Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Selective trihydroxylated azepane inhibitor of NagZ, a glycosidase involved in *Pseudomonas aeruginosa* resistance to β -lactam antibiotics

J. Bouquet,^a D. T. King,^b G. Vadlamani,^c G. R. Benzie,^c B. lorga,^d D. Ide,^e I. adachi,^e A. Kato,^{*e} D. J. Vocadlo,^b B. L. Mark,^{*c} Y. Blériot,^{*a} and J. Désiré^{*a}

^a Equipe Synthèse Organique, Groupe Glycochimie, IC2MP, UMR CNRS 7285, Université de Poitiers, 4 rue Michel Brunet, 86073 Poitiers cedex 09, France.

^d Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Avenue de la Terrasse, Bat. 27, F-91198 Gif-sur-Yvette, France

 e Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.

Figure S1. IC50 experiments (inhibition of NagZ, hOGA, and HexAB by azepanes)	p 2
Figure S2. Inhibition of NagZ by compound 13a (Ki determination)	р 3
Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	p 4-48

^b Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada. V5A 1S6

^c Department of Microbiology, University of Manitoba, Buller Building, Winnipeg, Manitoba, Canada. R3T 2N2

Figure S1. IC_{50} experiments to assess the ability of various azepanes to inhibit NagZ, hOGA, and HexAB. IC_{50} values represent the concentration of unlabeled compound required to reduce *p*NP-GlcNAc hydrolysis by 50%. NI indicates no inhibition up to 0.46 mM. Error bars represent standard deviation from four separate technical replicates. See materials and methods section for further details.

Figure S2. Inhibition of NagZ by compound 13a. A) K_i determination for 13a mediated NagZ inhibition. Error bars represent standard deviation from quadruplicate technical replicates. The data were fit globally to a competitive inhibition model to attain (K_i =5.7 ± 0.5 µM) using GraphPad Prism. B) Lineweaver-Burke plot for NagZ by compound 13a. Inhibitor concentrations are indicated in the legend and the [NagZ] used was 100 nM.

Compound 8a (¹H NMR, 400 MHz, CDCl₃)

Compound **8a** (¹³C NMR, 100 MHz, CDCl₃)

Compound **8b** (¹H NMR, 400 MHz, CDCl₃)

Compound **8b** (¹³C NMR, 100 MHz, CDCl₃)

Compound **8c** (¹H NMR, 400 MHz, CDCl₃)

Compound **9a** (¹H NMR, 400 MHz, D₂O)

Compound **9b** (¹H NMR, 400 MHz, D₂O)

Compound **10a** (¹H NMR, 400 MHz, CDCl₃)

Compound **10a** (¹³C NMR, 100 MHz, CDCl₃)

Compound **10b** (¹H NMR, 400 MHz, CDCl₃)

Compound **10b** (¹³C NMR, 100 MHz, CDCl₃)

Compound **10c** (¹H NMR, 400 MHz, CDCl₃)

Compound **10c** (¹³C NMR, 100 MHz, CDCl₃)

Compound **11a** (¹H NMR, 400 MHz, D₂O)

Compound **11a** (¹³C NMR, 100 MHz, D₂O)

Compound **11b** (¹³C NMR, 100 MHz, D₂O)

Chemical Shift (ppm)

Compound **12a** (¹H NMR, 400 MHz, CDCl₃)

Compound **12b** (¹H NMR, 400 MHz, CDCl₃)

Compound **12b** (¹³C NMR, 100 MHz, CDCl₃)

Compound **12b** (¹⁹F NMR, 376 MHz, CDCl₃)

Compound **12c** (¹H NMR, 400 MHz, CDCl₃)

Compound **12c** (¹⁹F NMR, 376 MHz, CDCl₃)

Compound **13a** (¹³C NMR, 100 MHz, CD₃OD)

Compound **13a** (¹⁹F NMR, 376 MHz, CD₃OD)

Compound **13b** (19 F NMR, 376 MHz, D₂O)

Compound **13c** (¹³C NMR, 100 MHz, D₂O)

Compound **13c** (¹⁹F NMR, 376 MHz, D_2O)

