Supporting Information

o,o-Difluorination of aromatic azide yields fast-response fluorescent probe for H₂S detection and for improved bioorthogonal reactions

Jie Zhang,^a Yasi Gao,^a Xueying Kang,^a Zhentao Zhu,^a Zhiqian Wang,^{*b} Zhen Xi^c and Long Yi^{*a}

^aState Key Laboratory of Organic-Inorganic Composites and Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China. E-mail: <u>yilong@mail.buct.edu.cn</u> ^bPublic Hatching Platform for Recruited Talents, College of Science, Beijing University of Chemical Technology, China. E-mail: <u>wangzhq@mail.buct.edu.cn</u> ^c State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China.

Fig. S1. Linear relationship of absorbance intensity at 327 nm and the concentration of probe **1** in PBS buffer (pH 7.4, containing 2% DMSO). The good linear relationship implied the good solubility of the probe up to at least 20 μ M.

Fig. S2. The absorption spectra of 1 (10 μ M) before and after reaction with H₂S (1 mM) for 30 min at room temperature.

Fig. S3. The time-dependent absorption spectra of the reaction of **1** (10 μ M) and **6** (100 μ M) in PBS buffer (pH 7.4) containing 50% CH₃CN at room temperature.

Fig. S4. Emission spectra of **3** (10 μ M) in the presence of PPh₃ (200 μ M) in PBS (50 mM, pH 7.4) containing 50% CH₃CN at room temperature.

Fig. S5. Reaction kinetics of **1** (10 μ M) toward **8** (200 μ M) in PBS (50 mM, pH 7.4) containing 50% CH₃CN at room temperature. The fluorescence signal at 445 nm was recorded.

Fig. S6. The time-dependent absorption spectra of the reaction of **1** (10 μ M) and **8** (100 μ M) in PBS buffer (pH 7.4) containing 50% CH₃CN at room temperature.

Fig. S9. The 1 H NMR, 13 C NMR and 19 F NMR spectrum of 1.

Fig. S10. The HRMS spectrum of 5.

Fig. S11. The HRMS spectrum of 1.

Fig. S12. The HRMS spectrum of 8.

Fig. S13. The HRMS spectrum of the product of probe **1** (1 mM) treated with **6** (10 mM) in PBS (50 mM, pH 7.4) containing 70% CH₃CN at room temperature for 3 h. The reaction mixture was submitted into ESI-MS without purification.