Supporting Information

Dimeric and trimeric derivatives of the azinomycin B chromophore

show enhanced DNA binding

Department of Chemistry and Biochemistry, California State UniversityNorthridge, Northridge, CA 91330

Genral Information	pp. S2
Synthetic procedures and spectroscopic data for $\mathbf{5}, \mathbf{1 a - 1 d}, \mathbf{2 a}, \mathbf{3 b}$	pp. S3-S11
${ }^{1}$ H NMR and ${ }^{13}$ C NMR spectra for compounds:	pp. S12-S29
DNA Binding Studies:	pp. S30-S50

General Information

Distilled water was used in all of the experiments. Organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated using a rotary evaporator at aspirator pressure ($20-30 \mathrm{mmHg}$). Chromatography refers to flash chromatography and was carried out on SiO_{2} (silica gel 60, 230-400 mesh). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured in CDCl_{3} at 400 MHz and 100 MHz , respectively, using $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. Chemical shifts are reported in ppm downfield (d) from $\mathrm{Me}_{4} \mathrm{Si}$.

Ethyl 3-methoxy-5-methyl-1-naphthoate ($1 \mathrm{~g}, 4.10 \mathrm{mmol}$) was dissolved in THF ($20 \mathrm{~mL}, 0.2 \mathrm{M}$) and the solution was cooled to $0^{\circ} \mathrm{C}$. Then, $\mathrm{LiAlH}_{4}(171 \mathrm{mg}, 4.5 \mathrm{mmol}, 1.1 \mathrm{eq})$ was added slowly, and the solution was allowed to warm to room temperature. After completion of the reaction as monitored by TLC (1:1 Hexane: EtOAc), the mixture was quenched with deionized water/1M $\mathrm{HCl}(3: 1)$ and extracted with EtOAc. Purification by flash column chromatography (silica gel, 1:1 Hexane/EtOAc) afforded 4 as a white solid ($798 \mathrm{mg}, 96 \%$).

See spectra on page
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.3(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, 1H), 5.15 (s, 2H), 3.98 ($\mathrm{s}, 3 \mathrm{H}$), 2.69 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.1,138.7,134.3,133.6,127.3,126.6,123.6,121.5,117.1$, 102.7, 63.5, 55.3

IR: $3321.6 \mathrm{~cm}^{-1}$ (broad), 2921.7, 1620.2, 1601.9.
mp.:133.6-134.0 ${ }^{\circ} \mathrm{C}$
HRMS-ESI (m/z): calculated for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NaO}_{2}$: 225.0891 ; found $225.0857(\mathrm{M}+\mathrm{Na})$

Pyridinium chlorochromate ($1.2 \mathrm{~g}, 5.4 \mathrm{mmol}, 1.1 \mathrm{eq}$) and potassium acetate $(533 \mathrm{mg}, 5.4 \mathrm{mmol}$, $1.1 \mathrm{eq})$ were added to a solution of alcohol $4(1 \mathrm{~g}, 4.94 \mathrm{mmol})$ in DCM $(10 \mathrm{~mL})$. The reaction mixture was stirred at room temperature until completion as determined by TLC (10:1 Hex: EtOAc; $\mathrm{R}_{\mathrm{f}}: 0.35$). The crude residue was filtered through a plug of celite, and further purification by flash column chromatography ($10: 1 \mathrm{Hex} / \mathrm{EtOAc}$) afforded aldehyde 5 as a pale yellow solid ($937 \mathrm{mg}, 4.7 \mathrm{mmol}, ~ 95 \%$).

See spectra on page
${ }^{1}{ }^{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.33(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.42-7.34 (m, 3H), 3.94 (s, 3H), 2.62 (s, 3H)
${ }^{13}{ }^{1} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.8,156.4,134.5,133.3,133.1,128.2,126.6,126.4,126.1$, 122.5, 110.0, 55.6, 20.1

IR: $2965.1 \mathrm{~cm}^{-1}, 2841.1,2755.5,1684.9,1616.6,1596.5$.
mp.:81.8-84.5 ${ }^{\circ} \mathrm{C}$
HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{NaO}_{2}: 223.0735$; found $223.0771(\mathrm{M}+\mathrm{Na})^{+}$

In dry $\operatorname{DCM}(5 \mathrm{~mL}, 0.3 \mathrm{M})$, aldehyde $5(300 \mathrm{mg}, 1.5 \mathrm{mmol})$, triethylamine $(0.2 \mathrm{~mL}, 1.5 \mathrm{mmol}$, leq), magnesium sulfate ($144 \mathrm{mg}, 1.2 \mathrm{mmol}, 0.8 \mathrm{eq}$), ethylenediamine ($0.05 \mathrm{~mL}, 0.75 \mathrm{mmol}, 0.5$ eq) were stirred for 3 hours under argon. The solvent was then removed in vacuo and the flask was charged with dry $\mathrm{MeOH}(7.5 \mathrm{~mL}) . \mathrm{NaBH}_{4}(142 \mathrm{mg}, 7.5 \mathrm{mmol}, 5 \mathrm{eq})$ was added in five portions and the reaction mixture was stirred for 20 hours. MeOH was removed in vacuo and then the crude mixture was diluted with DCM. The suspension was washed with $1 \mathrm{M} \mathrm{HCl}(10$ mL) and the aqueous extract was washed with DCM $(10 \mathrm{~mL}) 3$ times. Then, the aqueous layer was basified to $\mathrm{pH} 10-11$ with 1 M NaOH and was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The organic layer was dried over anhydrous NaSO_{4}, filtered, and the solvent was removed in vacuo to afford compound 1a as a white solid ($209 \mathrm{mg}, 0.98 \mathrm{mmol}, 65 \%$).

See spectra on page

${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $4 \mathrm{H}), 4.19$ ($\mathrm{s}, 4 \mathrm{H}$), $3.95(\mathrm{~s}, 6 \mathrm{H}), 2.91(\mathrm{~s}, 4 \mathrm{H}), 2.66(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,138.0,134.3,133.5,127.2,127.1,123.4,121.7,118.0$, 102.2, 55.2, 51.2, 48.8, 20.0

IR: $3290.3 \mathrm{~cm}^{-1}$ (sharp), 2919.8, 2831.6, 1619.8, 1599.6 .
mp.:144.5-145.8 ${ }^{\circ} \mathrm{C}$ (dec.)
HRMS-ESI (m/z): calculated for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}$: 428.2464; found (M+H) ${ }^{+} 428.2457$

In dry $\operatorname{DCM}(5 \mathrm{~mL}, 0.3 \mathrm{M})$, compound $5(300 \mathrm{mg}, 1.5 \mathrm{mmol})$, triethylamine $(0.2 \mathrm{~mL}, 1.5 \mathrm{mmol}$, 1 eq), magnesium sulfate ($144 \mathrm{mg}, 1.2 \mathrm{mmol}, 0.8 \mathrm{eq}$), 1,3-propanediamine ($0.06 \mathrm{~mL}, 0.75 \mathrm{mmol}$ $0.5 \mathrm{eq})$ were stirred for 3 hours under argon. Next, the solvent was removed in vacuo and the flask was charged with dry $\mathrm{MeOH}(3.4 \mathrm{~mL}) . \mathrm{NaBH}_{4}(142 \mathrm{mg}, 7.5 \mathrm{mmol}, 5 \mathrm{eq})$ was added in five portions and the reaction mixture was stirred for 20 hours. MeOH was removed in vacuo and then the crude mixture was diluted with DCM. The suspension was washed with $1 \mathrm{M} \mathrm{HCl}(10$ mL) and the aqueous extract was washed with DCM $(10 \mathrm{~mL}) 3$ times. Then, the aqueous layer was basified to $\mathrm{pH} 10-11$ with 1 M NaOH and was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The organic layer was dried over anhydrous NaSO_{4}, filtered, and the solvent was removed in vacuo to afford compound 1b as a yellow oil ($198 \mathrm{mg}, 0.9 \mathrm{mmol}, 60 \%$).

See spectra on page

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{\underline{3}}\right) \delta 7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=12.2$, $4 \mathrm{H}), 4.22(\mathrm{~s}, 4 \mathrm{H}), 3.97(\mathrm{~s}, 6 \mathrm{H}), 2.84(\mathrm{t}, J=6.5,4 \mathrm{H}), 2.70(\mathrm{~s}, 6 \mathrm{H}), 1.81(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.65$ (broad s, 2H)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,138.6,134.4,133.5,127.2,127.1,123.3,121.7,117.9$, 102.0, 55.2, 51.7, 48.4, 30.4, 20.1

IR: $3288.5 \mathrm{~cm}^{-1}$ (broad), 2937.7, 2827.9, 1622.1, 1602.2 .
HRMS-ESI (m/z): calculated for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}$: 443.2699; found (M+H) ${ }^{+} 443.2660$

In dry $\mathrm{DCM}(5 \mathrm{~mL}, 0.3 \mathrm{M})$, compound $5(300 \mathrm{mg}, 1.5 \mathrm{mmol})$, triethylamine ($0.2 \mathrm{~mL}, 1.5 \mathrm{mmol}$, leq), magnesium sulfate ($144 \mathrm{mg}, 1.2 \mathrm{mmol}, 0.8 \mathrm{eq}$), 1,4 -butanediamine ($0.08 \mathrm{~mL}, 0.75 \mathrm{mmol}$ $0.5 \mathrm{eq})$ were stirred for 3 hours under argon. Next, the solvent was removed in vacuo and the flask was charged with dry $\mathrm{MeOH}(3.4 \mathrm{~mL}) . \mathrm{NaBH}_{4}(142 \mathrm{mg}, 7.5 \mathrm{mmol}, 5 \mathrm{eq})$ was added in five portions and the reaction mixture was stirred for 20 hours. MeOH was removed in vacuo and then the crude mixture was diluted with DCM. The suspension was washed with $1 \mathrm{M} \mathrm{HCl}(10$ $\mathrm{mL})$ and the aqueous extract was washed with DCM $(10 \mathrm{~mL}) 3$ times. Then, the aqueous layer was basified to $\mathrm{pH} 10-11$ with 1 M NaOH and was extracted with $\mathrm{DCM}(3 \times 10 \mathrm{~mL})$. The organic layer was dried over anhydrous NaSO_{4}, filtered, and the solvent was removed in vacuo, which afforded compound $\mathbf{1 c}$ as a light brown oil ($216 \mathrm{mg}, 0.95 \mathrm{mmol}, 63 \%$).

See spectra on page

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=11.7 \mathrm{~Hz}$, $4 \mathrm{H}), 4.22(\mathrm{~s}, 4 \mathrm{H}), 3.97(\mathrm{~s}, 6 \mathrm{H}), 2.77(\mathrm{~s}, 4 \mathrm{H}), 2.69(\mathrm{~s}, 6 \mathrm{H}), 1.63(\mathrm{~s}, 4 \mathrm{H}), 1.44($ broad s, 2H)
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,138.6,134.4,133.6,127.3,127.0,123.4,121.7,117.9$, 102, 55.2, 51.6, 49.8, 28.0, 20.0

IR: $3293.0 \mathrm{~cm}^{-1}$ (broad), 2930.4, 2815.2, 1620.8, 1601.6 .
HRMS-ESI $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{2}$: 457.2855; found (M+H) ${ }^{+} 457.2888$

In dry $\mathrm{MeOH}(0.5 \mathrm{~mL})$ compound $5(68 \mathrm{mg}, 0.34 \mathrm{mmol})$ and N, N-bis(2-aminoethyl)-1,2ethanediamine ($16 \mathrm{mg}, 0.11 \mathrm{mmol}$) were stirred for 18 hours under argon. Next, $\mathrm{NaBH}_{4}(38 \mathrm{mg}$, 1.0 mmol) was added in five portions and the reaction mixture was stirred for 2 hours. MeOH was removed in vacuo and then the crude mixture was diluted with DCM. The suspension was washed with $1 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ and the aqueous extract was washed with $\mathrm{DCM}(10 \mathrm{~mL}) 3$ times. Then, the aqueous layer was basified to $\mathrm{pH} 10-11$ with 1 M NaOH and was extracted with DCM ($3 \times 10 \mathrm{~mL}$). The organic layer was dried over anhydrous NaSO_{4}, filtered, and the solvent was removed in vacuo. Purification by column chromatography gave $\mathbf{1 d}$ as a viscous yellow oil (40 $\mathrm{mg}, 0.057 \mathrm{mmol}, 52 \%)$.

See spectra on page

${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}) ; 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) ; 7.12(\mathrm{~m}, 6 \mathrm{H}) ;$ $7.04(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 6 \mathrm{H}) ; 3.83(\mathrm{~s}, 9 \mathrm{H}) ; 2.71(\mathrm{~m}, 6 \mathrm{H}) ; 2.62(\mathrm{~m}, 6 \mathrm{H}) ; 2.55(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.7,134.2,133.6,127.1,126.9,123.4,121.3,118.5,102.5$, 55.1, 53.4, 49.8, 46.9, 19.6.

IR: $3315.5 \mathrm{~cm}^{-1}$ (broad), 2925.4, 2855.3, 1623.2, 1602.6.
HRMS-ESI (m/z): calculated for $\mathrm{C}_{45} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{3}$: 699.4274; found $699.4331(\mathrm{M}+\mathrm{H})^{+}$

In dry $\mathrm{MeOH}(0.5 \mathrm{~mL})$ compound $5(68 \mathrm{mg}, 0.34 \mathrm{mmol})$ and N-Boc, N-methyl-1,2ethanediamine ($59 \mathrm{mg}, 0.34 \mathrm{mmol}$) were stirred for 18 hours under argon. Next, $\mathrm{NaBH}_{4}(38 \mathrm{mg}$, 1.0 mmol) was added in five portions and the reaction mixture was stirred for 2 hours. MeOH was removed in vacuo and then the crude mixture was diluted with DCM. The suspension was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 10 \mathrm{~mL})$ and the organic layer was concentrated in vacuo. The crude material was dissolved in DCM (3 mL) and TFA (3 mL) was added. The mixture was stirred for 30 minutes at room temperature and then concentrated in vacuo. Purification by column chromatography ($5 \% \rightarrow 20 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}, 1 \% \mathrm{NH}_{4} \mathrm{OH}$) gave $\mathbf{2 a}$ as a light yellow oil ($60 \mathrm{mg}, 0.232 \mathrm{mmol}, 68 \%$).

See spectra on page

${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 7.27(\mathrm{~m}, 4 \mathrm{H}) ; 4.38(\mathrm{~s}, 2 \mathrm{H}) ; 3.91(\mathrm{~s}, 3 \mathrm{H}) ;$ 3.15 (s, 4H); $2.63(\mathrm{~s}, 3 \mathrm{H}) ; 2.61(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8,138.3,137.5,130.9,130.8,127.4,125.0,123.0,106.7$, 58.3, 53.4, 47.6, 36.1, 22.5.

IR: $3291.6 \mathrm{~cm}^{-1}$ (broad), 2936.7, 2823.8, 1621.2, 1602.1 .
HRMS-ESI (m/z): calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}: 259.1810$; found $259.1810(\mathrm{M}+\mathrm{H})^{+}$

6

$\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$
$\mathrm{NaN}_{3}, \mathrm{DMF}, 50^{\circ} \mathrm{C}$

8

Compound 6 ($202 \mathrm{mg}, 0.43 \mathrm{mmol}$) was dissolved in $8: 1$ acetone: 50% aqueous NMO (9.0 mL) and $\mathrm{OsO}_{4}(0.136 \mathrm{~mL}, 0.022 \mathrm{mmol}, 4 \%$ solution in water) and the mxture was stirred at room temperature for two hours. Solid $\mathrm{Na}_{2} \mathrm{SO}_{3}(100 \mathrm{mg})$ was added and the mixture was diluted with water (20 mL) and stirred overnight. The mixture was concentrated in vacuo and extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude diol was dissolved in $1: 1$ dioxane/pH 6.75 phosphate butter (10 mL) and $\mathrm{KIO}_{4}(690 \mathrm{mg}, 3 \mathrm{mmol})$ was added; the mixture was stirred for 5 hours at room temperature. Ethyl acetate (10 mL) was added and the layers were separated. The aqueous layer was extracted with ethyl acetate $(20 \mathrm{~mL})$ and the combined organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude aldehyde was dissolved in methanol (5.0 mL) and solid $\mathrm{NaBH}_{4}(100 \mathrm{mg}, 2.7 \mathrm{mmol})$ was added in four portions. After stirring for one hour at room temperature, the mixture was concentrated in vacuo. Ethyl actetate (10 mL) and 1 N HCl solution (10 mL) was added and the layers were separated. The aqueous layer was further extracted with ethyl acetate (10 mL) and the combined organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude diol alcohol was filtered through a pad of silica gel with $1: 1$ hexanes ethyl acetate $(50 \mathrm{~mL})$ and the solution was concentrated in vacuo. The diol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.24 \mathrm{~mL}, 1.72 \mathrm{mmol})$ and DMAP $(10 \mathrm{mg})$ was added. Then $\mathrm{TsCl}(190 \mathrm{mg}, 1 \mathrm{mmol}, 2.2 \mathrm{eq})$ was added and the mixture was stirred for one hour at room temperature. Ether $(10 \mathrm{~mL})$ and saturated NaHCO_{3} solution $(10 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was further extracted with ether ($3 \times 10 \mathrm{~mL}$) and the combined organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude di-tosylate was dissolved in DMF (1.6 mL) and sodium azide ($195 \mathrm{mg}, 3 \mathrm{mmol}$) was added. The mixture was heat to $50^{\circ} \mathrm{C}$ and stirred at this temperature for 48 hours. Upon cooling to room temperature, the mixture was diluted with ether $(20 \mathrm{~mL})$ and saturated NaHCO_{3} solution $(20 \mathrm{~mL})$ and the layers were separated. The aqueous layer was further extracted with ether (3 x 10 mL) and the combined organics were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the residue by flash chromatography (5:1 Hexanes:Ethyl Acetate) gave 8 as a colorless oil ($135 \mathrm{mg}, 0.26 \mathrm{mmol}, 60 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~m}, 13 \mathrm{H}) ; 7.31(\mathrm{~m}, 2 \mathrm{H}) ; 4.99(\mathrm{~d}, J=10.9,1 \mathrm{H}) ; 4.94(\mathrm{~d}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.84(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.76$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.68$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.63$ (d, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.21(\mathrm{~m}, 1 \mathrm{H}) ; 3.80(\mathrm{~m}, 2 \mathrm{H}) ; 3.67(\mathrm{~m}, 1 \mathrm{H}) ; 3.48(\mathrm{~m}, 3 \mathrm{H}) ; 3.34(\mathrm{~m}, 2 \mathrm{H}) ; 2.30$ (q, $J=7.12 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3,137.8,81.8,79.4,78.5,75.3,75.0,73.2,71.5,71.3,51.7$, 47.9, 24.8.

HRMS-ESI (m/z): calculated for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{NaO}_{4}$: 551.2383 ; found $(\mathrm{M}+\mathrm{Na})^{+} 551.2433$

Compound $8(40 \mathrm{mg}, 0.075 \mathrm{mmol})$ was dissolved in benzene $(0.5 \mathrm{~mL})$ and triphenylphosphine ($40 \mathrm{mg}, 0.15 \mathrm{mmol}, 2 \mathrm{eq}$) and $\mathbf{6}(30 \mathrm{mg}, 0.15 \mathrm{mmol}, 2 \mathrm{eq})$ was added. The mixture was heated to $80^{\circ} \mathrm{C}$ and stirred at this temperature for two hours. The reaction was cooled to room temperature and concentrated in vacuo. The crude material was take up in $\mathrm{MeOH}(1 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(37 \mathrm{mg}$, 1 mmol) was added portionwise. The mixture was allowed to stir overnight and was then concentrated in vacuo. The crude material was taken up in EtOAc (10 mL) and was washed with 1 N HCl solution ($3 \times 5 \mathrm{~mL}$). The organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude material was take up in $\mathrm{CH}_{3} \mathrm{CN}(1.2 \mathrm{~mL})$ and $\mathrm{Boc}_{2} \mathrm{O}(49 \mathrm{mg}, 0.225 \mathrm{mmol}, 3 \mathrm{eq})$ and DMAP ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 4 \mathrm{eq}$) were added. The mixture was stirred overnight at room temperature and was then concentrated in vacuo. The crude material was flushed through a plug of silica gel with $1: 1$ hexanes:ethyl acetate and the eluent was concentrated. The resulting clear oil was taken up in EtOH (1.5 mL) and palladium hydroxide (4 mg) was added, and the mixture was stirred under an atmosphere of hydrogen for 18 hours. The solution was then filtered through plug of celite with excess ethyl acetate and the eluent was concentrated in vacuo. The crude material was dissolved in a $1: 1$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TFA}$ and DMS (0.2 mL) was added. The solution was stirred at room temperature for 30 minutes and then concentrated in vacuo. Purification of the residue by flash chromatography (EtOAc $\rightarrow 20 \% \mathrm{MeOH} / \mathrm{EtOAc}, 1 \% \mathrm{NH}_{4} \mathrm{OH}$) gave 3b as a viscous yellow oil (19.4 mg, 45% overall).
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~m}, 2 \mathrm{H}) ; 7.31(\mathrm{~m}, 6 \mathrm{H}) ; 7.15(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}) ; 4.40(\mathrm{~d}, J=$ $5.32 \mathrm{~Hz}, 2 \mathrm{H}$); 4.19 (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}) ; 4.09$ (m, 2H); 3.88 (s, 3H); 3.87 (s, 3H); 3.74 (m, 2H); $3.65(\mathrm{~m}, 1 \mathrm{H}) ; 3.58(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.25(\mathrm{~m}, 3 \mathrm{H}) ; 3.16(\mathrm{~m}, 2 \mathrm{H}) ; 3.00(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.60(\mathrm{~s}$, $3 \mathrm{H}) ; 2.58(\mathrm{~s}, 3 \mathrm{H}) ; 2.15(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,156.6,134.2,133.7,133.6,127.2,126.9,126.8,126.5$, $123.8,123.4,120.8,120.5,119.8,118.5,103.5,102.2,73.4,73.0,72.2,71.6,70.9,54.3,49.5$, 46.1, 22.7, 20.6, 18.6, 18.5.

IR: $3319.2 \mathrm{~cm}^{-1}$ (broad), 2923.8, 1623.8, 1603.5 .
HRMS-ESI (m/z): calculated for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{NaO}_{6}$: 575.3121; found (M+Na) ${ }^{+} 575.3082$

