Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide derivatives as Bacterial Quorum Sensing and Biofilm Inhibitors

Shashidhar Nizalapur^a, Onder Kimyon^b, Eugene Yee^a, Mohan M. Bhadbhade^c, Mike Manefield^b, Mark Willcox^d, David StC Black^a and Naresh Kumar^a*

^aSchool of Chemistry, UNSW Sydney, NSW 2052, Australia. UNSW Australia, Sydney, NSW 2052, Australia.
E-mail: n.kumar@unsw.edu.au Tel: +61 29385 4698; Fax: +61 29385 6141
^bSchool of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, NSW 2052, Australia.
^cSolid State & Elemental Analysis Unit, Mark Wainwright Analytical Centre, Division of Research, UNSW Australia, NSW 2052, Australia.
^dSchool of Optometry and Vision Science, UNSW Australia, Sydney, NSW 2052, Australia.

Contents

¹ HNMR and ¹³ CNMR of 1-(2-Chloroacetyl) indoline-2,3-dione (12)
¹ HNMR and ¹³ CNMR of 5-Chloro-1-(2-chloroacetyl)indoline-2,3-dione (14)
1HNMR and 13CNMR of 1-(2-Chloroacetyl)-5-fluoroindoline-2,3-dione (15)
1HNMR and 13CNMR of 1-(2-Chloroacetyl)-5-methylindoline-2,3-dione (16)7
1HNMR and 13CNMR of 1-(2-chloroacetyl)-5-nitroindoline-2,3-dione (17)
¹ HNMR and ¹³ CNMR of 2-(2-(2-Chloroacetamido)phenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (18)
1HNMR and 13CNMR of 2-(5-Bromo-2-(2-chloroacetamido)phenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (18) 10
1HNMR and 13CNMR of 2-(5-Chloro-2-(2-chloroacetamido)phenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (20)
1HNMR and 13CNMR OF 2-(2-(2-Chloroacetamido)-5-fluorophenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (21) 12
1HNMR and 13CNMR OF 2-(2-(2-Chloroacetamido)-5-methylphenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (22) 13
1HNMR and 13CNMR OF 2-(2-(2-Chloroacetamido)-5-nitrophenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide)(23) 14
1HNMR and 13CNMR OF 2-(2-(2-Azidoacetamido)phenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (24) 15

1HNMR and 13CNMR OF 2-(2-(2-Azidoacetamido)-5-bromophenyl)-2-oxo-N-(prop-2-yn-1 yl)acetamide (25)	- 16
1HNMR and 13CNMR OF 2-(2-(2-Azidoacetamido)-5-chlorophenyl)-2-oxo-N-(prop-2-yn-1 yl)acetamide (26)	- 17
1HNMR and 13CNMR OF 2-(2-(2-Azidoacetamido)-5-fluorophenyl)-2-oxo-N-(prop-2-yn-1- yl)acetamide (27)	- 18
1HNMR and 13CNMR OF 2-(2-(2-Azidoacetamido)-5-methylphenyl)-2-oxo-N-(prop-2-yn-1 yl)acetamide (28)	l- 19
1HNMR and 13CNMR of 2-(2-(2-azidoacetamido)-5-nitrophenyl)-2-oxo-N-(prop-2-yn-1- yl)acetamide (29)	20
1HNMR and 13CNMR of 14,15,29,30-Tetrahydro-5H,20H-dibenzo[h,s]bis([1,2,3]triazolo)[5 c:5',1'-n][1,4,7,12,15,18]hexaazacyclodocosine-6,12,13,21,27,28(7H,22H)-hexaone (30)	,1 - 21
1HNMR and 13CNMR of 10,25-Difluoro-14,15,29,30-tetrahydro-5H,20H- dibenzo[h,s]bis([1,2,3]triazolo)[5,1-c:5',1'-n][1,4,7,12,15,18]hexaazacyclodocosine- 6,12,13,21,27,28(7H,22H)-hexaone (31)	22
1HNMR and 13CNMR of 10,25-Dimethyl-14,15,29,30-tetrahydro-5H,20H- dibenzo[h,s]bis([1,2,3]triazolo)[5,1-c:5',1'-n][1,4,7,12,15,18]hexaazacyclodocosine- 6,12,13,21,27,28(7H,22H)-hexaone (32)	23
Optical Density (OD) Measurements	24
The crystal data, data collection and refinements	25
Biofilm inhibition activity in <i>P. aeruginosa</i>	26
Biofilm inhibition activity in <i>E. coli</i>	26
Toxicity against human MRC-5 lung fibroblast cells	27

¹HNMR and ¹³CNMR of 1-(2-Chloroacetyl) indoline-2,3-dione (12)

¹HNMR and ¹³CNMR of 5-Chloro-1-(2-chloroacetyl)indoline-2,3-dione (14)

¹HNMR and ¹³CNMR of 2-(2-(2-Chloroacetamido)phenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (18)

1HNMR and 13CNMR of 2-(5-Bromo-2-(2-chloroacetamido)phenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (18)

1HNMR and 13CNMR of 2-(5-Chloro-2-(2-chloroacetamido)phenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (20)

1HNMR and 13CNMR OF 2-(2-(2-Chloroacetamido)-5-fluorophenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (21)

1HNMR and 13CNMR OF 2-(2-(2-Chloroacetamido)-5-methylphenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (22)

1HNMR and 13CNMR OF 2-(2-(2-Chloroacetamido)-5-nitrophenyl)-2-oxo-N-(prop-2-

1HNMR and 13CNMR OF 2-(2-(2-Azidoacetamido)phenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (24)

1HNMR and 13CNMR OF 2-(2-(2-Azidoacetamido)-5-bromophenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (25)

1HNMR and 13CNMR OF 2-(2-(2-Azidoacetamido)-5-chlorophenyl)-2-oxo-N-(prop-2-

1HNMR and 13CNMR OF 2-(2-(2-Azidoacetamido)-5-fluorophenyl)-2-oxo-N-(prop-2-

1HNMR and 13CNMR OF 2-(2-(2-Azidoacetamido)-5-methylphenyl)-2-oxo-N-(prop-2-yn-1-yl)acetamide (28)

1HNMR and 13CNMR of 2-(2-(2-azidoacetamido)-5-nitrophenyl)-2-oxo-N-(prop-2yn-1-yl)acetamide (29)

1HNMR and 13CNMR of 14,15,29,30-Tetrahydro-5H,20H-

dibenzo[h,s]bis([1,2,3]triazolo)[5,1-c:5',1'-n][1,4,7,12,15,18]hexaazacyclodocosine-6,12,13,21,27,28(7H,22H)-hexaone (30)

1HNMR and 13CNMR of 10,25-Difluoro-14,15,29,30-tetrahydro-5H,20Hdibenzo[h,s]bis([1,2,3]triazolo)[5,1-c:5',1'-n][1,4,7,12,15,18]hexaazacyclodocosine-6,12,13,21,27,28(7H,22H)-hexaone (31)

1HNMR and 13CNMR of 10,25-Dimethyl-14,15,29,30-tetrahydro-5H,20Hdibenzo[h,s]bis([1,2,3]triazolo)[5,1-c:5',1'-n][1,4,7,12,15,18]hexaazacyclodocosine-6,12,13,21,27,28(7H,22H)-hexaone (32)

Optical Density (OD) Measurements

Table 3: Growth inhibition by the synthesized compounds against the PAMH602 and *E. coli* MT102 strains at three different concentrations.

		P. aeruginosa MH602				E. coli MT102		
		Concentrations (µM)				Concentrations (µM)		
		Compound	250	125	62.5	250	125	62.5
etylisatins		12	10.46±1.69	2.01±1.74	0.44±0.76	0.35±0.49	0.00	0.00
		13	7.91±0.75	1.02±3.34	0.00	15.30±9.02	0.00	0.00
		14	2.75±2.13	0.00	0.42±0.72	24.34±2.55	2.12±2.99	5.50±4.86
.o-ac		15	4.56±6.41	1.97±3.41	2.19±3.80	0.00	0.00	0.00
chloi		16	1.63±1.55	0.00	0.00	31.14±2.39	12.38±0.75	6.83±5.96
Ž		17	1.53±1.85	0.00	0.00	25.50±4.19	0.00	0.00
		18	6.24±0.20	0.00	0.00	25.08±4.24	4.55±2.26	0.00
	ides	19	5.26±1.80	4.31±4.39	2.17±3.77	0.00	0.00	0.00
-ou	xam	20	7.59±0.44	1.77±7.16	0.00	0.00	0.00	0.00
Alkyı	/lglyc	21	9.09±0.85	0.00	5.50±6.69	8.13±1.87	5.54±1.33	6.89±11.93
	hen	22	3.98±0.38	0.00	0.00	16.55±8.81	17.71±2.75	13.33±6.45
đ	đ	23	1.05±1.48	0.00	0.76±1.32	0.00	0.00	0.00
		24	4.74±4.45	0.00	0.00	6.54±4.85	4.40±3.70	5.59±8.15
des	ides	25	4.40±6.22	2.87±4.97	4.31±4.29	0.00	0.00	0.00
kync	xam	26	8.31±2.81	2.09±3.62	4.16±6.27	10.49±9.84	15.37±1.70	0.93±0.81
do-al	rlglyc	27	4.60±6.50	0.00	3.40±4.48	17.65±3.08	3.07±3.42	0.00
Azi	hen	28	5.40±3.74	0.00	0.00	4.80±19.7	1.49±7.08	2.18±9.12
	đ	29	7.31±2.77	0.35±7.82	0.00	15.94±3.08	6.01±4.61	3.22±12.41
Γ	es	30	17.04±6.01	0.00	0.00	9.62±6.54	0.00	0.00
Cyclic-phen glyoxamid	amid	31	4.24±2.65	3.71±6.29	2.38±2.21	0.00	0.00	0.00
	glyox	32	5.46±7.72	0.37±9.53	0.55±0.78	0.00	0.00	0.00
		Fu-30	88.11±	79.34±	1.79±12.5	98.8±11.7	99.7±0.3	75.6±0.5

Growth inhibition ± standard deviation of mean from at least two independent experiments. Compounds tested thrice in triplicate. 0 = No growth inhibition.

The crystal data, data collection and refinements

Crystal data							
	Compound 30 complex with DMSO	Compound 30 complex with H_2O					
Chemical formula	C ₂ H ₆ OS·0.25(C ₂₆ H ₂₂ N ₁₀ O ₆)	$C_{26}H_{22}N_{10}O_6 \cdot 2(H_2O)$					
M _r	220.76	606.57					
Crystal system, space	Triclinic, P ⁻ 1	Triclinic, <i>P</i> ⁻ 1					
group							
Temperature (K)	154	158					
a, b, c (Å)	9.7434 (5), 9.8225 (5), 12.0241 (6)	7.428 (4), 10.364 (7), 10.401 (6)					
2, 2, 2 (°)	92.357 (2), 104.697 (3), 106.384 (2)	60.81 (2), 86.52 (3), 88.14 (3)					
V (Å ³)	1060.01 (9)	697.8 (7)					
Ζ	4	1					
Radiation type	Mo K2	Mo KD					
ิ (mm⁻¹)	0.29	0.11					
Crystal size (mm)	0.10 × 0.06 × 0.06	0.11 × 0.09 × 0.05					
	Data collection						
Diffractometer	Bruker APEX-II CCD	Bruker APEX-II CCD					
Absorption correction	Multi-scan	Multi-scan					
	SADABS2014/5 (Bruker,2014/5) was used for	SADABS2014/5 (Bruker,2014/5) was used for					
	absorption correction. wR2(int) was 0.1351 before and	absorption correction. wR2(int) was 0.1810					
	0.0522 after correction. The Ratio of minimum to	before and 0.0610 after correction. The Ratio of					
	maximum transmission is 0.9050. The 2/2 correction	minimum to maximum transmission is 0.7174.					
	factor is 0.00150.	The 2/2 correction factor is 0.00150.					
T _{min} , T _{max}	0.675, 0.746	0.535, 0.746					
No. of measured,	14261, 3686, 2869	6795, 2401, 1069					
independent and							
observed [/ > 2⊡(/)]							
reflections							
R _{int}	0.043	0.103					
(sin ।/?) _{max} (Å⁻¹)	0.595	0.595					
Refinement							
$R[F^2 > 2\mathbb{P}(F^2)], wR(F^2), S$	0.039, 0.103, 1.04	0.066, 0.167, 0.92					
No. of reflections 3686		2401					
No. of parameters	268	207					
H-atom treatment	H-atom parameters constrained	H atoms treated by a mixture of independent					
		and constrained refinement					
?? _{max} , ?? _{min} (e Å ⁻³)	0.23, -0.35	0.30, -0.30					

Table 4. The data collection and refinements.

Biofilm inhibition activity in P. aeruginosa

Fig. 5 Inhibition of biofilm formation in *P. aeruginosa* after 24 h treatment with 250 μ M of glyoxamide compounds. The control represents the biofilms formation without any compounds. Error bars indicate the standard error of the mean (SEM) of three independent experiments.

Biofilm inhibition activity in E. coli

Fig. 6 Inhibition of biofilm formation in *E. coli* after 24 h treatment with 250 μ M of glyoxamide compounds. The control represents the biofilms formation without any compounds. Error bars indicate the standard error of the mean (SEM) of three independent experiments.

Toxicity against human MRC-5 lung fibroblast cells

Fig. 7 *In vitro* anti-proliferative properties of compounds **12**, **19**, **27**, and **30** against MRC-5 normal human lung fibroblasts after 72 h incubation, relative to a DMSO control. The points represent the mean of at least three individual experiments ± standard error of the mean (SEM).

Fig. 8 The bar graph represents the IC₅₀ of some of the active compounds **12**, **19**, **27**, and **30** against MRC-5 normal human lung fibroblast cells. The concentration of compounds was tested between 100-750 μ M. Error bars represent the mean of minimum three independent experiments ± Standard error of the mean (SEM).