Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Bis- and mono(m-benzoic acid)-functionalized pillar[5]arenes

Xin-Lang Wu, Yi Chen, Wen-Jing Hu, Yahu A. Liu, Xue-Shun Jia

Jiu-Sheng Li,* Biao Jiang* and Ke Wen*

Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China

School of Physical Science and Technology, ShanghaiTech University, 1 Zhongke Road, Shanghai 201210, China

Shanghai Advanced Research Institute, Chinese Academy of Science, 99 Haike Road, Shanghai 201210, China

Medicinal Chemistry, ChemBridge Research Laboratories, San Diego, CA 92127, USA

Correspondence Address

Prof. Dr. Ke Wen Shanghai Advanced Research Institute, Chinese Academy of Science No. 100 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai, 201210 P. R. China E-mail: wenk@sari.ac.cn

Table of Contents

General Methods	S3
Synthesis and crystallographic data	S3-S9
Fig. S1 ¹ H NMR spectrum of 6	S10
Fig. S2 ¹³ C NMR spectrum of 6	S10
Fig. S3 Mass spectrum of 6	S11
Fig. S4 ¹ H NMR spectrum of 7	S12
Fig. S5 ¹³ CNMR spectrum of 7	S12
Fig. S6 Mass spectrum of 7	S13
Fig. S7 ¹ H NMR spectrum of 8	S14
Fig. S8 ¹³ C NMR spectrum of 8	S14
Fig. S9 Mass spectrum of 8	S15
Fig. S10 ¹ H NMR Spectrum of 1	S16
Fig. S11 ¹³ C NMR spectrum of 1	S16
Fig. S12 Mass spectrum of 1	S17
Fig. S13 ¹ H NMR Spectrum of 2	S18
Fig. S14 ¹³ C NMR spectrum of 2	S18
Fig. S15 Mass spectrum of 2	S19
Fig. S16 ¹ H NMR Spectrum of 10	S20
Fig. S17 ¹³ C NMR spectrum of 10	S20
Fig. S18 ¹ H NOESY NMR Spectrum of 10	S21
Fig. S19 Mass spectrum of 10	S21
Fig. S20 ¹ H NMR Spectrum of 11	S22
Fig. S21 ¹³ C NMR spectrum of 11	S22
Fig. S22 ¹ H NOESY NMR Spectrum of 11	S23
Fig. S23 Mass spectrum of 11	S23
Fig. S24 ¹ H NMR Spectrum of 12	S24
Fig. S25 ¹³ C NMR spectrum of 12	S24

Fig. S26 ¹ H NOESY NMR Spectrum of 12	S25
Fig. S27 Mass spectrum of 12	825
Fig. S28 ¹ H NMR Spectrum of 13	S26
Fig. S29 ¹³ C NMR spectrum of 13	S26
Fig. S30 ¹ H NOESY NMR Spectrum of 13	S27
Fig. S31 Mass spectrum of 13	S27
Fig. S32 ¹ H NMR Spectrum of 14	S28
Fig. S33 ¹³ C NMR spectrum of 14	S28
Fig. S34 ¹ H NOESY NMR Spectrum of 14	S29
Fig. S35 Mass spectrum of 14	S29
References	S30

General Methods: Unless otherwise noted, all commercial reagents and solvents were used without purification. Separation by flash column chromatography was performed on Merck silica gel (230-400 mesh). ¹H and ¹³C NMR spectra were recorded on Bruker NMR spectrometers (400 MHz, 500 MHz or 600 MHz) with TMS as internal reference. Mass spectra (ESI) were recorded on an Esquire 6000 spectrometer (LC/MS). Single crystal X-ray diffraction data were collected on BL17B beamline of National Center for Protein Sciences Shanghai (NCPSS) at Shanghai Synchrotron Radiation Facility. The structures were solved by direct methods and refined by full-matrix least-squares using SHELXS-97. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were added at their geometrically ideal positions and refined isotropically.

Scheme S1. Synthesis of Pillar [5] arenes 1 and 2:

Pillar[5]arenes 3, 4, 5 and 6 (Scheme S1) were prepared according to reported procedures.^{S1-3}

Bis- and mono(methyl *m***-benzoate)-functionalized pillar[5]arenes 7 and 8.** A mixture of pillar[5]arene 6 (1.10 g, 1.0 mmol), methyl 3-boronobenzoate (900.0 mg, 5.0 mmol), Na₂CO₃ (650.0 mg, 5.0 mmol) and Pd(PPh₃)₄ (300.0 mg, 0.26 mmol) in a mixed solvent of THF and H₂O (60 ml, 5:1, v/v) was heated under N₂ at 80 °C for 36 h, then poured into water (100 mL),

and extracted with ethyl acetate ($3 \times 100 \text{ mL}$). The combined organic phases were concentrated to result in a residue which was subjected to column chromatography (petroleum ether/EtOAc, 50:1, v/v) to afford 7 as a pink solid (0.55 g, 51%) and 8 as a pale yellow solid (0.20 g, 18%). 7: mp 167.2-168.2 °C; ¹H NMR (500 MHz, DMSO- d_6): δ 7.98 (d, J = 7.7 Hz, 2H), 7.79 (s, 2H), 7.46 (d, J = 36.0 Hz, 4H), 7.20 (s, 2H), 6.76 (s, 2H), 6.66 (s, 2H), 6.60 (s, 2H), 5.73 (s, 2H), 3.90-3.62 (m, 27H), 3.55 (d, J = 13.1 Hz, 2H), 3.41 (dd, J = 15.3, 7.2 Hz, 3H), 1.22 (s, 6H), 1.18 (s, 6H), 1.09 (s, 6H), 0.96 (s, 6H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 166.6, 149.6, 149.5, 149.3, 149.1, 142.4, 139.5, 136.8, 134.60, 132.5, 130.2, 130.2, 129.1, 128.5, 128.2, 128.2, 128.0, 127.2, 115.0, 114.6, 113.7, 79.7, 63.6, 63.5, 63.2, 63.2, 52.6, 32.2, 29.4, 15.2, 15.0, 14.7; HRMS (ESI): calcd for $C_{65}H_{78}NO_{12} m/z$ 1088.5519 [M+NH₄⁺], found 1088.5515. **8**: mp 156.2-157.3 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.04 (d, J = 7.8 Hz, 1H), 7.96 (s, 1H), 7.39 (s, 1H), 7.23 (d, J = 11.0 Hz, 3H), 6.80 – 6.68 (m, 6H), 6.61 (s, 1H), 5.83 (s, 1H), 3.93 (s, 4H), 3.92-3.78 (m, 18H), 3.71 (s, 5H), 3.56 (d, *J* = 6.6 Hz, 2H), 1.37-1.28 (m, 9H), 1.23 (d, *J* = 7.0 Hz, 9H), 1.10 (d, J = 20.5 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 166.8, 150.0, 150.0, 149.9, 149.8, 149.8, 149.2, 147.7, 141.3, 139.9, 134.1, 134.0, 131.0, 130.5, 130.2, 129.7, 129.3, 129.0, 128.8, 128.6, 128.3, 128.1, 126.8, 125.0, 122.8, 115.4, 115.0, 114.7, 114.5, 114.0, 64.0, 63.9, 63.8, 63.8, 63.7, 63.5, 63.2, 52.2, 32.5, 31.6, 30.0, 29.7, 29.5, 15.2, 15.1, 15.0, 15.0, 14.7, 14.5; HRMS (ESI) calcd for $C_{60}H_{71}F_3NO_{13}S m/z$ 1102.4593 [M+NH₄⁺], found 1102.4652.

Bis(*m*-benzoic acid)-functionalized pillar[5]arene 1: A mixture of pillar[5]arene 7 (1.07 g, 1.0 mmol) and NaOH (4.0 g, 100.0 mmol) in a mixed solvent of THF and H₂O (200 ml, 1:1, v/v) was heated at 50 °C for 24 h, poured into an aqueous HCl solution (1.0 M, 300 mL), and extracted with dichloromethane (3 × 100 mL). The combined extracts were dried over anhydrous Na₂SO₄ and concentrated to result in a residue which was subjected to column chromatography (CH₃OH/CH₂Cl₂, 1:10, v/v) to afford **1** as a bright yellow solid (1.0 g, 96%). mp 223.1-224.1 °C; ¹H NMR (500 MHz, (CD₃)₂CO): δ 8.09 (d, J = 7.7 Hz, 2H), 8.03 (s, 2H), 7.55 (t, J = 7.6 Hz, 2H), 7.47 (d, J = 7.5 Hz, 2H), 7.33 (s, 2H), 6.90 (s, 2H), 6.80 (s, 2H), 6.71 (s, 2H), 5.77 (s, 2H), 3.99-3.89 (m, 10H), 3.87-3.78 (m, 8H), 3.72 (d, J = 12.9 Hz, 2H), 3.63 (d, J = 12.9 Hz, 2H), 3.57-3.52 (m, 2H), 3.49-3.44 (m, 2H), 1.41 (t, J = 7.0 Hz, 6H), 1.33 (d, J = 6.9 Hz, 6H), 1.23 (t, J = 6.9 Hz, 6H), 1.15 (t, J = 6.9 Hz, 6H); ¹³C NMR (126 MHz, DMSO-d₆)

δ 149.6, 149.5, 149.4, 149.1, 142.1, 139.7, 136.7, 133.6, 132.6, 130.5, 128.4, 128.3, 128.1, 127.4, 115.0, 114.6, 113.7, 79.74, 63.6, 63.5, 63.3, 63.2, 32.2, 29.4, 15.2, 15.1, 15.1, 14.8; HRMS (ESI): calcd for C₆₅H₇₀O₁₂Na *m/z* 1065.4759 [M+Na⁺], found 1065.4758.

Mono(*m*-benzoic acid)-functionalized pillar[5]arene 2: A mixture of pillar[5]arene 8 (1.08 g, 1.0 mmol) and NaOH (4.0 g, 100.0 mmol) in a mixed solvent of THF and H₂O (200 ml, 1:1, ν/ν) was heated at 50 °C for 24 h, poured into an aqueous HCl solution (1.0 M, 300 mL), and extracted with dichloromethane (3 × 100 mL). The combined extracts were dried over anhydrous Na₂SO₄ and concentrated to result in a residue which was subjected to column chromatography (CH₃OH/CH₂Cl₂, 1:10, ν/ν) to afford **2** as a bright yellow solid (0.9 g, 96%). mp 195.9-196.7 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.94 (s, 2H), 7.49 (s, 2H), 7.06 (s, 1H), 6.95-6.61 (m, 9H), 6.09 (s, 1H), 3.94-3.83 (m, 12H), 3.68 (t, J = 20.9 Hz, 15H), 1.38-1.29 (m, 15H), 1.22 (d, *J* = 7.0 Hz, 6H), 1.10 (s, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 154.6, 149.8, 149.7, 149.6, 149.6, 149.3, 149.3, 149.2, 149.0, 142.5, 137.8, 132.7, 131.1, 128.9, 128.6, 128.3, 128.1, 128.0, 128.0, 127.6, 126.0, 117.7, 115.7, 115.1, 115.0, 114.6, 114.4, 114.2, 113.9, 64.0, 63.7, 63.6, 63.6, 63.5, 31.4, 31.3, 29.7, 29.5, 29.1, 15.6, 15.5, 15.4, 15.3, 15.3, 15.2, 15.0; HRMS (ESI): calcd for C₅₈H₇₀NO₁₁ *m*/*z* 956.4943 [M+NH₄⁺], found 956.4941.

A1[(10-Hydroxydecyl *m*-benzoate)]/A2[(*m*-benzoic acid)]-functionalized pillar[5]arene 10: A mixture of pillar[5]arene 1 (1.04 g, 1.0 mmol), decane-1,10-diol 9 (174 mg, 1.0 mmol), EDC.HCl (1.92 g, 10.0 mmol), and DMAP (3.6 mg, 0.03 mmol) in CH₂Cl₂ (500 ml) was stirred at 0 °C for 3 h, washed with an aqueous HCl solution (1.0 M, 300 mL), dried over anhydrous Na₂SO₄ and concentrated. The resulting residue was subjected to column chromatography (CH₃OH/CH₂Cl₂, 1:100, *v/v*) to afford **10** as a yellow solid (839 mg, 70%). mp 226.3-227.4 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.11 (s, 2H), 7.95 (s, 2H), 7.20 (d, *J* = 11.2 Hz, 4H), 6.89-6.81 (m, 4H), 6.78 (s, 2H), 6.68 (s, 2H), 6.45 (s, 2H), 5.83 (s, 2H), 3.89- 3.46 (m, 30H), 1.50 (s, 3H), 1.37 (s, 6H), 1.30 (s, 1H), 1.26 (s, 1H), 1.20 (d, *J* = 16.3 Hz, 16H), 1.10 (s, 6H), 0.86 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 161.7, 150.1, 150.0, 149.7, 149.6, 142.8, 139.6, 137.0, 134.9, 132.0, 130.3, 129.6, 129.4, 129.1, 128.8, 128.2, 127.1, 115.3, 115.3, 115.2, 114.8, 64.1, 63.4, 33.6, 29.9, 29.7, 15.3, 15.1, 14.9, 14.6; HRMS (ESI): calcd for C₇₅H₉₄NO₁₃ *m/z* 1216.6720 [M+NH₄⁺], found 1216.6718.

Pillar[5]arene 1 and decane-1,10-diol 9 derived cyclic bi-ester 11: A mixture of pillar[5]arene 1 (1.04 g, 1.0 mmol), decane-1,10-diol 9 (174.0 mg, 1.0 mmol), EDC.HCl (1.92

g, 10 mmol), and DMAP (3.6 mg, 0.03 mmol) in CH₂Cl₂ (20 ml) was heated at 50 °C for 30 min, washed with an aqueous HCl solution (1.0 M, 50 mL), dried over anhydrous Na₂SO₄ and concentrated. The residue was subjected to column chromatography (CH₃OH/CH₂Cl₂, 1:200, ν/ν) to afford **11** as a yellow solid (968 mg, 82%). mp 188.8–189.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.97-7.86 (m, 4H), 7.16 (d, *J* = 14.9 Hz, 2H), 6.93 (d, *J* = 31.0 Hz, 4H), 6.75 (s, 2H), 6.62 (s, 2H), 6.47 (s, 2H), 5.79 (s, 2H), 3.86 (s, 4H), 3.82-3.76 (m, 9H), 3.70 (dd, *J* = 18.2, 13.8 Hz, 6H), 3.60 (dd, *J* = 17.8, 11.2 Hz, 4H), 3.55-3.47 (m, 4H), 3.43 (dd, *J* = 6.9, 4.2 Hz, 3H), 1.37 (s, 2H), 1.28 (t, *J* = 6.9 Hz, 8H), 1.22-1.13 (m, 18H), 1.04 (t, *J* = 6.9 Hz, 6H), 0.90 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 150.0, 149.6, 149.5, 142.4, 139.6, 136.9, 134.1, 132.2, 130.3, 129.7, 129.2, 128.8, 128.8, 128.1, 127.6, 127.5, 115.4, 115.0, 114.8, 114.6, 64.1, 64.0, 63.8, 63.4, 63.1, 52.1, 32.9, 32.8, 30.0, 29.9, 29.7, 29.6, 29.5, 25.7, 15.2, 15.1, 14.8, 14.5; HRMS (ESI): calcd for C₇₅H₉₂NO₁₂ *m/z* 1198.6614 [M+NH₄⁺], found 1198.6339.

Synthesis of 11 from Intramolecular Esterification of 10: A mixture of pillar[5]arene 10 (1.20 g, 1.0 mmol), EDC.HCl (1.92 g, 10.0 mmol), and DMAP (3.6 mg, 0.03 mmol) in CH₂Cl₂ (20 mL) was heated at 50 °C for 15 min, washed with an aqueous HCl solution (1.0 M, 30 mL), dried over anhydrous Na₂SO₄ and concentrated. The residue was subjected to column chromatography (CH₃OH/CH₂Cl₂, 1:200 ν/ν) to afford 11 as a yellow solid (1.08 g, 92 %).

Mono(10-hydroxydecyl *m*-benzoate) functionalized pillar[5]arene 12: A mixture of pillar[n]arene 2 (938 mg, 1.0 mmol), decane-1,10-diol 9 (5.22 g, 30.0 mmol), EDC.HCl (1.92 g, 10.0 mmol), and DMAP (3.6 mg, 0.03 mmol) in CH₂Cl₂ (20 mL) was stirred at 0 °C for 3 h, washed with an aqueous HCl solution (1.0 M, 30 mL), dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography (CH₃OH/CH₂Cl₂, 1:100, ν/ν) to afford 12 as a white solid (787 mg, 72 %). mp 137.1-137.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (s, 1H), 7.94 (s, 1H), 7.50 (d, *J* = 23.6 Hz, 3H), 7.34 (s, 1H), 7.00 (d, *J* = 27.7 Hz, 2H), 6.85 (d, *J* = 14.1 Hz, 5H), 6.70 (s, 2H), 4.38 (s, 2H), 4.08 – 3.68 (m, 27H), 3.03 (s, 1H), 1.81 (s, 2H), 1.49 – 1.40 (m, 16H), 1.31 (dd, *J* = 32.3, 25.3 Hz, 21H); ¹³C NMR (151 MHz, CDCl₃) δ 166.9, 153.9, 149.9, 149.8, 149.5, 142.9, 134.9, 130.8, 130.5, 128.7, 128.2, 127.8, 127.6, 126.3, 118.0, 114.8, 114.5, 114.0, 63.8, 63.6, 63.5, 63.3, 32.1, 32.0, 30.8, 30.0, 29.8, 29.6, 29.2, 27.7, 24.8, 15.3, 15.3, 15.2, 15.0; HRMS (ESI): calcd for C₆₈H₉₀NO₁₂ *m/z* 1112.6458 [M+NH₄⁺], found 1112.6457.

Mono(decyl *m*-benzoate) functionalized pillar[5]arene 13: A mixture of pillar[5]arene 2 (938 mg, 1.0 mmol), 1-decanol (4.75 g, 30.0 mmol), EDC.HCl (1.92 g, 10.0 mmol), and DMAP (3.6 mg, 0.03 mmol) in CH₂Cl₂ (20 mL) was stirred at 0 °C for 3 h, washed with an aqueous HCl solution (1.0 M, 30 mL), dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography (CH₃OH/CH₂Cl₂, 1:300, *v/v*) to afford **13** as a yellow solid (895 mg, 83 %). mp 173.3-173.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.02-7.98 (m, 2H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.45 (s, 1H), 7.32 (s, 1H), 7.01 (d, *J* = 5.5 Hz, 2H), 6.76 (s, 3H), 6.60 (d, *J* = 9.9 Hz, 2H), 6.52 (s, 1H), 6.29 (d, *J* = 9.3 Hz, 2H), 4.09 (d, *J* = 7.0 Hz, 2H), 3.96-3.68 (m, 30H), 3.37 (d, *J* = 6.9 Hz, 2H), 1.50- 1.40 (m, 7H), 1.39-1.22 (m, 15H), 1.20-1.09 (m, 12H), 0.89 (s, 1H), 0.59 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 167.3, 153.8, 151.1, 150.3, 150.2, 149.9, 149.7, 149.6, 149.5, 147.2, 142.5, 139.4, 134.6, 131.1, 130.9, 130.1, 129.9, 129.2, 128.7, 128.5, 128.4, 128.2, 127.9, 127.4, 126.3, 125.1, 117.7, 115.8, 115.5, 115.3, 115.1, 114.3, 113.6, 65.1, 64.4, 64.3, 63.9, 63.8, 63.7, 63.6, 63.1, 52.1, 32.8, 31.0, 30.7, 29.8, 29.5, 29.1, 15.2, 15.2, 15.1, 15.0, 14.9, 14.8, 14.7, 14.2, 14.0; HRMS (ESI): calcd for C₆₈H₉₀NO₁₁ *m/z* 1096.6508 [M+NH₄]⁺, found 1096.6512

Mono(decyl *m*-benzoate), ethyl 2-phenoxyacetate-functionalized pillar[5]arene 14: A mixture of pillar[5]arene 13 (1.08 g, 1.0 mmol), ethyl bromoacetate (0.5 g, 3.0 mmol) and K₂CO₃(1.38 g, 10.0 mmol) in CH₃CN (50 mL) was refluxed for 3 h, poured into water (100 mL), extracted with EtOAc (3×30 mL), dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by (CH₃OH/CH₂Cl₂, 1:100, *v/v*) to afford 14 as a white solid (815 mg, 70 %). mp 177.1-177.8 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.01 (d, J = 14.7 Hz, 2H), 7.49 (d, J = 4.9 Hz, 2H), 7.19 (s, 1H), 6.93 (s, 1H), 6.88 (d, J = 6.7 Hz, 3H), 6.84 (s, 1H), 6.80 (d, J = 13.1 Hz, 2H), 6.71 (s, 1H), 5.87 (s, 1H), 4.53 (s, 2H), 4.09 – 3.75 (m, 24H), 3.69 (d, J = 22.3 Hz, 4H), 3.59 (d, J = 6.9 Hz, 2H), 2.01 (s, 2H), 1.52 – 1.37 (m, 20H), 1.28 (dd, J = 15.7, 9.3 Hz, 18H), 0.88 (s, 3H), -1.65 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 167.1, 155.4, 150.5, 150.1, 149.9, 149.5, 149.4, 149.0, 148.8, 148.5, 142.8, 139.1, 134.8, 132.8, 131.5, 131.1, 130.0, 129.2, 128.9, 128.8, 128.5, 128.1, 127.9, 127.7, 127.2, 126.5, 126.4, 116.2, 115.4, 115.1, 114.7, 113.8, 113.0, 113.0, 111.2, 64.1, 63.9, 63.8, 63.7, 63.5, 63.4, 63.0, 60.9, 52.1, 32.2, 30.9, 30.6, 29.7, 29.0, 28.7, 15.4, 15.4, 15.3, 15.1, 15.1, 10.5, 1.1; HRMS (ESI): calcd for C₇₂H₉₆NO₁₃ *m/z* 1182.6876 [M+NH₄⁺], found 1182.6872.

Crystallographic Data of 1: $[C_{166}H_{205}N_8O_{26}F_{30}P_5]$; Mr = 3453.22; T = 173(2) K; T = 173(2) K; triclinic; space group $P\bar{1}$; a = 20.5486(17); b = 21.3959(19); c = 24.984(2) Å; a = 65.6220(10); $\beta = 74.3130(10)$; $\gamma = 66.014(2)$; V = 9071.2(13) Å³; Z = 2; $\rho_{calcd} = 1.264$ g/cm³; crystal size = 0.300 x 0.250 x 0.100 mm; $\mu = 0.146$ mm⁻¹; reflections collected 63342; unique reflections 38333; data/restraints/parameters 38333/91/2071; *GOF* on F^2 1.027; R_{int} for independent data 0.0356; final $R_1 = 0.1115$, $wR_2 = 0.3021$; R indices (all data) $R_1 = 0.1918$, $wR_2 = 0.3579$; largest diff. peak and hole: 0.776 and -0.530 eÅ⁻³.

Fig. S1 ¹H NMR spectrum (500 MHz) of 6 in CDCl₃.

Fig. S3 HRMS (ESI) of 6.HRMS (ESI): calcd for $[M+Na^+] C_{53}H_{60}F_6O_{14}S_2Na^+$ 1116.3667, found 1116.3665.

Fig. S4 ¹H NMR spectrum (500 MHz) of 7 in DMSO-*d*₆.

Fig. S5. ¹³C NMR spectrum (126 MHz) of 7 in DMSO- d_6 .

Fig. S6 HRMS (ESI) of 7.HRMS (ESI): calcd for $[M+NH_4^+]C_{65}H_{78}NO_{12}^+1088.5519$, found 1088.5515.

Fig. S7. ¹H NMR spectrum (500 MHz) of 8 in CDCl₃.

Fig. S9 HRMS (ESI) of 8.HRMS (ESI): calcd for $[M+NH_4^+]$ C₆₀H₇₁F₃NO₁₃S 1102.4593, found 1102.4652.

Fig. S10 ¹H NMR spectrum (500 MHz) of 1 in $(CD_3)_2O_2$

Fig. S12 HRMS (ESI) of 1: calcd for $[M+Na^+]C_{65}H_{70}O_{12}Na^+1065.4759$, found 1065.4758.

Fig. S13 ¹H NMR spectrum (500 MHz) of 2 in DMSO- d_6 .

Fig. S14 13 C NMR spectrum (126 MHz) of 2 in DMSO- d_6 .

Fig. S15 HRMS (ESI) of 2: calcd for $[M+NH_4^+]C_{58}H70NO11^+$ 956.4943, found 956.4941.

Fig. S16 ¹H NMR spectrum (500 MHz) of 10 in CDCl₃.

Fig. S18 Partial 2D NOESY spectrum of 10 in CDCl₃.

Fig. S19. HRMS (ESI) of 10: calcd for $[M+NH_4^+]C_{75}H_{94}NO_{13}^+1216.6720$, found 1216.6718.

$\begin{array}{c} 7,739\\ 7,750\\ 7,715\\ 6,906\\ 6,906\\ 6,07\\$

Fig. S20 ¹H NMR spectrum (500 MHz) of 11 in CDCl₃.

Fig.S22 Partial 2D NOESY spectrum of 11 in CDCl₃.

Fig. S23 HRMS (ESI) of 11: calcd for $[M+NH_4^+] C_{75}H_{92}NO_{12}^+ 1198.6614$, found 1198.6339.

Fig. S24 ¹H NMR spectrum (500 MHz) of 12 in CDCl₃.

Fig. S26 Partial 2D NOESY spectrum of 12 in CDCl₃.

Fig.S27 HRMS (ESI) of 12: calcd for $[M+NH_4^+]C_{68}H_{90}NO_{12}$ 1112.6458, found 1112.6457.

161.3 15.2 15.2 15.2 15.2 15.2 149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5 142.5 149.5 149.5 149.5 141.5

Fig. S29 ¹³C NMR spectrum (126 MHz) of 13 in CDCl₃.

Fig.S30 Partial 2D NOESY spectrum of 13 in CDCl₃.

Fig.S31 HRMS (ESI) of 13: calcd for $[M+NH_4^+]C_{68}H_{90}NO_{11}^+1096.6508$, found 1096.6512.

Fig.S32. ¹H NMR spectrum (500 MHz) of 14 in CDCl₃.

Fig. S33 ¹³C NMR spectrum (126 MHz) of 14 in CDCl₃.

Fig. S34 Partial 2D NOESY spectrum of 14.

Fig. S35 HRMS (ESI) of 14: calcd for $[M+NH_4^+] C_{72}H_{96}NO_{13}^+ 1182.6876$, found 1182.6872.

References:

S1. H. Tao, D. Cao, L. Liu, Y. Kou, L. Wang and H. Meier, *Sci. China, Ser. B Chem.*, 2012, **55**, 223-228.

S2. C. Xie, W. Hu, W. Hu, Y. A. Liu, J. Huo, J. Li, B. Jiang and K. Wen, *Chin. J. Chem.*, 2015, **33**, 379-383.

S3. W.-B. Hu, W.-J. Hu, X.-L. Zhao, Y. A. Liu, J.-S. Li, B. Jiang and K. Wen, *J. Org. Chem.*, 2016, **81**, 3877-3881.