Isonucleotide Incorporation into Middle and Terminal siRNA Duplexes Exhibits High Gene Silencing Efficacy and Nuclease Resistance

Electronic Supplementary Information

Yuan Ma^{#, a}, Shuang Liu^{#, a}, Yusi Wang^a, Yuanhe Zhao^a, Ye Huang^a, Lijun Zhong^b, Zhu Guan^a, Lihe Zhang^a and Zhenjun Yang^a*

^a State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China and ^b Medical and Health Analysis Center, School of Pharmaceutical Sciences, Peking University, No.38 Xueyuan Road, Haidian District, Beijing 100191, China *To whom correspondence should be addressed. Tel: +86 10 82802503; Fax: +86 10 82802503; Email: yangzj@bjmu.edu.cn

[#] These authors contributed equally to the paper as first authors.

Table of Contents

Figure S1. Quantitative PCR analysis of Braf-mu mRNA

Figure S2. Serum stability of siRNAs modified at 3'-overhangs

Figure S3. Serum stability of D-/L-IsoNAs modified siRNAs at 3'-overhangs of sense strand

Figure S4. The selected structures of chemical modification used in siRNAs 3'-overhangs

Figure S5. Serum stability of chemical modified siRNAs at 3'-overhangs of sense strand

Figure S6. HPLC and desalting profiles of single oligonucleotide strand

Figure S7. The MALDI-TOF-MS and ESI-MS of single oligonucleotide strand

Table S1. Sequence details of the synthesized oligonucleotide strands

Table S2. Sequences of mismatched siRNAs

Figure S1. Quantitative PCR analysis of Braf-mu mRNA (2 nM). A375 cells were harvested for total RNA 48 h post transfection.

Figure S2. Serum stability of modified siRNAs at 3'-overhangs. These siRNAs were incubated in 50% fetal bovine serum at 37 °C and sampled at various time points, followed by separation on 20% PAGE gel with siRNA products visualized by SYBR Gold staining.

1 -	-			And in case of	-	-	and the second s	1000			
		10	SDD /A	1000	1	-	1	-	-	-	
					-	-	-	-	-	-	1
	意]		S D D D /A	-	-	-	-	-	-	-	
-	-	-		100	10	-	-	-	in.	-	-
1 11	=	8 8	SLL/A	-	-	-	-	=	-	-	
8 .A.	-				18	100	-	-	-	-	
12	12 1	2 1	STT/A	-		-	-	-	-	-	
8.16	iii (m			-	-	-	-	1	-	
				SDDD A SLLA STTA	SDDD A SLLA STTA	SDDD A SLLA STTA	SDDD A SLLA STTA	SDDD A SLLA STTA	SDDD A SLLA STTA	SDDD A SLLA STTA	SDDD A SLLA STTA

Figure S3. Serum stability of D-/L-IsoNAs modified siRNAs at 3'-overhangs of sense strand. These siRNAs were incubated in 50% fetal bovine serum at 37 °C and sampled at various time points, followed by separation on 20% PAGE gel with siRNA products visualized by SYBR Gold staining.

Figure S4. The selected structures of chemical modification used in siRNAs 3'-overhangs

Figure S5. Serum stability of chemical modified siRNAs at 3'-overhangs of sense strand. These siRNAs were incubated in 50% fetal bovine serum at 37 °C and sampled at various time points, followed by separation on 20% PAGE gel with siRNA products visualized by SYBR Gold staining.

Figure S6. HPLC and desalting profiles of single oligonucleotide strand (A-B) Anion exchange HPLC of A08D and SMOE oligonucleotide strand, respectively. (C-D) Desalting images of their oligonucleotide strand, respectively.

Figure S7. The MALDI-TOF-MS and ESI-MS of single oligonucleotide strand (A) The MALDI-TOF-MS of A08D strand production. (B) The ESI-MS of SMOE strand production.

No.	Name	Sequence	Calcd.	Found	
1	MB3-SS	5'-GCUACAGAGAAAUCUCGAUtt-3'	6677.1	6678.4	
2	S03D	5'-GCUDACAGAGAAAUCUCGAUtt-3'	6661.1	6661.1	

Table S1. Sequence details of the synthesized oligonucleotide strands

3	S03L	5'-GCULACAGAGAAAUCUCGAUtt-3'	6661.1	6663.5
4	S04D	5'-GCUADCAGAGAAAUCUCGAUtt-3'	6661.1	6662.8
5	S04L	5'-GCUALCAGAGAAAUCUCGAUtt-3'	6661.1	6662.5
6	S10D	5'-GCUACAGAGADAAUCUCGAUtt-3'	6661.1	6662.5
7	S10L	5'-GCUACAGAGALAAUCUCGAUtt-3'	6661.1	6662.4
8	S11D	5'-GCUACAGAGAADAUCUCGAUtt-3'	6661.1	6662.2
9	S11L	5'-GCUACAGAGAALAUCUCGAUtt-3'	6661.1	6662.0
10	S12D	5'-GCUACAGAGAAADUCUCGAUtt-3'	6661.1	6661.4
11	S12L	5'-GCUACAGAGAAALUCUCGAUtt-3'	6661.1	6662.5
12	S13D	5'-GCUACAGAGAAAUDCUCGAUtt-3'	6661.1	6662.5
13	S13L	5'-GCUACAGAGAAAULCUCGAUtt-3'	6661.1	6663.0
14	S18D	5'-GCUACAGAGAAAUCUCGADUtt-3'	6661.1	6662.2
15	S18L	5'-GCUACAGAGAAAUCUCGALUtt-3'	6661.1	6662.3
16	SDD	5'-GCUACAGAGAAAUCUCGAUUD-3'	6649.1	6650.1
17	Suu	5'-GCUACAGAGAAAUCUCGAUUU-3'	6681.1	6682.7
18	SDDD	5'-GCUACAGAGAAAUCUCGAUUDUD-3'	6939.3	6940.2
19	SDt	5'-GCUACAGAGAAAUCUCGAUUDt-3'	6686.1	6686.7
20	StD	5'-GCUACAGAGAAAUCUCGAUtUD-3'	6686.1	6687.8
21	SD	5'-GCUACAGAGAAAUCUCGAUUD-3'	6381.9	6384.4
22	STT	5'-GCUACAGAGAAAUCUCGAU T_DT_D-3 '	6677.1	6678.2
23	SLL	5'-GCUACAGAGAAAUCUCGAU U L-3'	6649.1	6650.1
24	SPS	5'-GCUACAGAGAAAUCUCGAUtst-3'	6693.2	6693.7
25	SMe	5'-GCUACAGAGAAAUCUCGAU <u>Ume</u> -3'	6709.1	6709.9
26	SMOE	5'-GCUACAGAGAAAUCUCGAUTmoeTmoe-3'	6825.1	6826.2
27	SLNA	5'-GCUACAGAGAAAUCUCGAU <i>T_{LNA}T_{LNA}-</i> 3'	6733.2	6734.1
28	MB3-AS	5'-AUCGAGAUUUCUCUGUAGCtt-3'	6608.0	6608.9
29	A02D	5'-AUDCGAGAUUUCUCUGUAGCtt-3'	6592.0	6594.3
30	A02L	5'-AU ^L CGAGAUUUCUCUGUAGCtt-3'	6592.0	6592.7
31	A07D	5'-AUCGAGA ^D UUUCUCUGUAGCtt-3'	6592.0	6591.4
32	A07L	5'-AUCGAGA ^L UUUCUCUGUAGCtt-3'	6592.0	6590.4
33	A08D	5'-AUCGAGAU ^D UUCUCUGUAGCtt-3'	6592.0	6592.1
34	A08L	5'-AUCGAGA U^LUUCUCUGUAGCtt-3'	6592.0	6592.5
35	A09D	5'-AUCGAGAUU ^D UCUCUGUAGCtt-3'	6592.0	6592.9
36	A09L	5'-AUCGAGAUU ^L UCUCUGUAGCtt-3'	6592.0	6592.4
37	A10D	5'-AUCGAGAUUUDCUCUGUAGCtt-3'	6592.0	6593.5
38	A10L	5'-AUCGAGAUUULCUCUGUAGCtt-3'	6592.0	6592.9
39	A16D	5'-AUCGAGAUUUCUCUGUDAGCtt-3'	6592.0	6593.3
40	A16L	5'-AUCGAGAUUUCUCUGULAGCtt-3'	6592.0	6592.9

41	A17D	5'-AUCGAGAUUUCUCUGUADGCtt-3'	6592.0	6593.8
42	A17L	5'-AUCGAGAUUUCUCUGUALGCtt-3'	6592.0	6592.0
43	ADD	5'-AUCGAGAUUUCUCUGUAGCUDUD-3'	6580.0	6576.4
44	RNA1-SS	5'-AGAAUUGGAUCUGGAUCAUtt-3'	6695.1	6695.2
45	RNA1-AS	5'-AUGAUCCAGAUCCAAUUCUtt-3'	6575.0	6575.2
46	1A08D	5'-AUGAUCCADGAUCCAAUUCUtt-3'	6559.0	6560.2
47	RNA2-SS	5'-AGCAUGAACCAUGAGUUGCtt-3'	6693.1	6694.0
48	RNA2-AS	5'-GCAACUCAUGGUUCAUGCUtt-3'	6607.0	6608.4
49	2A08D	5'-GCAACUCADUGGUUCAUGCUtt-3'	6591.0	6592.6

Table S2. Sequences of mismatched siRNAs

	No.	Name	siRNA Sequence
Sense strand(SS)	1	siMB3_S/A	SS: 5'-GCUACAGAGAAAUCUCGAUtt-3'
Antisense strand(AS)	1	SINIDJ-5/A	AS: 5'-AUCGAGAUUUCUCUGUAGCtt-3'
	34	S13c/A	SS: 5'-GCUACAGAGAAAcCUCGAUtt-3'/AS
Sense strand(SS)	35	S13a/A	SS: 5'-GCUACAGAGAAAacUCGAUtt-3'/AS
Mismatched with	36	S13g/A	SS: 5'-GCUACAGAGAAAgCUCGAUtt-3'/AS
Antisense strand(AS)	37	S12c/A	SS: 5'-GCUACAGAGAAcUCUCGAUtt-3'/AS
	38	S12u/A	SS: 5'-GCUACAGAGAAuUCUCGAUtt-3'/AS
	39	S12g/A	SS: 5'-GCUACAGAGAAgUCUCGAUtt-3'/AS

Positions of mismatch incorporated are indicated in *Blue, italic and lowercase*