Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

for

Umpolung of Proton from H₂O: A Metal-free Selective Reduction of

Carbonyl Compounds Mediated by Diboron Reagents

Qingqing Xuan^a, Cong Zhao ^a and Qiuling Song^{a, *}

^a Institute of Next Generation Matter Transformation, College of Chemical Engineering at Huaqiao University, Xiamen, Fujian, 361021, P. R. China Email: qsong@hqu.edu.cn

Table of Contents

I. General Methods1
II. Hydrogenation of Ketones in the Presence of Pd(OAc) ₂ 2
III. Hydrogenation of Ketones under Metal-free Conditions
IV. Analytic data of products4
V. 1H and 13C NMR spectra of products14

I. General Methods

Unless otherwise noted, otherwise noted, all reagents were obtained from commercial suppliers and were used without further purification. 1 H, 13 C spectra were recorded in CDCl₃ on a Bruker AVIII-500M spectrometers. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet. Column chromatography was performed using silica gel (200-300 mesh).

General Optimization Procedure: To a reaction tube equipped with a stir bar, 76.2 mg of B_2pin_2 (0.3 mmol), 4.5mg Pd(OAc)₂ (0.02 mmol) and base (0.02 mmol) were added. Next, 24.0mg (0.2 mmol) of acetophenone (1a) and H₂O (2ml) was added via syringe, then sealed the reaction tube. The mixture was stired at 60°C for about 10h. After the reaction was finished, the mixture was extracted with ethyl acetate, repeat three times. The combined organic layer was evaporated under reduced pressure, and the product was purified by column chromatography.

II. Hydrogenation of Ketones in the Presence of Pd(OAc)₂

The reaction was first carried out with $Pd(OAc)_2$ under N_2 , the solvents, bases were also screened (Table 2). Protic solvent, for example ethanol could also offered excellent result (Entry 2). However, aprotic solvent was detrimental to our reaction, only trace amount product was detected by GC-MS (Entry 3). Other bases, such as DIPEA, DBU were also investigated, both of them could afforded satisfied conversions; however the ratio of **2a** and **3a** was affected largely by different bases (Entry 1& 4-5). The influence of Lewic acid was also considered, when MgSO₄ was added to our catalytic system, the conversion suffered a little decrement, however the ratio of **2a** and **3a** was affected largely, that **3a** was changed to the major product.

	O CH 1a	Pd(OAc) ₂ (10 mol%) B-source(1.5 equiv) 3 Base (0.5 equiv) → H ₂ O, rt under air	HO H CH	H OBpin 3 + CH ₃ 3a			
Entry	B-Source	Base	Solvent	Conversion ^a	Ratio of A/B (%) ^a		
1	$B_2 pin_2$	Cs ₂ CO ₃	H ₂ O	quantively	63/37		
2	$B_2 pin_2$	Cs ₂ CO ₃	EtOH	quantively	57/43		
3	$B_2 pin_2$	Cs ₂ CO ₃	CH ₃ CN	trace	-		
4	$B_2 pin_2$	DIPEA	H ₂ O	quantively	54/46		
5	$B_2 pin_2$	DBU	H ₂ O	quantively	85/15		
6 ^b	$B_2 pin_2$	Cs ₂ CO ₃	H ₂ O	88%	30/70		
^a Determined by GC-MS. ^b MgSO ₄ (0.5 eq) was added							

Table S1 Hydrogenation of Ketones in the Presence of Pd(OAc)₂

III. Hydrogenation of Ketones under Metal-free Conditions

Under metal-free conditions the kinds of bases and the their amounts was investigated. It showed that stoichiometric bases and diboron compounds were necessary. With stoichiometric diboron compounds, different ambient atmospheres had little effect on the conversion of **1a** (entry 1 vs 2). However, when B_2pin_2 was reduced to 0.5 equiv, the conversion was reduced to 23% (Entry 8). When further reduced the amount of B_2pin_2 , the conversion suffered a lot, less than 10% (entry 9).

Table S2 Hydrogenation of Ketones under Metal-free Conditions

	O CH ₃ 1a	B-source(1.5 eq) Base H₂O, rt under air	HO H H H H H H H H H H H H H H H H H H	DBpin ℃H ₃
Entry	Base	B-Source	Conversion ^b	Ratio(2a/3a)(%) ^b
1 c	Cs_2CO_3 (0.5 equiv)	B ₂ pin ₂	51%	78/22
2	Cs_2CO_3 (0.5 equiv)	$B_2 pin_2$	52%	81/19
3	Cs_2CO_3 (1.0 equiv)	$B_2 pin_2$	78%	80/20
4 ^d	Cs_2CO_3 (1.0 equiv)	B ₂ pin ₂	95%	85/15

5^d	DBU (1.0 equiv)	B_2pin_2	98%	86/14
6 ^{<i>d</i>}	DBU (0.5 equiv)	B ₂ pin ₂	71%	ND ^e
7 ^d	DBU (0.2 equiv)	B ₂ pin ₂	25%	ND ^e
8 <i>d</i>	DBU (1.0 equiv)	B ₂ pin ₂ (0.5 equiv)	23%	ND ^e
9 d,c	DBU (1.0 equiv)	B ₂ pin ₂ (0.2 equiv)	< 10%	ND ^e

^{*a*} General procedure: **1a** (0.2 mmol), B-source (0.24 mmol), H₂O (2ml), under air. ^{*b*} Determined by GC-MS. ^{*c*} The reactions were carried out under N₂. ^{*d*} The reaction was carried out at 60 °C.^{*e*} Not detected.

IV. Analytic data of products

HOH HOH HOH HOH H H NMR (500 MHz, CDCl₃) δ 7.40 (dd, J = 9.2, 6.9 Hz, 4H), 7.33 – 7.28 (m, 1H), 4.93 (q, J = 6.4 Hz, 1H), 1.94 (s, 1H), 1.53 (d, J = 6.5Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.73 (s), 128.52 (s), 127.50 (s), 125.39 (s), 25.04 (s).

Wei, S.; Du, H. J. Am. Chem. Soc. 2014, 136, 12261.

HO H (4-chlorophenyl)ethan-1-ol (2b): Shallow yellow liquid (86% yield, 26.8 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.30 (m, 4H), 4.88 (q, J = 6.4 Hz, 1H), 2.10 (s, 1H), 1.48 (d, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.24 (s), 133.05 (s), 128.60 (s), 126.80 (s), 69.74 (s), 25.27 (s).

Wei, S.; Du, H. J. Am. Chem. Soc. 2014, 136, 12261.

HO H 127.16 (s), 121.15 (s), 69.77 (s), 25.25 (s).

Xu, W.; Wu, G.; Yao, W.; Fan, H.; Wu, J.; Chen, P. Chem. Eur. J. 2012, 18, 13885.

HO H F_3C 1-(4-(trifluoromethyl)phenyl)ethan-1-ol (2d): Shallow yellow Iiquid (81%, 30.8 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 4.96 (q, J = 6.4 Hz, 1H), 2.32 (s, 1H), 1.51 (d, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.68 (s), 129.60 (q, J = 32.3 Hz), 125.64 (s), 125.42 (q, J = 3.8 Hz), 124.16 (q, J = 271.9 Hz), 69.79 (s), 25.33 (s).

Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226.

HO H 1-(4-methoxyphenyl)ethan-1-ol (2e): Colour less liquid (80% yield, 24.3 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.28 (m, 2H), 6.95 – 6.85 (m, 2H), 4.84 (q, J = 6.4 Hz, 1H), 3.81 (s, 3H), 2.32 (s, 1H), 1.48 (d, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.91 (s), 138.07 (s), 126.68 (s), 113.82 (s), 69.89 (s), 55.29 (s), 25.03 (s).

Xu, W.; Wu, G.; Yao, W.; Fan, H.; Wu, J.; Chen, P. Chem. Eur. J. 2012, 18, 13885.

HO H I-(4-(methylthio)phenyl)ethan-1-ol (2f): Shallow yellow Iiquid (82% yield, 27.6 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.29 (m, 2H), 7.28 – 7.24 (m, 2H), 4.87 (q, J = 6.4 Hz, 1H), 2.50 (s, 3H), 2.02 (s, 1H), 1.49 (d, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 142.79 (s), 137.41 (s), 126.83 (s), 125.99 (s), 69.99 (s), 25.10 (s), 16.02 (s).

Yu, J.; Jiao, L.; Yang, Y.; Wu, W.; Xue, P.; Chung, L. W.; Dong, X.-Q.; Zhang, X. *Org. Lett.* **2017**, *19*, 690.

1H), 3.05 (s, 3H), 2.45 (s, 1H), 1.51 (d, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 152.28 (s), 139.15 (s), 127.54 (s), 126.30 (s), 69.53 (s), 44.55 (s), 25.47 (s).

Mahdi, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2015, 54, 8511.

HO H (2-bromophenyl)ethan-1-ol (2h): Shallow yellow liquid (83% yield, 33 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.62 (dd, J = 7.7, 1.5 Hz, 1H), 7.54 (dd, J = 8.0, 1.1 Hz, 1H), 7.36 (dd, J = 10.9, 4.2 Hz, 1H), 7.15 (td, J = 7.8, 1.7 Hz, 1H), 5.26 (q, J = 6.4 Hz, 1H), 2.10 (s, 1H), 1.51 (d, J = 6.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.64 (s), 132.65 (s), 128.76 (s), 127.85 (s), 126.67 (s), 121.71 (s), 69.18 (s), 23.60 (s).

Vega, E.; Lastra, E.; Gamasa, M. P., Inorg. Chem. 2013, 52, 6193.

HO H F CH₃ (79% yield, 27.8 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.02 (dd, J = 7.8, 7.0 Hz, 2H), 4.86 (q, J = 6.3 Hz, 1H), 2.00 (s, 1H), 1.48 (d, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 152.18 (dd, J =

10.0, 3.9 Hz), 150.19 (dd, J = 10.0, 3.8 Hz), 142.09 (d, J = 4.3 Hz), 138.73 (d, J = 250.4 Hz), 109.32 (dd, J = 16.5, 5.0 Hz), 69.06 (s), 25.35 (s).

Brandt, P.; Roth, P.; Andersson, P. G. J. Org. Chem. 2004, 69, 4885.

HO H (**F**₃) **2,2,2-trifluoro-1-phenylethan-1-ol (2j)**: Shallow yellow liquid (91%) yield, 32.0 mg). ¹H NMR (500 MHz, CDCl₃) δ 7.53 – 7.48 (m, 2H), 7.48 – 7.41 (m, 3H), 5.02 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 134.08 (s), 129.52 (s), 128.61 (s), 127.47 (s), 124.30 (d, *J* = 282.1 Hz), 72.76 (q, *J* = 31.9 Hz).

Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226.

1-phenylpropan-1-ol (2k): Colour less liquid (89% yield, 24.2 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.34 (m, 4H), 7.31 (ddd, *J* = 8.4, 5.5, 3.3 Hz, 1H), 4.61 (t, *J* = 6.6 Hz, 1H), 2.01 (s, 1H), 1.88 – 1.81 (m, 1H), 1.81 - 1.74 (m, 1H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.59 (s), 128.41 (s), 127.50 (s), 125.98 (s), 76.04 (s), 31.89 (s), 10.16 (s).

Vega, E.; Lastra, E.; Gamasa, M. P., Inorg. Chem. 2013, 52, 6193.

2,3-dihydro-1H-inden-1-ol (2l): Shallow yellow liquid 5-fluoro-2,3dihydro-1H-inden-1-ol ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.41 (m, 1H), 7.32 – 7.24 (m, 3H), 5.26 (t, *J* = 6.0 Hz, 1H), 3.08 (ddd, *J* = 15.9, 8.5, 4.8 Hz, 1H), 2.90 – 2.79 (m, 1H), 2.51 (dddd, *J* = 13.2, 8.3, 6.9, 4.8 Hz, 1H), 2.04 (s, 1H), 2.00 – 1.92 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.99 (s), 143.33 (s), 128.32 (s), 126.71 (s), 124.91 (s), 124.21 (s), 76.43 (s), 35.93 (s), 29.81 (s).

Wei, S.; Du, H. J. Am. Chem. Soc. 2014, 136, 12261.

н он F **5-fluoro-2,3-dihydro-1H-inden-1-ol (2m)**: Shallow yellow liquid (85% yield, 25.8 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.33 (m,

1H), 6.94 (dd, J = 12.5, 5.7 Hz, 2H), 5.29 – 5.17 (m, 1H), 3.07 (ddd, J = 15.7, 8.4, 5.1 Hz, 1H), 2.88 – 2.78 (m, 1H), 2.53 (dddd, J = 13.4, 8.4, 6.8, 5.1 Hz, 1H), 2.00 (dddd, J = 13.4, 8.5, 6.3, 5.0 Hz, 1H), 1.84 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.26 (d, J = 245.3 Hz), 145.77 (d, J = 8.5 Hz), 140.63 (s), 125.45 (d, J = 9.2 Hz), 113.82 (d, J = 22.8 Hz), 111.73 (d, J = 22.0 Hz), 75.65 (s), 36.36 (s), 29.86 (d, J = 2.1 Hz).

Adcock, W.; Gupta, B. D.; Kitching, W.; Doddrell, D. J. Organomet. Chem. 1975, 102, 297.

H OH 1,2,3,4-tetrahydronaphthalen-1-ol (2n): Shallow yellow liquid (78% yield, 23.2 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.46 (dd, J = 5.8, 3.2 Hz, 1H), 7.28 - 7.20 (m, 2H), 7.18 - 7.09 (m, 1H), 4.80 (d, J = 4.4 Hz, 1H),

2.86 (dt, *J* = 16.4, 5.3 Hz, 1H), 2.75 (dt, *J* = 16.6, 6.8 Hz, 1H), 2.06 – 1.97 (m, 2H), 1.94 (ddd, *J* = 4.9, 4.4, 3.5 Hz, 1H), 1.87 (s, 1H), 1.85 – 1.78 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 138.80 (s), 137.13 (s), 129.02 (s), 128.67 (s), 127.59 (s), 126.18 (s), 68.16 (s), 32.28 (s), 29.26 (s), 18.81 (s).

Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226.

H OH **9H-fluoren-9-ol (20)**: White solide (65% yield, 23.7 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.66 (t, J = 7.3 Hz, 4H), 7.42 (t, J = 7.5 Hz, 2H), 7.38 – 7.31 (m, 2H), 5.59 (d, J = 6.7 Hz, 1H), 1.99 (d, J = 8.4Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 145.64 (s), 140.00 (s), 129.08 (s), 127.82 (s), 125.14 (s), 119.98 (s), 75.24 (s).

Kuroda, Y.; Harada, S.; Oonishi, A.; Kiyama, H.; Yamaoka, Y.; Yamada, K.-i.; Takasu, K. Angew. Chem., Int. Ed. 2016, 55, 13137.

HO H HO H ¹H NMR (500 MHz, CDCl₃) δ 7.32 (t, J = 7.5 Hz, 2H), 7.22 (dd, J = 12.3, 7.2 Hz, 3H), 3.86 (dq, J = 12.4, 6.2 Hz, 1H), 2.84 – 2.75 (m,

1H), 2.70 (ddd, J = 13.8, 9.2, 7.1 Hz, 1H), 1.86 – 1.76 (m, 2H), 1.64 – 1.49 (m, 1H), 1.26 (d, J = 6.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 142.07 (s), 128.41 (s), 125.83 (s), 67.54 (s), 40.86 (s), 32.16 (s), 23.64 (s).

Mahdi, T.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 15809.

H OH **Br 1-(3-bromophenyl)propan-2-ol (2q)**: Shallow yellow liquid (84% **yield**, 35.9 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 7.7 Hz, 2H), 7.19 (dt, J = 15.8, 4.1 Hz, 2H), 4.04 (dq, J = 12.4, 6.1 Hz, 1H), 2.77 (dd, J = 13.6, 4.8 Hz, 1H), 2.69 (dd, J = 13.6, 7.9 Hz, 1H), 1.66 (s, 1H), 1.27 (d, J = 6.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 140.97 (s), 132.39 (s), 130.04 (s), 129.59 (s), 128.07 (s), 122.57 (s), 68.68 (s), 45.28 (s), 22.93 (s).

Hu, X.; Zhang, G.; Bu, F.; Lei, A. ACS Catal. 2017, 7, 1432.

4-(benzo[d][1,3]dioxol-5-yl)butan-2-ol (2r): Shallow yellow liquid (87% yield, 34.6 mg) ¹H NMR (500 MHz, CDCl₃) δ 6.77 – 6.70 (m, 2H), 6.67 (d, J = 7.9 Hz, 1H), 5.94 (s, 2H),

3.83 (dq, *J* = 12.4, 6.2 Hz, 1H), 2.73 – 2.59 (m, 2H), 1.80 – 1.72 (m, 2H), 1.24 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.58 (s), 145.59 (s), 135.88 (s), 121.06 (s), 108.87 (s), 108.17 (s), 100.76 (s), 67.40 (s), 41.06 (s), 31.88 (s), 23.66 (s).

Yi, J.; Lu, X.; Sun, Y.-Y.; Xiao, B.; Liu, L. Angew. Chem., Int. Ed. 2013, 52, 12409.

H OH O **ethyl** 3-(4-fluorophenyl)-3-hydroxypropanoate (2s): Shallow yellow liquid (85% yield, 36.0 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.31 (m, 2H), 7.11 – 6.96 (m, 2H), 5.13 (dd, J = 5.5, 3.2 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.42 (d, J = 3.0 Hz, 1H), 2.72 (qd, J = 16.4, 6.4 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.33 (s), 162.28 (d, J = 245.8 Hz), 138.28 (s), 127.38 (d, J = 8.1 Hz), 115.37 (d, J = 21.5 Hz), 69.69 (s), 60.97 (s), 43.33 (s), 14.14 (s).

Ariger, M. A.; Carreira, E. M. Org. Lett. 2012, 14, 4522.

ethyl 3-(3-chlorophenyl)-3-hydroxypropanoate (2t): CI OEt ethyl 3-(3-chlorophenyl)-3-hydroxypropanoate (2t): Shallow yellow liquid (85% yield, 37.8 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.41 (d, J = 1.6 Hz, 1H), 7.32 – 7.24 (m, 3H), 5.17 – 5.05 (m, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.53 (d, J = 3.2 Hz, 1H), 2.75 – 2.69 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.22 (s),

144.58 (s), 134.45 (s), 129.82 (s), 127.88 (s), 125.95 (s), 123.81 (s), 69.65 (s), 61.04 (s), 43.18 (s), 14.14 (s).

Niu, Z.; Chen, J.; Chen, Z.; Ma, M.; Song, C.; Ma, Y. J. Org. Chem. 2015, 80, 602.

2H), 5.14 - 5.07 (m, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.44 (d, J = 2.6 Hz, 1H), 2.71 (dd, J = 6.4, 3.0 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.25 (s), 141.51 (s), 131.63 (s), 127.43 (s), 121.59 (s), 69.67 (s), 61.03 (s), 43.14 (s), 14.15 (s).

Ariger, M. A.; Carreira, E. M. Org. Lett. 2012, 14, 4522

5.10 (d, J = 9.1 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 3.82 (s, 3H), 3.28 (d, J = 2.4 Hz, 1H), 2.77 (dd, J = 16.2, 9.3 Hz, 1H), 2.69 (dd, J = 16.2, 3.7 Hz, 1H), 1.28 (t, J = 7.1 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 172.44 (s), 159.18 (s), 134.73 (s), 126.98 (s), 113.90 (s), 69.97 (s), 60.85 (s), 55.29 (s), 43.35 (s), 14.16 (s).

Ariger, M. A.; Carreira, E. M. Org. Lett. 2012, 14, 4522

HO H (89% yield, 26.2 mg) ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H), 4.99 (q, J = 6.5 Hz, 1H), 1.52 (d, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 151.04 (s), 132.37 (s), 126.06 (s), 118.86 (s), 111.13 (s), 69.70 (s), 25.44 (s).

Kallmeier, F.; Irrgang, T.; Dietel, T.; Kempe, R. Angew. Chem., Int. Ed. 2016, 55, 11806.

58.97 (s), 39.54 (s), 31.96 (s), 26.45 (d, *J* = 17.5 Hz), 25.67 (d, *J* = 2.4 Hz), 23.42 (s), 17.67 (d, *J* = 3.8 Hz), 16.27 (s).

C. Milone, M. L. Tropeano, G. Gulino, G. Neri, R. Ingoglia and S. Galvagno, *Chem. Commun.*, **2002**, 868.

3.51 (m, 2H), 2.13 – 1.96 (m, 7H), 1.89 – 1.71 (m, 4H), 1.70 (d, *J* = 0.9 Hz, 3H), 1.62 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 137.81 (s), 131.39 (s), 124.34 (s), 119.44 (s), 67.86 (s), 37.71 (s), 36.36 (s), 28.22 (s), 27.80 (s), 26.47 (s), 25.72 (s), 25.66 (s), 17.70 (s).

Mimoun, H. J. Org. Chem. 1999, 64, 2582.

Citronellol (2z): Shallow yellow liquid (79% yield, 30.7mg) ¹H NMR (500 MHz, CDCl₃) δ 5.12 (tdd, J = 5.8, 2.8, 1.4 Hz, 1H), 3.77 – 3.64 (m, 2H), 2.01 (td, J = 15.8, 7.1 Hz, 2H), 1.70 (d, J = 1.0 Hz, 3H), 1.66 (dd, J= 7.3, 5.6 Hz, 1H), 1.63 (d, J = 3.7 Hz, 3H), 1.60 – 1.55 (m, 1H), 1.45 – 1.39 (m, 1H), 1.39 – 1.32 (m, 2H), 0.93 (d, J = 6.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 131.29 (s), 124.70 (s), 61.23 (s), 39.91 (s), 37.21 (s), 29.16 (s), 25.73 (s), 25.46 (s), 19.53 (s), 17.66 (s).

Hua, Y.; Guo, Z.; Han, H.; Wei, X. Organometallics 2017, 36, 877.

H OH S (22.8 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.27 (dd, J = 4.9, 1.3 Hz, 1H), 7.03 - 6.98 (m, 2H), 5.20 - 5.12 (m, 1H), 2.02 (d, J = 4.2 Hz, 1H), 1.63 (d, J = 6.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.85 (s), 126.67 (s), 124.46 (s), 123.20 (s), 66.29 (s), 25.28 (s). Polshettiwar, V.; Varma, R. S. Green Chem. 2009, 11, 1313.

benzo[b]thiophen-3-ylmethanol (2ab): Shallow yellow liquid (85% yield, 27.9 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.89 (ddd, *J* = 5.8, 5.4, 1.5 Hz, 2H), 7.45 – 7.38 (m, 3H), 4.96 (d, *J* = 0.6 Hz, 2H),

1.90 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 140.81 (s), 137.67 (s), 135.97 (s), 124.60 (s), 124.23 (s), 123.86 (s), 122.90 (s), 121.95 (s), 59.85 (s).

Huang, H.-M.; Procter, D. J. J. Am. Chem. Soc. 2017, 139, 1661.

HO
 HO
 N
 (4-methylthiazol-5-yl)methanol (2ac): Shallow yellow liquid (79% yield, 20.4 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.67 (s, 1H), 4.85 (s, 2H), 2.46 (s, 3H), 2.29 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 151.20
 (s), 149.89 (s), 130.96 (s), 56.69 (s), 14.95 (s).

Russell, M. G. N.; Carling, R. W.; Atack, J. R.; Bromidge, F. A.; Cook, S. M.; Hunt,
P.; Isted, C.; Lucas, M.; McKernan, R. M.; Mitchinson, A.; Moore, K. W.; Narquizian,
R.; Macaulay, A. J.; Thomas, D.; Thompson, S.-A.; Wafford, K. A.; Castro, J. L. J. *Med. Chem.* 2005, 48, 1367.

HO (5-iodofuran-2-yl)methanol (2ad): Shallow yellow liquid (87% yield, 38.9 mg); ¹H NMR (500 MHz, CDCl₃) δ 6.52 (d, J = 3.2 Hz, 1H), 6.25 (d, J = 3.2 Hz, 1H), 4.63 (s, 2H), 1.90 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.53 (s), 120.95 (s), 110.87 (s), 87.85 (s), 57.26 (s).

CAS: 773868-46-5

imidazo[1,2-a]pyridin-3-ylmethanol (2ae): light brown solid (78% yield, 23.1 mg). ¹H NMR (500 MHz, CDCl₃) δ 8.11 – 8.03 (m, 1H), 7.56 (d, *J* = 9.0 Hz, 2H), 7.16 (ddd, *J* = 9.3, 6.8, 1.2 Hz, 1H), 6.77

(dt, *J* = 7.6, 3.8 Hz, 1H), 4.86 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 146.88 (s), 145.31 (s), 125.74 (s), 124.80 (s), 117.24 (s), 112.36 (s), 109.56 (s), 58.50 (s).

Chandra Mohan, D.; Nageswara Rao, S.; Adimurthy, S. J. Org. Chem. 2013, 78, 1266.

HO CH₃ 1-phenylethan-1-d-1-ol (4) shallow yellow oil (90% yield, 22.1 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.40 (dd, J = 9.4, 7.0 Hz, 4H), 7.31 (d, J = 6.9 Hz, 1H), 1.89 (s, 1H), 1.52 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.73 (s), 128.52 (s), 127.50 (s), 125.39 (s), 25.04 (s).

Li, C.; Zhang, Y.; Sun, Q.; Gu, T.; Peng, H.; Tang, W. J. Am. Chem. Soc. 2016, 138, 10774.

V. ¹H and ¹³C NMR spectra of products

S26

145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 fl (ppm)

