Supporting information

Efficient Chiral ¹H NMR Analysis of Indoloquinazoline Alkaloids

Phaitanthrins A, Cephalanthrin-A and Their Analogues with A

Chiral Phosphoric Acid

Chong-Xing Liu, Longzhangdi Zheng, Linjing Zhu, Hong-Ping Xiao,* Xinhua Li and Jun Jiang*

College of Chemistry and Materials Science, Wenzhou University, Wenzhou 325035,

PR China.

E-mail: junjiang@wzu.edu.cn; hp_xiao@126.com

Table of Contents

1.	General information	.S2
2.	Evaluating the chiral recognition abilities of chiral sensors 1a-1f with 2a	in
	acetone-D ₆ at 25 °C	.S2
3.	Copies of ¹ H NMR spectra of chiral sensors 1a-1f and racemic Cephalanth	rin-
A.		
4.	Copies of ¹ H NMR spectra of 1d and racemic 2	58
5.	Copies of ¹ H NMR spectra/HPLC data of 1d and 2 with different opt	ical
	purities	522
6.	Copies of ¹ H NMR spectra/HPLC data for the fast evaluation of react	tion
	conditions in catalytic asymmetric aldol reaction between acetone	and
	tryptanthrin	538
7.	Copies of ¹ H NMR spectra of control experimentsS	545

1. General information.

All commercial reagents were used as received without further purification unless otherwise stated. ¹H NMR (500 MHz) spectra were recorded in acetone-D₆ or CDCl₃ solutions using a 500 MHz spectrometer at 25 °C. Chemical shifts were reported in parts per million (ppm, δ) relative to residual TMS. **2q**, **2r**, **2s** were purchased from J&K Chemical Ltd. (Shanghai); **2a-2m** were synthesized according the procedures we developed previously (reference 7 in the main text); the chiral phosphoric acids were synthesized by known procedures (reference 11 in the main text).

2. Evaluating the chiral recognition abilities of chiral sensors 1a-1f (0.01 mmol) with 2a (0.01 mmol) in acetone-D₆ at 25 °C.

3. Copies of ¹H NMR spectra of chiral sensors 1a-1f (0.01 mmol, 1.0 equiv.) and racemic Cephalanthrin-A (0.01 mmol, 1.0 equiv.).

3.1. ¹H NMR (500 MHz, ACETONE-D₆) of racemic 2a.

3.2. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1a and guest 2a.

3.3. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1b and guest 2a.

3.4. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1c and guest 2a.

3.6. ¹H NMR (500 MHz, ACETONE-D₆) of (R)-BINOL 1e and guest 2a.

3.7. ¹H NMR (500 MHz, ACETONE-D₆) of quinidine 1f and guest 2a.

3.8. ¹H NMR (500 MHz, DMSO) of CPA 1d and guest 2a.

3.9. ¹H NMR (500 MHz, CD₃OD) of CPA 1d and guest 2a.

4. Copies of ¹H NMR spectra of 1d (0.01 mmol, 1.0 equiv.) and racemic 2 (0.01 mmol, 1.0 equiv.).

4.1. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and racemic guest 2b.

4.3. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and racemic guest 2d.

4.5. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and racemic guest 2f.

4.7. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and racemic guest 2h.

4.9. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and racemic guest 2j.

4.11. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and racemic guest 2l.

4.12. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d (0.015 mmol, 1.5 equiv.) and racemic guest 2m (0.01 mmol, 1.0 equiv.).

4.13. ¹H NMR (500 MHz, CDCl₃) of racemic 2n.

4.14. ¹³C NMR (126 MHz, CDCl₃) of racemic 2n.

4.17. ¹³C NMR (126 MHz, CDCl₃) of racemic 20.

4.18. ¹H NMR (500 MHz, CDCl₃) of CPA 1d (0.01 mmol, 1.0 equiv.) and racemic guest 20 (0.01 mmol, 1.0 equiv.).

4.19. ¹H NMR (500 MHz, CDCl₃) of racemic 2p.

4.21. ¹H NMR (500 MHz, CDCl₃) of CPA 1d (0.01 mmol, 1.0 equiv.) and racemic guest 2p(0.01 mmol, 1.0 equiv.).

4.23. ¹H NMR (500 MHz, CDCl₃) of CPA 1d (0.01 mmol, 1.0 equiv.) and racemic guest 2q (0.02 mmol, 2.0 equiv.).

4.25. ¹H NMR (500 MHz, CDCl₃) of CPA 1d (0.01 mmol, 1.0 equiv.) and racemic guest 2r (0.015 mmol, 1.5 equiv.).

4.27. ¹H NMR (500 MHz, CDCl₃) of CPA 1d (0.01 mmol, 1.0 equiv.) and racemic guest 2s (0.02 mmol, 2.0 equiv.).

5. Copies of ¹H NMR spectra/HPLC data of 1d (0.01 mmol, 1.0 equiv.) and 2 (0.01 mmol, 1.0 equiv.) with different optical purities.

For chiral HPLC analysis, a wide range of nonracemic **2a** were converted into corresponding esters. The procedure is as follows:

SOCl₂ (1.2 mL) was added slowly to a solution of **2a** in anhydrous CH₃OH (4.0 mL) at 0 °C, the resulting mixture was stirred at the same temperature for 4 hours followed by the addition of saturated aqueous NaHCO₃ solution (60 mL), and the reaction mixture was extracted with CH₂Cl₂ (4×10 mL). The combined organic phase was washed with brine (80 mL), and then dried over anhydrous Na₂SO₄, filtered and the solvent was removed in vacuo. The residue was purified through flash column chromatography on a silica gel (eluent: dichloromethane : ethyl acetate = 15/1-10/1) to yield **2a'**.

5.1. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2a (Sample 1, ee 79.2%).

5.2. HPLC of guest 2a' (Sample 1, ee 81.2%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	11.592	3137113	70627	10.891	14.304	9.4065
2	19.414	30213247	247556	18.539	27.008	90.5935

5.3. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2a (Sample 2, ee 65.1%).

5.4. HPLC of guest 2a' (Sample 2, ee 66.1%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	11.549	4761352	107576	10.880	14.581	16.9586
2	19.612	23314923	195381	18.688	27.509	83.0414

5.5. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2a (Sample 3, ee 51.1%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	11.528	7030258	157159	10.848	15.040	23.6499

192142

17.5

20.0

22.5

18.784

25.0

27.5

27.211

30.0

32.5

76.3501

15.0

0.0

2

2.5

5.0

19.728

7.5

10.0

12.5

22696076

5.7. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2a (Sample 4, ee 38.6%).

5.8. HPLC of guest 2a' (Sample 4, ee 38.9%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	11.430	8015810	181334	10.763	15.125	30.5327
2	19.728	18237362	159155	18.741	26.517	69.4673

5.9. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2a (Sample 5, ee 26.1%).

5.10. HPLC of guest 2a' (Sample 5, ee 26.0%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	11.356	12345298	279349	10.709	14.997	36.9798
2	19.736	21038580	177489	18.688	27.051	63.0202

5.11. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2a (Sample 6, ee 11.0%).

5.12. HPLC of guest 2a' (Sample 6, ee 11.4%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	11.378	10945741	251330	10.773	15.168	44.3138
2	19.986	13754757	123222	18.955	26.112	55.6862

5.13. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2f (Sample 7, ee 80.2%).

5.14. HPLC of guest 2f (Sample7, ee 82.5%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	11.297	35709491	1591188	10.624	12.800	91.2619
2	15.330	3419074	132513	14.656	16.469	8.7381

5.15. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2f (Sample 8, ee 60.0%).

5.16. HPLC of guest 2f (Sample 8, ee 59.2%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	10.622	35890342	1614320	10.048	12.267	79.6094
2	14.435	9192717	350725	13.739	16.395	20.3906

5.17. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2f (Sample 9, ee 52.7%).

5.18. HPLC of guest 2f (Sample 9, ee 52.8%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	10.581	17042169	860334	10.037	12.171	76.4180
2	14.415	5259086	202128	13.760	16.267	23.5820

5.19. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2f (Sample 10, ee 40.8%).

5.20. HPLC of guest 2f (Sample 10, ee 41.7%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	10.757	18745435	953030	10.208	12.203	70.8530
2	14.663	7711347	301972	14.037	16.213	29.1470

5.21. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2f (Sample 11, ee 32.5%).

5.22. HPLC of guest 2f (Sample 11, ee 32.5%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	10.457	10705423	566954	9.899	11.509	66.2670
2	14.218	5449570	220488	13.547	15.413	33.7330

5.23. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2f (Sample 12, ee 21.2%).

5.24. HPLC of guest 2f (Sample 12, ee 20.6%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	10.768	11302331	582636	10.219	12.149	60.2997
2	14.686	7441270	290554	14.037	16.075	39.7003

5.25. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2f (Sample 13, ee 10.5%).

5.26. HPLC of guest 2f (Sample 13, ee 9.6%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	10.790	16737062	856071	10.240	12.149	54.7864
2	14.672	13812622	541397	13.984	16.448	45.2136

5.27. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2f (Sample 14, ee -42.2%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	10.354	8648303	472606	9.835	11.488	28.0206
2	14.080	22215786	891115	13.515	16.096	71.9794

5.29. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d and guest 2f (Sample 15, ee -55.0%).

5.30. HPLC of guest 2f (Sample 15, ee -55.7%).

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	10.327	7208227	400148	9.845	11.232	22.1710
2	14.028	25303762	1016915	13.419	16.032	77.8290

6. Copies of ¹H NMR spectra/HPLC data for the fast evaluation of reaction conditions in catalytic asymmetric aldol reaction between acetone and tryptanthrin.

General procedure: tryptanthrin (0.1 mmol) and catalyst (20 mmol %) were added to 0.8 mL of acetone and stirred under the specific temperature until the reaction was completed; then acetone was added to the reaction mixture until the volume of resulting solution reached 10 mL; 1.0 mL of the reaction mixture solution was subsequently removed to a flask and dried for ¹H NMR analysis in the presence of 0.01 mmol **1d**.

(1). amino acid salt (20 mol%) neat acetone, conditions (2). 1 equiv. of 1d directly chiral ¹ H NMR analysis <i>without purification</i>							
entry	cat.	temp.	S:R (by NMR)	S:R (by HPLC)	absolute error		
1	$H_2N \leftarrow CO_2K$	0°C	80.7 : 19.3	81.7 : 18.3	2.0		
2		0°C	51.8 : 48.2	50.6 : 49.4	2.4		
3	CO ₂ K	0°C	73.0 : 27.0	72.6 : 27.4	0.8		
4	O ^t -Bu CO ₂ K	0°C	75.8 : 24.2	76.3 : 23.7	1.0		
5	H ₂ N CO ₂ K	-10 °C	87.7 : 12.3	88.6 : 11.4	1.8		

6.1. ¹H NMR (500 MHz, ACETONE-D₆) of reaction mixture without purification.

6.2. ¹H NMR (500 MHz, ACETONE-D₆) of entry 1, *S*:*R*= 80.7 : 19.3.

6.3. HPLC of entry 1, *S*:*R*= 81.7 : 18.3.

6.4. ¹H NMR (500 MHz, ACETONE-D₆) of entry 2, *S*:*R* = 51.8 : 48.2.

6.5. HPLC of entry 2, *S*:*R* = 50.6 : 49.4.

6.6. ¹H NMR (500 MHz, ACETONE-D₆) of entry 3, *S*:*R* =73.0 : 27.0.

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	10.413	31340187	1535056	9.643	12.085	72.5607
2	14.112	11851517	483419	13.461	15.808	27.4393

6.8. ¹H NMR (500 MHz, ACETONE-D₆) of entry 4, *S*:*R* =75.8 : 24.2.

6.9. HPLC of entry 4, *S*:*R* =76.3 : 23.7.

Peak	Ret. Time	Area	Height	Peak Start	Peak End	Area%
1	10.726	28020828	1415441	10.123	12.181	76.2566
2	14.587	8724599	342495	14.016	16.149	23.7434

6.10. ¹H NMR (500 MHz, ACETONE-D₆) of entry 5, *S*:*R* =87.7 : 12.3.

6.11. HPLC of entry 5, *S*:*R* = 88.6 : 11.4.

7. Copies of ¹H NMR spectra of control experiments.

7.1. ¹H NMR (500 MHz, ACETONE-D₆) of CPA 1d (0.01 mmol, 1.0 equiv.) and guest 4 (0.01 mmol, 1.0 equiv.).

7.1. ¹H NMR (500 MHz, ACETONE-D6) of CPA 1d (0.01 mmol, 1.0 equiv.) and guest 5 (0.01 mmol, 1.0 equiv.).

