# **Supporting Information**

## Neobraclactones A–C, three unprecedented chaise

## longue-shaped xanthones from Garcinia bracteata

Sheng-Li Niu,<sup>a,b†</sup> Da-Hong Li,<sup>a†</sup> Yue-Tong Wang,<sup>c</sup> Kai-Bo Wang,<sup>a</sup> Bin Lin,<sup>d</sup> Yong-Kui Jing,<sup>c</sup> Hui-Ming Hua,<sup>a</sup> Jiao Bai<sup>\*a</sup> and Zhan-Lin Li<sup>\*a</sup>

 <sup>a</sup> Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
<sup>b</sup> Key laboratory of Zoonosis, Shengyang Agricultural University, Shenyang 110866, P. R. China
<sup>c</sup> School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
<sup>d</sup> School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China

### **Corresponding Author**

- \* E-mail: lzl1030@hotmail.com
- \* E-mail: baijiao@hotmail.com
- <sup>⊥</sup> These authors contributed equally to this work.

# Contents

| Computational methods of ECD of compound 1 3                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Figure S1. B3LYP/6-31+G**optimized lowest energy 3D conformer of 1                                                                      |
| Figure S2–S15. The HRMS, UV, IR, <sup>1</sup> H NMR, expanded <sup>1</sup> H NMR, <sup>13</sup> C NMR, HSQC,                            |
| HMBC, NOESY, ECD spectra of neobraclactone A (1)4–10                                                                                    |
| Figure S16. The Rh <sub>2</sub> (OCOCF <sub>3</sub> ) <sub>4</sub> induced ECD spectrum of neobraclactone A (1) in CDCl <sub>3</sub> 11 |
| Figure S17. The bulkiness rule for secondary alcohols applied11                                                                         |
| Figure S18–S29. The HRMS, UV, IR, <sup>1</sup> H NMR, expanded <sup>1</sup> H NMR, <sup>13</sup> C NMR, HSQC,                           |
| HMBC and NOESY spectra of neobraclactone B (2)12–17                                                                                     |
| Figure S30. The comparison of <sup>1</sup> H NMR spectra of compounds 1 and 218                                                         |
| Figure S31. The comparison of <sup>13</sup> C NMR spectra of compounds 1 and 218                                                        |
| Figure S32–S40. The HRMS, UV, <sup>1</sup> H NMR, expanded <sup>1</sup> H NMR, <sup>13</sup> C NMR, HSQC, HMBC,                         |
| NOESY spectra of neobraclactone C (3)19–23                                                                                              |

#### Computational methods of ECD of compound 1

The CONFLEX<sup>[1, 2]</sup> searches based on molecular mechanics with MMFF94S force fields were performed for (6*R*, 7*R*, 8*R*, 17*R*, 22*S*)-**1** and its enantiomer (6*S*, 7*S*, 8*S*, 17*S*, 22*R*)-**1**, which gave 8 stable conformers. Selected conformers of (6*R*, 7*R*, 8*R*, 17*R*, 22*S*)-**1** and (6*S*, 7*S*, 8*S*, 17*S*, 22*R*)-**1** with the lowest energy were further optimized by the density functional theory method at the B3LYP/6-31+G\*\* level in Gaussian 03 program package,<sup>[3]</sup> which was further checked by frequency calculation and resulted in no imaginary frequencies. The ECD of the conformer of **1** was then calculated by the TDDFT method at the B3LYP/6-31+G\*\* level, and at the B3LYP/6-311++G\*\*//B3LYP/6-31+G\*\* levels with the PCM model in methanol solution. The calculated ECD curve was generated using SpecDis 1.51<sup>[4]</sup> with  $\sigma$  = 0.16 ev, and UV shift -5 nm.

### References

[1] Goto, H.; Osawa, E.; J. Am. Chem. Soc. 1989, 111, 8950-8951.

[2] Goto, H.; Osawa, E.; J. Chem. Soc., Perkin Trans. 1993, 2, 187–198.

[3]. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.;Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, revision D.01; Gaussian, Inc.: Wallingford, CT, 2005.

[4]. Bruhn, T.; Hemberger, Y.; Schaumlöffel, A.; Bringmann, G. Spec Dis, version 1.51, University of Würzburg, Germany, 2010.



Figure S1. B3LYP/6-31+G\*\* optimized lowest energy 3D conformer of 1



Figure S2. The HR-ESIMS spectrum of neobraclactone A (1)



Figure S3. The UV spectrum of neobraclactone A (1) in CH<sub>3</sub>OH







Figure S5. The  ${}^{1}$ H NMR spectrum of neobraclactone A (1) in CDCl<sub>3</sub>



Figure S7. The expanded <sup>1</sup>H NMR spectrum of neobraclactone A (1) in CDCl<sub>3</sub>



**Figure S9.** The  ${}^{1}H$ - ${}^{1}H$  COSY spectrum of neobraclactone A (1) in CDCl<sub>3</sub>



Figure S11. The HMBC spectrum of neobraclactone A (1) in CDCl<sub>3</sub>





Figure S14. The expanded NOESY spectrum of neobraclactone A (1) in CDCl<sub>3</sub>



Figure S15. ECD spectrum of neobraclactone A (1)



Figure S16. The Rh<sub>2</sub>(OCOCF<sub>3</sub>)<sub>4</sub> induced ECD spectrum of neobraclactone A (1)



Figure S17. The bulkiness rule for secondary alcohols applied



Figure S18. The HR-ESIMS spectrum of neobraclactone B (2)



Figure S19. The UV spectrum of neobraclactone B (2)



Figure S20. The IR spectrum of neobraclactone B (2)



Figure S21. The <sup>1</sup>H NMR spectrum of neobraclactone B (2) in CDCl<sub>3</sub>



Figure S22. The  $^{13}$ C NMR spectrum of neobraclactone B (2) in CDCl<sub>3</sub>



Figure S23. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum of neobraclactone B (2) in CDCl<sub>3</sub>



Figure S25. The HMBC spectrum of neobraclactone B (2) in CDCl<sub>3</sub>





Figure S26. The expanded HMBC spectrum of neobraclactone B (2) in  $CDCI_3$ 



Figure S27. The expanded HMBC spectrum of neobraclactone B (2) in CDCl<sub>3</sub>



Figure S29. The expanded NOESY spectrum of neobraclactone B (2) in CDCl<sub>3</sub>



Figure S30. The comparison of the <sup>1</sup>H NMR spectra of compounds 1 (blue) and 2 (red)

in  $\mathsf{CDCl}_3$ 



Figure S31. The comparison of the <sup>13</sup>C NMR spectra of compounds 1 (blue) and 2 (red)

in  $CDCl_3$ 



Figure S32. The HR-ESIMS spectrum of neobraclactone C (3) in CDCl<sub>3</sub>



Figure S33. The UV spectrum of neobraclactone C (3) in CDCl<sub>3</sub>





Figure S37. The HSQC spectrum of neobraclactone C (3) in CDCl<sub>3</sub>



Figure S39. The NOESY spectrum of neobraclactone C (3) in CDCl<sub>3</sub>



Figure S40. The expanded NOESY spectrum of neobraclactone C (3) in  $CDCl_3$