Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Effect of the L-DOPA hydroxyl groups in the formation of supramolecular hydrogels

Nicola Zanna,*^a Debora Iaculli, and Claudia Tomasini*^a

^aDipartimento di Chimica "G. Ciamician" - Alma Mater Studiorum Università di Bologna Via F. Selmi 2, 40126 Bologna (Italy)

Contents

Table S1. Physical properties of hydrogels obtained under selected conditions.	Page S2
Figure S1. Photographs of hydrogels 10, 11, 13, 14, 17, 18, 19, 21, 30.	Pages S3
Figure S2. SEM images of samples of xerogel obtained by freeze drying samples of hydrogel 10 , 11 , 13 , 14 , 17 , 18 , 19 , 21 and 30 . Bar = 20 micron.	Pages S4
Figures S3-S5. Strain dependence and frequency dependence of storage modulus and loss modulus for hydrogels 1-9.	Pages S5-S7
Figures S6-S11. ¹ H, ¹³ C, COSY NMR spectra and FT-IR spectra of Boc-L-DOPA[OBn] ₂ -D-Oxd-OBn, Boc-L-DOPA[OBn] ₂ -D-Oxd-OBn and Fmoc-L-DOPA-D-Oxd-OH.	Pages S8-S13
Figures S12-S29. FT-IR spectrum of aerogel 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 18, 19, 21, 30.	Pages S14-S22

Hydrogel	Gelator	Trigger (equiv.)	Gelation time	Gel	Final pH	T _{gel} (°C)	Gel properties
1	Α	GdL (1.1)	16 h	✓	4.0	60 ^a	-
2	В	GdL (1.1)	16 h	✓	4.5	66 ^a	-
3	С	GdL (1.1)	16 h	✓	4.5	85 ^b	thixotropic
4	Α	CaCl ₂ (0.3)	30 min	✓	6.5	78 ^b	-
5	В	CaCl ₂ (0.3)	30 min	✓	7.0	75 ^b	-
6	С	CaCl ₂ (0.3)	30 min	✓	7.0	57 ^b	thixotropic
7	Α	ZnCl ₂ (0.3)	30 min	✓	7.0	89 ^b	-
8	В	ZnCl ₂ (0.3)	5 h	✓	7.0	90 ^b	thixotropic
9	С	ZnCl ₂ (0.3)	30 min	✓	7.0	98 ^c	thixotropic
10	Α	BaCl ₂ (0.3)	3 h	✓	7.0	65 ^b	thixotropic
11	В	BaCl ₂ (0.3)	3 h	✓	7.0	73 ^b	thixotropic
12	С	BaCl ₂ (0.3)	-	×	-	-	-
13	Α	histidine (1)	1 h	✓	6.5	76 ^a	thixotropic
14	В	histidine (1)	1 h	✓	6.5	70 ^b	-
15	С	histidine (1)	-	×	-	-	-
16	Α	MgCl ₂ (0.3)	-	×	-	-	-
17	В	MgCl ₂ (0.3)	3 h	✓	7.0	62 ^a	thixotropic
18	С	MgCl ₂ (0.3)	3 h	√	7.5	52 ^c	thixotropic
19	Α	CuCl ₂ (0.3)	3 h	✓	7.5	40 ^b	-
20	В	CuCl ₂ (0.3)	-	×	-	-	-
21	С	CuCl ₂ (0.3)	16 h	√	7.0	89 ^c	-
22	Α	Al ₂ (SO ₄) ₃ (0.15)	-	×	-	-	-
23	В	Al ₂ (SO ₄) ₃ (0.15)	-	×	-	-	-
24	С	Al ₂ (SO ₄) ₃ (0.15)	30 min	×	-	-	-
25	Α	Fe(NO ₃) ₃ (0.3)	-	×	-	-	-
26	В	Fe(NO ₃) ₃ (0.3)	-	×	-	-	-
27	С	Fe(NO ₃) ₃ (0.3)	16 h	×	-	-	-
28	Α	arginine (1)	-	×	-	-	-
29	В	arginine (1)	-	×	-	-	-
30	С	arginine (1)	1 h	√	7.5	64 ^a	-

Table S1. Physical properties of hydrogels obtained under selected conditions.

^aThermoreversible. ^bNot thermoreversible gel, syneresis occurs after heating. ^cNot thermoreversible gel, the gelator melts then precipitate on cooling.

Figure S1. Photographs of hydrogels 10, 11, 13, 14, 17, 18, 19, 21, 30.

Figure S2. SEM images of samples of xerogel obtained by freeze drying samples of hydrogel **10**, **11**, **13**, **14**, **17**, **18**, **19**, **21** and **30**. Bar = $20 \mu m$.

Figure S3. Strain dependence (left) and frequency dependence (right) of storage modulus (square) and loss modulus (triangle) for hydrogels **1**, **2** and **3**. The analyses were performed on the hydrogel about 20 hours after the gelation begun.

Figure S4. Strain dependence (left) and frequency dependence (right) of storage modulus (square) and loss modulus (triangle) for hydrogels **4**, **5** and **6**. The analyses were performed on the hydrogel about 20 hours after the gelation begun.

Figure S5. Strain dependence (left) and frequency dependence (right) of storage modulus (square) and loss modulus (triangle) for hydrogels **7**, **8** and **9**. The analyses were performed on the hydrogel about 20 hours after the gelation begun.

Figure S6. ¹H NMR and COSY spectra of Boc-L-DOPA[OBn]₂-D-Oxd-OBn.

Figure S7. ¹³C NMR (top) and FT-IR (bottom) spectra of Boc-L-DOPA[OBn]₂-D-Oxd-OBn.

Figure S8. ¹H NMR and COSY spectra of Fmoc-L-DOPA[OBn]₂-D-Oxd-OBn.

Figure S9. ¹³C NMR (top) and FT-IR (bottom) spectra of Fmoc-L-DOPA[OBn]₂-D-Oxd-OBn.

Figure S10. ¹H NMR and COSY spectra of Fmoc-L-DOPA-D-Oxd-OH.

Figure S11. ¹³C NMR (top) and FT-IR (bottom) spectra of Fmoc-L-DOPA-D-Oxd-OH.

Figure S12. FT-IR spectrum of aerogel 1.

Figure S13. FT-IR spectrum of aerogel 2.

Figure S14. FT-IR spectrum of aerogel 3.

Figure S15. FT-IR spectrum of aerogel 4.

Figure S16. FT-IR spectrum of aerogel 5.

Figure S17. FT-IR spectrum of aerogel 6.

Figure S18. FT-IR spectrum of aerogel 7.

Figure S19. FT-IR spectrum of aerogel 8.

Figure S20. FT-IR spectrum of aerogel 9.

Figure S21. FT-IR spectrum of aerogel 10.

Figure S22. FT-IR spectrum of aerogel 11.

Figure S23. FT-IR spectrum of aerogel 13.

Figure S24. FT-IR spectrum of aerogel 14.

Figure S25. FT-IR spectrum of aerogel 17.

Figure S26. FT-IR spectrum of aerogel 18.

Figure S27. FT-IR spectrum of aerogel 19.

Figure S28. FT-IR spectrum of aerogel 21.

Figure S29. FT-IR spectrum of aerogel 30.