tolyl)-1,3-dithiane(3h)⁴

¹H NMR (**300** MHz, CDCl₃) δ 7.98 – 7.90 (m, 1H), 7.24 – 7.12 (m, 3H), 2.84 (m, 3H), 2.75 (s, 3H), 2.74 – 2.69 (m, 1H), 2.02 (s, 3H), 1.94 (m, 2H). ¹³C NMR (**75** MHz, CDCl₃) δ 139.8, 137.6, 133.5, 129.2, 127.4, 125.5, 53.1, 29.4, 28.2, 24.4, 23.4.

2-(2-fluorophenyl)-2-methyl-1,3-dithiane(3i)⁴

¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.81 (m, 1H), 7.34 – 7.21 (m, 1H), 7.17 – 6.99 (m, 2H), 2.89 – 2.72 (m, 4H), 2.06 – 1.95 (m, 2H), 1.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.7 (d, *J* = 250.5 Hz), 131.1 (d, *J* = 2.2 Hz), 130.7 (d, *J* = 8.1 Hz), 129.3 (d, *J* = 9.0 Hz), 123.4 (d, *J* = 3.7 Hz), 117.2 (d, *J* = 24.4 Hz), 50.1, 29.5, 28.4, 24.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -103.8 (s, 1F).

2-(2-bromophenyl)-2-methyl-1,3-dithiane(3j)⁴

3j

¹H NMR (300 MHz, CDCl₃) δ 8.23 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.66 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.38 – 7.24 (m, 1H), 7.17 – 6.99 (m, 1H), 2.93 – 2.59 (m, 4H), 2.07 (s, 3H), 2.01 – 1.79 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 140.3, 136.8, 132.1, 128.6, 126.9, 122.5, 53.7, 28.8, 28.6, 24.2.

2-methyl-2-(m-tolyl)-1,3-dithiane(3k)⁴

¹H NMR (300 MHz, CDCl₃) δ 7.82 – 7.68 (m, 2H), 7.30 – 7.22 (m, 1H), 7.13 – 7.01 (m, 1H), 2.85 – 2.60 (m, 4H), 2.38 (s, 3H), 2.00 – 1.89 (m, 2H), 1.80 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 143.7, 138.1, 128.4, 128.3, 127.8, 124.7, 53.8, 32.6, 28.1, 24.7, 21.6.

2-methyl-2-(thiophen-3-yl)-1,3-dithiane(3l)⁶

¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, *J* = 1.2 Hz, 1H), 7.27 – 7.20 (m, 2H), 2.76 – 2.65 (m, 4H), 1.94 – 1.81 (m, 2H), 1.74 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 146.2, 127.6, 125.8, 123.3, 50.0, 32.1, 27.8, 24.6.

2-methyl-2-pentyl-1,3-dithiane(3m)⁷

3m

¹H NMR (300 MHz, CDCl₃) δ 2.80 – 2.75 (m, 4H), 1.89 (m, 2H), 1.85 – 1.79 (m, 2H), 1.55 (s, 3H), 1.47 – 1.36 (m, 2H), 1.29 – 1.20 (m, 4H), 0.83 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 49.3, 41.7, 32.0, 27.7, 26.5, 25.4, 24.1, 22.5, 14.0.

2-benzyl-2-phenyl-1,3-dithiane(3n)⁸

¹H NMR (300 MHz, CDCl₃) δ 7.66 – 7.60 (m, 2H), 7.21 – 7.12 (m, 3H), 7.05 – 6.94 (m, 3H), 6.66 – 6.58 (m, 2H), 3.17 (s, 2H), 2.58 – 2.50 (m, 4H), 1.83 – 1.75 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 140.3, 134.1, 130.7, 129.3, 128.1, 127.1, 126.8, 126.7, 59.6, 51.4, 27.3, 24.9.

2-benzyl-2-(4-methoxyphenyl)-1,3-dithiane(30)⁹

¹H NMR (300 MHz, CDCl₃) δ 7.63 – 7.45 (m, 2H), 7.02 (m, 3H), 6.78 – 6.62 (m, 4H), 3.72 (s, 3H), 3.16 (s, 2H), 2.61 – 2.46 (m, 4H), 1.89 – 1.76 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 158.3, 134.3, 132.2, 130.8, 130.7, 127.2, 126.7, 113.3, 59.2, 55.1, 51.5, 27.3, 25.0.

2-benzyl-2-(p-tolyl)-1,3-dithiane(3p)¹⁰

3р

¹**H NMR (300 MHz, CDCl₃)** δ 7.58 (d, *J* = 8.1 Hz, 2H), 7.12 (m, 5H), 6.74 (d, *J* = 8.1 Hz, 2H), 3.24 (s, 2H), 2.77 – 2.51 (m, 4H), 2.34 (s, 3H), 1.96 – 1.83 (m, 2H). ¹³**C NMR (75 MHz, CDCl₃)** δ 137.3, 136.4, 134.3, 130.8, 129.3, 128.9, 127.2, 126.7, 59.5, 51.4, 27.4, 25.0, 20.9.

methyl 2-(1,3-dithian-2-yl)acetate(3q)¹¹

3q

¹H NMR (300 MHz, CDCl₃) δ 4.42 (t, *J* = 7.5 Hz, 1H), 3.74 (s, 3H), 3.00 – 2.86 (m, 4H), 2.81 (d, *J* = 7.5 Hz, 2H), 2.18 – 2.05 (m, 1H), 2.01 – 1.88 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 169.9, 51.9, 41.6, 40.2, 29.3, 25.0.

4. Refrences

- 1. (a) K. Arai and M. Oki, Chem. Soc. Jpn. 1976, 49, 553-538. (b) K. Arai and M. Oki, Tetrahedron
- Lett. 1975, 7, 2183-2186. (c) S. Ladislav, Z. Jozefina and P. Nadezda, Molecules 1997, 2, 7-10.
- 2. A. R. Hajipour, S. A. Pourmousavi and A. E. Ruoho, Synth. Commun., 2008, 38, 2548-2566.
- R. Miranda, R. Osnaya, R. Garduñ, F. Delgado, C. Álvarez and M. Salmon, Synth. Commun., 2001, 31, 1587-1597.
- 4. Y. Wu, F. Mao, F. Meng and X. Li, Adv. Synth. Catal., 2011, 353, 1707-1712.
- 5. B. M. Lamb and C. F. Barbas III, Chem. Commun., 2015, 51, 3196-3199.
- 6. N. C. Ganguly and P. Mondal, Synth. Commun., 2011, 41, 2374-2384.
- 7. S. K. De, Tetrahedron Lett., 2004, 45, 2339-2341.
- 8. M. Hut'ka, T. Tsubogo and S. Kobayashi, Organometallics, 2014, 33, 5626-5629.
- 9. J. Faragó and A. Kotschy, Synthesis, 2009, 1, 85-90.
- 10. R. B. Kothapalli, R. Niddana and R. Balamurugan, Org. Lett., 2014, 16, 1278-1281.
- 11. H. Kuroda, I. Tomita and T. Endo, Synth. Commun., 1996, 26, 1539-1543.

5. ¹H NMR and ¹³C NMR spectra data of products

