Base-catalyzed Diastereoselective Trimerization of Trifluoroacetone

Anthony P. Silvestri and Philip E. Dawson*

Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute La Jolla, California 92037

Table of Contents

Materials and Methods
Synthesis and Characterization of Oxane (±)-1a
¹ H, ¹³ C, ¹⁹ F, NOESY, and HSQC Spectra of Oxane (±)-1a
Figure S1: Attempted Derivatizations of Oxane (±)-1a
Synthesis and Characterization of Oxane (±)-3
¹ H, ¹³ C, and ¹⁹ F NMR Spectra of Oxane (±)-3 S-08
Synthesis and Characterization of Borates (±)-4a-4j
¹ H, ¹³ C, and ¹⁹ F NMR Spectra of Borates (±)-4a-4jS-13
Figures S2 and S3: Crystallographic Data

Materials and Methods

All reactions were carried out in flame-dried glassware under an atmosphere argon with magnetic stirring. Anhydrous tetrahydrofuran (THF), toluene (PhMe), diethyl ether (Et₂O), dichloromethane (DCM), and benzene were obtained by passing commercially available pre-dried, deoxygenated solvents through a column of activated alumina. All reagents were used directly from commercial suppliers (Sigma-Aldrich Co., Strem Chemicals Inc., Acros Organics, and Oakwood Products Inc.), unless otherwise noted. Reactions were monitored by thin-layer chromatography using EMD Millipore 60 F₂₅₄ silica plates, visualizing with KMnO₄ staining solution, and also by GC-MS using a Shimadzu GC2010 gas chromatograph and connected Shimadzu QP2010S mass spectrometer. NMR spectra were recorded on either a Bruker – Biospin DRX 600, Bruker - DRX 500, or a Bruker - AMX 400. These instruments were calibrated using residual undeuterated solvent (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.16$ ppm; (CD₃)₂CO: $\delta_{\rm H} = 2.05$ ppm, $\delta_{\rm C} = 29.84$ ppm, 206.26 ppm) as an internal reference. Data is reported as follows: chemical shift in parts per million (δ , ppm), multiplicity (s = singlet, bs = broad singlet, d = doublet, t = triplet, q = quartet, and m = multiplet), coupling constants (Hz). ^{1}J -couplings between ^{13}C and ^{19}F nuclei in the ${}^{13}C$ NMR spectra for the -CF₃ groups in the boranes are not determined, however, ${}^{2}J$ -couplings are reported. LRMS data was obtained by electron ionization (EI) using a Shimadzu GC2010 gas chromatograph and connected Shimadzu QP2010S mass spectrometer.

Synthesis and Characterization of Oxane (±)-1a[†]

To a flame-dried flask containing a stir bar and dry THF (29.5 mL) under an atmosphere of argon was added a 1M solution of KHMDS in THF (500 μ L, 0.50 mmol, 0.05 equiv.). Trifluoroacetone (900 μ L, 10.0 mmol, 1.0 equiv.) was added in one portion. The rubber septum was immediately replaced with a polymer cap that was parafilmed in place and the reaction heated to 60 °C for 24 hours. Upon completion, the reaction was quenched with an aqueous saturated solution of NH₄Cl and the organic layer separated. The aqueous layer was extracted once with EtOAc and the combined organics dried over Na₂SO₄ and concentrated to a viscous oil. After leaving this oil under high vacuum for ~30 minutes it solidified into a white crystalline product that was broken apart with a spatula and triturated with hexanes (2 x 5 mL). After drying, 904 mg of **1a** (81% yield) was obtained with a diastereomeric purity of >20:1.

(±)-1a: (904 mg, 2.69 mmol, 81% yield, colorless shards). ¹H NMR * (600 MHz, CDCl₃) δ 3.70 (s, 1H), 3.31 (s, 1H), 2.28 – 2.19 (m, 1H), 2.08 (d, *J* = 2.3 Hz, 2H), 2.04 (d, *J* = 14.4 Hz, 1H), 1.80 (d, *J* = 1.7 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 124.71 (q, *J* = 282.97 Hz), 124.42 (q, *J* = 284.14 Hz), 121.49 (q, *J* = 285.25 Hz), 94.83 (q, *J* = 34.0 Hz), 76.18 (q, *J*

= 29.8 Hz), 70.89 (q, J = 30.3 Hz), 30.05, 29.83, 22.20. ¹⁹F NMR (376 MHz, MeOD) δ -86.27, -86.54, -88.43 (hexafluorobenzene reference at -164.90 ppm). **X-RAY**: (CCDC 1531815). **LRMS** (EI): 303 m/z [M – 2(OH)]⁺; 267 m/z [M – CF₃]⁺. **R**_f = 0.39 (1:4 EtOAc/hexanes). **MP** = 110.9 – 112.8 °C (crystallized from EtOAc).

†Note: When performed on 100 mmol scale at a concentration of 1M, 8.24 g (74% yield) of 1a was obtained.

Note:* Alcoholic protons are not visible in MeOD: ¹H** NMR (600 MHz, MeOD) δ 2.17 (dd, J = 14.1, 2.1 Hz, 1H), 2.00 (dd, J = 13.9, 2.1 Hz, 1H), 1.93 (d, J = 13.9 Hz, 1H), 1.86 (d, J = 14.1 Hz, 1H), 1.81 (d, J = 1.3 Hz, 3H).

¹H, ¹³C, ¹⁹F, and 2D NMR Spectra of Oxane (±)-1a

¹H NMR of (±)-1a

NOESY of (±)-1a: Strong correlations.

NOESY of (±)-1a: Weak correlations.

 ${}^{1}H - {}^{13}C HSQC$ of (±)-1a: Proton identities were determined unequivocally using NOESY.

Figure S1: Attempted Derivatizations of Oxane (±)-1a

Synthesis and Characterization of Oxane (±)-3

To oxane (±)-1a (100 mg, 0.30 mmol, 1.0 equiv.) in a 1 dram vial containing a stir bar was added AcCl (508 μ L, 7.15 mmol, 24 equiv.) and AcOH (68 μ L, 1.20 equiv., 4.0 equiv.). This mixture was stirred at room temperature for 48 hours under ambient conditions and subsequently concentrated with a stream of air. This was placed under high vacuum, triturated with hexanes (3 x 5 mL), and dried to give oxane (±)-3 (110 mg, 98%).

(±)-3: (110 mg, 0.298 mmol, 98% yield, white solid). ¹H NMR (600 MHz, CDCl₃) δ 3.62 – 3.52 (m, 1H), 3.22 (d, *J* = 2.2 Hz, 1H), 2.39 (dd, *J* = 14.5, 2.5 Hz, 1H), 2.14 (d, *J* = 0.7 Hz, 3H), 2.09 (d, *J* = 14.4 Hz, 1H), 1.92 (dd, *J* = 14.8, 2.2 Hz, 1H), 1.74 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 168.56, 129.11, 127.42, 126.54, 125.54, 124.64, 124.51, 123.67, 122.74, 122.62, 120.73, 118.83,

118.61, 94.32 (q, J = 32.5 Hz), 76.58 (q, J = 30.3 Hz), 75.74 (q, J = 29.6 Hz), 30.14, 25.62, 22.42, 21.26. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -81.61, -88.40, -91.00. **X-RAY**: (CCDC 1531817). **R**_f = 0.43 (1:4 EtOAc/hexanes)

¹H, ¹³C, and ¹⁹F NMR Spectra of Oxane (±)-3 ¹H NMR of (±)-3

i0 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 fi (ppm)

Synthesis and Characterization of Borates (±)-4a-4j

Standard procedure for 4a - 4f

Oxane (\pm)-1a (100 mg, 0.30 mmol, 1.0 equiv.) and 4-carboxyphenylboronic acid (49 mg, 0.30 mmol, 1.0 equiv.) were added to a 1 dram vial equipped with a stir bar under ambient conditions. Dry toluene (1.5 mL) was added and the reaction heated to 110 °C for 24 hours. Upon completion, the solution was cooled, concentrated, and azeotroped with additional toluene (3 x 4 mL) to remove residual water. This delivered a reasonably pure white solid which was triturated with hexanes (2 x 3 mL) to give borane (\pm)-4a (116 mg, 83%) as a white solid.

Standard procedure for 4g - 4j

Same as above procedure, except no trituration.

(±)-4a: (116 mg, 0.249 mmol, 83% yield, white solid). ¹H NMR (600 MHz, CDCl₃) δ 8.17 – 8.14 (m, 2H), 8.00 – 7.97 (m, 2H), 2.40 (d, *J* = 14.6 Hz, 1H), 2.35 – 2.30 (m, 2H), 2.27 (d, *J* = 12.8 Hz, 1H), 1.52 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.89, 134.17, 132.36, 129.02, 128.82, 128.05, 126.91, 125.72, 125.03, 123.85, 123.16, 123.04, 121.99, 121.17, 119.30, 117.42, 92.90 (q, *J* = 35.9 Hz), 75.61 (q, *J* = 30.3 Hz), 71.55 (q, *J* = 32.9 Hz), 31.72, 28.55, 23.29. ¹⁹F NMR (376 MHz, CDCl₃) δ -87.67, -88.18, -89.80. (hexafluorobenzene reference at -164.90 ppm). **R**_f = Unstable to silica and neutral alumina.

(±)-4b: (129 mg, 0.258 mmol, 86% yield, white solid). ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, J = 1.5 Hz, 1H), 7.99 (dd, J = 7.8, 1.5 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 2.42 (d, J = 14.6 Hz, 1H), 2.34 (d, J = 13.0 Hz, 3H), 2.28 (d, J = 12.7 Hz, 1H), 1.60 (d, J = 1.3 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 170.19, 140.64, 136.85, 133.68, 131.61, 130.43, 130.02, 129.19, 128.48, 128.37, 127.55, 125.63, 125.45, 124.36, 123.76, 122.50, 121.70, 119.83, 93.00 (q, J = 36.4 Hz), 75.45 (q, J = 30.5 Hz), 71.75 (q, J = 32.9 Hz), 31.79, 28.43, 23.50. ¹⁹F NMR (376 MHz, CDCl₃) δ -87.49, -88.12, -89.73. (hexafluorobenzene reference at -164.90 ppm). **R**_f = Unstable to silica and neutral alumina.

(±)-4c:* (120 mg, 0.258 mmol, 86% yield, white solid). ¹H NMR (600 MHz, CDCl₃) δ 7.97 – 7.93 (m, 1H), 7.87 – 7.83 (m, 1H), 7.28 – 7.23 (m, 1H), 7.20 – 7.13 (m, 1H), 6.13 (s, 1H), 5.83 (s, 1H), 2.44 – 2.23 (m, 4H), 1.51 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ δ 168.96, 138.02, 137.14, 135.04, 132.20, 129.18, 128.80, 128.37, 127.48, 126.93, 125.65, 125.44, 124.48, 123.78, 122.61, 121.79, 119.92, 93.10 (q, *J* = 36.0 Hz), 75.59 (q, *J* = 30.4 Hz), 71.72 (q, *J* = 32.7 Hz), 31.71, 28.54, 23.26. ¹⁹F NMR (376 MHz, CDCl₃) δ (hexafluorobenzene reference at -164.90 ppm). **R**_f = Unstable to silica and neutral alumina.

*Note: Hexanes is present in ¹H-NMR and ¹³C-NMR spectra and is ommitted from the characterization above. Heating under high vacuum (60 °C at ~100 mTorr) for 24 hours failed to remove residual hexanes. Dissolution in other solvents (EtOAc, Et₂O, DCM) and evaporation resulted in their deposition into product material. These solvents were also unable to be removed under high vacuum.

(±)-4d: (107 mg, 0.192 mmol, 64% yield, white solid). ¹H NMR (600 MHz, CDCl₃) δ 8.25 (dd, J = 2.0, 1.0 Hz, 2H), 8.05 (tt, J = 1.7, 0.9 Hz, 1H), 2.43 (d, J = 14.7 Hz, 1H), 2.39 – 2.28 (m, 3H), 1.52 (d, J = 1.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 134.46, 131.89 (q, J = 33.5 Hz), 127.42, 126.50 (m, J = 3.7 Hz), 126.19, 126.04, 125.55, 124.32, 124.23, 123.67, 123.52, 122.45, 122.43, 121.80, 121.65, 120.62, 120.58, 119.78, 117.90, 93.32 (q, J = 36.3 Hz), 75.68 (q, J = 30.6 Hz), 72.11 (q, J = 32.9 Hz), 31.71, 28.55, 23.51. ¹⁹F NMR (376 MHz,

CDCl₃) δ -66.10, -87.51, -88.11, -89.67. (hexafluorobenzene reference at -164.90 ppm). **R**_f = Unstable to silica and neutral alumina.

(±)-4e: (77 mg, 0.160 mmol, 54% yield, tan solid). ¹H NMR (600 MHz, CDCl₃) δ 10.48 (s, 1H), 8.33 (d, J = 1.8 Hz, 1H), 8.05 (dd, J = 8.4, 1.8 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H), 3.99 (s, 3H), 2.40 – 2.34 (m, 1H), 2.31 – 2.26 (m, 2H), 2.23 (d, J = 12.5 Hz, 1H), 1.49 (d, J = 1.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 189.71, 165.12, 142.52, 135.96, 128.75, 127.57, 126.38, 125.70, 124.72, 124.51, 123.82, 123.70, 122.64, 121.95, 121.83, 119.95, 118.08, 111.49, 93.02 (q, J = 35.9 Hz), 75.54 (q, J = 30.4 Hz), 71.57 (q, J = 32.6 Hz), 55.99, 31.71, 28.57, 23.21. ¹⁹F NMR (376 MHz, CDCl₃) δ -87.67, -88.21, -89.80.

(hexafluorobenzene reference at -164.90 ppm). $\mathbf{R}_{\mathbf{f}}$ = Unstable to silica and neutral alumina.

(±)-4f: (85 mg, 0.194 mmol, 65% yield, white solid). ¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.76 (m, 2H), 6.89 – 6.84 (m, 2H), 5.06 (s, 1H), 2.35 (d, J = 14.4 Hz, 1H), 2.29 – 2.19 (m, 3H), 1.51 (d, J = 1.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.66, 137.05, 136.71, 128.30, 127.62, 126.93, 126.76, 126.49, 125.77, 124.62, 123.89, 122.75, 121.91, 120.04, 115.26, 115.01, 92.70 (q, J = 35.6 Hz), 75.31 (q, J = 29.8 Hz), 71.37 (q, J = 32.7 Hz), 31.70, 28.58, 23.16. ¹⁹F NMR (376 MHz, CDCl₃) δ -87.85, -88.24, -89.95. (hexafluorobenzene reference at -164.90 ppm). **R**_f = Unstable to silica and neutral alumina.

(±)-4g: (123 mg, 0.270 mmol, 90% yield, viscous yellow liquid). ¹H NMR (600 MHz, CDCl₃) δ 7.81 – 7.78 (m, 2H), 7.43 – 7.38 (m, 2H), 2.41 – 2.33 (m, 1H), 2.32 – 2.21 (m, 3H), 1.50 (d, J = 1.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 139.53, 136.13, 129.19, 128.62, 128.38, 126.37, 125.68, 125.45, 124.50, 123.80, 123.69, 122.64, 121.93, 121.81, 119.94, 118.06, 93.05 (q, J = 35.8 Hz), 75.56 (q, J = 30.3 Hz), 71.61 (q, J = 32.6 Hz), 31.70, 28.55, 23.23. ¹⁹F NMR (376 MHz, CDCl₃) δ -87.76, -88.22, -89.87. (hexafluorobenzene reference at -164.90 ppm). **R**f = Unstable to silica and neutral alumina.

(±)-4h: (125 mg, 0.296 mmol, 99% yield, brown solid). ¹H NMR (600 MHz, CDCl₃) δ 7.89 – 7.86 (m, 2H), 7.57 – 7.53 (m, 1H), 7.42 (tq, J = 7.1, 0.8 Hz, 2H), 2.37 (d, J = 14.5 Hz, 1H), 2.31 – 2.26 (m, 2H), 2.24 (d, J = 13.1 Hz, 1H), 1.52 (d, J = 1.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 134.77, 132.97, 128.73, 128.19, 127.84, 127.14, 126.45, 125.74, 124.58, 123.86, 123.76, 122.71, 121.88, 120.84, 120.01, 118.13, 93.00 (q, J = 37.0 Hz), 75.55 (q, J = 30.3 Hz), 71.49 (q, J = 32.5 Hz), 31.72, 28.58, 23.21. ¹⁹F NMR (376 MHz, CDCl₃) δ -87.80, -88.22,

-89.90. (hexafluorobenzene reference at -164.90 ppm). $\mathbf{R}_{\mathbf{f}}$ = Unstable to silica and neutral alumina.

(±)-4i: (132 mg, 0.282 mmol, 94% yield, yellow wax). ¹H NMR (600 MHz, CDCl₃) δ 8.82 (s, 2H), 2.59 (s, 3H), 2.45 – 2.34 (m, 2H), 2.34 – 2.24 (m, 2H), 1.52 (d, J = 1.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 177.69, 162.66, 129.18, 128.37, 127.43, 126.18, 125.56, 125.44, 124.31, 123.69, 123.51, 122.44, 121.64, 120.57, 119.76, 93.11 (q, J = 36.4 Hz), 75.62 (q, J = 30.6 Hz), 71.86 (q, J = 33.1 Hz), 31.70, 28.62, 23.38, 14.24. ¹⁹F NMR (376 MHz, CDCl₃) δ -87.67, -88.14, -89.80. (hexafluorobenzene reference at -164.90 ppm). **R**_f = Unstable to silica and neutral alumina.

(±)-4j: (123 mg, 0.266 mmol, 89% yield, yellow wax). ¹H NMR (¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.30 (m, 2H), 7.25 – 7.22 (m, 1H), 7.19 – 7.15 (m, 2H), 6.94 (dt, *J* = 17.7, 6.3 Hz, 1H), 5.44 (dt, *J* = 17.7, 1.7 Hz, 1H), 3.52 (dd, *J* = 6.4, 1.6 Hz, 2H), 2.27 (d, *J* = 14.2 Hz, 1H), 2.20 – 2.10 (m, 3H), 1.52 (d, *J* = 1.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 155.12, 137.87, 128.45, 128.14, 128.06, 127.00, 126.00, 125.85, 125.77, 125.13, 123.90, 123.25, 123.07, 122.03, 121.38, 121.20, 119.32, 117.45, 92.04 (q, *J* = 35.9 Hz), 74.75 (q, *J* = 30.4 Hz), 70.42 (q, J = 30.4 Hz), 70.42 (q, J = 30.4 Hz), 70.42 (q, J = 30.4 Hz),

J = 32.6 Hz), 41.54, 31.03, 27.83, 22.54. ¹⁹F NMR (376 MHz, CDCl₃) δ -87.89, -88.26, -89.99. (hexafluorobenzene reference at -164.90 ppm). **R**_f = Unstable to silica and neutral alumina.

¹H, ¹³C, and ¹⁹F NMR Spectra of Borates (±)-4a-4j ¹H NMR of (±)-4a

¹⁹F NMR of (±)-4a

¹**H NMR of** (±)-4**c** – *Hexanes is present (unable to remove, see characterization above)*

¹³C NMR of (\pm) -4c – Hexanes is present (unable to remove, see characterization above)

¹⁹F NMR of (±)-4c

50 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -155 -150 -155 -160 -165 -170 -175 -18 f1 (ppm)

¹H NMR of (\pm) -4d

17

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 fl (ppm)

¹⁹F NMR of (±)-4e

io -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -18 f1 (ppm)

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

i0 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -18 f1 (ppm)

¹H NMR of (\pm) -4g

60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -155 -160 -155 -170 -175 -18 f1 (ppm)

¹H NMR of (±)-4h

50 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 f1 (ppm)

¹H NMR of (±)-4j

60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -155 -150 -155 -160 -165 -170 -175 -18 fl (ppm)

Crystallographic Data

Figure S2: Compound (±)-1a

Table 1. Crystal data and structure refinement for (±)-1a

da	
dawson01_a	
C9 H9 F9 O3	
336.16	
100.0 K	
0.71073 Å	
Monoclinic	
P 1 21/n 1	
a = 7.8200(13) Å	<i>α</i> = 90°.
b = 9.4398(16) Å	$\beta = 97.709(9)^{\circ}$.
c = 16.743(3) Å	$\gamma = 90^{\circ}$.
1224.8(4) Å ³	
4	
1.823 Mg/m^3	
0.219 mm ⁻¹	
672	
0.2 x 0.1 x 0.05 mm ³	
2.455 to 28.336°.	
-10<=h<=10, -12<=k<=12, -19	<=l<=22
12258	
3040 [R(int) = 0.0430]	
99.8 %	
Semi-empirical from equivalen	ts
0.2627 and 0.2206	
Full-matrix least-squares on F ²	
3040 / 0 / 199	
1.016	
R1 = 0.0399, wR2 = 0.1002	
R1 = 0.0572, wR2 = 0.1080	
n/a	
0.440 and -0.251 e.Å ⁻³	
	C9 H9 F9 O3 336.16 100.0 K 0.71073 Å Monoclinic P 1 21/n 1 a = 7.8200(13) Å b = 9.4398(16) Å c = 16.743(3) Å 1224.8(4) Å ³ 4 1.823 Mg/m ³ 0.219 mm ⁻¹ 672 0.2 x 0.1 x 0.05 mm ³ 2.455 to 28.336°. -10<=h<=10, -12<=k<=12, -19 12258 3040 [R(int) = 0.0430] 99.8 % Semi-empirical from equivalent 0.2627 and 0.2206 Full-matrix least-squares on F ² 3040 / 0 / 199 1.016 R1 = 0.0399, wR2 = 0.1002 R1 = 0.0572, wR2 = 0.1080 n/a 0.440 and -0.251 e.Å ⁻³

	X	у	Z	U(eq)
F(1)	3974(1)	7375(1)	6535(1)	27(1)
F(2)	1781(1)	6730(1)	5694(1)	27(1)
F(3)	4350(1)	6393(1)	5407(1)	28(1)
F(9)	8520(1)	4187(1)	7335(1)	32(1)
F(8)	8252(1)	1951(1)	7072(1)	32(1)
F(4)	470(1)	1416(1)	5326(1)	35(1)
F(6)	2306(1)	-86(1)	5906(1)	32(1)
F(7)	7887(1)	3489(1)	6109(1)	32(1)
F(5)	2953(2)	1193(1)	4922(1)	35(1)
O(3)	5166(1)	4657(1)	6659(1)	20(1)
O(1)	2446(2)	5054(1)	7060(1)	22(1)
O(2)	1892(2)	2260(1)	6840(1)	24(1)
C(2)	2577(2)	3804(1)	5811(1)	18(1)
C(7)	3381(2)	6371(2)	6008(1)	21(1)
C(1)	3392(2)	4909(2)	6409(1)	18(1)
C(4)	4785(2)	2076(1)	6436(1)	19(1)
C(3)	2868(2)	2336(1)	6186(1)	18(1)
C(5)	5680(2)	3269(2)	6965(1)	19(1)
C(8)	2145(2)	1208(2)	5577(1)	24(1)
C(9)	7595(2)	3230(2)	6867(1)	25(1)
C(6)	5514(2)	3131(2)	7860(1)	24(1)

<u>Table 2.</u> Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\mathring{A}^2 x \ 10^3)$ for (\pm) -1a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3.	Bond lengths	[Å]	and angles	[°]	for	(±)-1a

F(1)-C(7)	1.3345(18)
F(2)-C(7)	1.3346(19)
F(3)-C(7)	1.3390(19)
F(9)-C(9)	1.3421(19)
F(8)-C(9)	1.3386(18)
F(4)-C(8)	1.3348(19)
F(6)-C(8)	1.3394(18)
F(7)-C(9)	1.341(2)
F(5)-C(8)	1.338(2)
O(3)-C(1)	1.4150(18)
O(3)-C(5)	1.4440(17)
O(1)-C(1)	1.4039(19)
O(1)-H(1)	0.71(3)
O(2)-C(3)	1.419(2)
O(2)-H(2)	0.77(3)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(2)-C(1)	1.525(2)
C(2)-C(3)	1.5254(19)
C(7)-C(1)	1.535(2)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(4)-C(3)	1.521(2)
C(4)-C(5)	1.541(2)
C(3)-C(8)	1.529(2)
C(5)-C(9)	1.528(2)
C(5)-C(6)	1.528(2)
C(6)-H(6A)	0.9800
C(6)-H(6B)	0.9800
C(6)-H(6C)	0.9800
C(1)-O(3)-C(5)	118.20(11)
C(1)-O(1)-H(1)	112(3)
C(3)-O(2)-H(2)	113(2)

H(2A)-C(2)-H(2B)	108.3
C(1)-C(2)-H(2A)	109.9
C(1)-C(2)-H(2B)	109.9
C(1)-C(2)-C(3)	108.99(12)
C(3)-C(2)-H(2A)	109.9
C(3)-C(2)-H(2B)	109.9
F(1)-C(7)-F(2)	107.74(12)
F(1)-C(7)-F(3)	107.70(12)
F(1)-C(7)-C(1)	111.67(13)
F(2)-C(7)-F(3)	107.17(13)
F(2)-C(7)-C(1)	110.52(13)
F(3)-C(7)-C(1)	111.82(12)
O(3)-C(1)-C(2)	112.69(12)
O(3)-C(1)-C(7)	103.18(12)
O(1)-C(1)-O(3)	112.66(12)
O(1)-C(1)-C(2)	111.07(12)
O(1)-C(1)-C(7)	106.18(12)
C(2)-C(1)-C(7)	110.58(13)
H(4A)-C(4)-H(4B)	107.7
C(3)-C(4)-H(4A)	108.9
C(3)-C(4)-H(4B)	108.9
C(3)-C(4)-C(5)	113.29(12)
C(5)-C(4)-H(4A)	108.9
C(5)-C(4)-H(4B)	108.9
O(2)-C(3)-C(2)	107.27(12)
O(2)-C(3)-C(4)	113.10(13)
O(2)-C(3)-C(8)	106.89(12)
C(2)-C(3)-C(8)	109.68(13)
C(4)-C(3)-C(2)	110.28(12)
C(4)-C(3)-C(8)	109.51(12)
O(3)-C(5)-C(4)	112.05(12)
O(3)-C(5)-C(9)	102.32(12)
O(3)-C(5)-C(6)	111.66(12)
C(9)-C(5)-C(4)	107.29(12)
C(6)-C(5)-C(4)	114.20(12)

C(6)-C(5)-C(9)	108.46(13)
F(4)-C(8)-F(6)	107.32(13)
F(4)-C(8)-F(5)	107.16(13)
F(4)-C(8)-C(3)	111.53(12)
F(6)-C(8)-C(3)	110.79(13)
F(5)-C(8)-F(6)	107.40(12)
F(5)-C(8)-C(3)	112.39(13)
F(9)-C(9)-C(5)	112.34(13)
F(8)-C(9)-F(9)	107.39(13)
F(8)-C(9)-F(7)	107.36(14)
F(8)-C(9)-C(5)	109.98(13)
F(7)-C(9)-F(9)	106.47(13)
F(7)-C(9)-C(5)	113.00(13)
C(5)-C(6)-H(6A)	109.5
C(5)-C(6)-H(6B)	109.5
C(5)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
F(1)	36(1)	17(1)	28(1)	-1(1)	4(1)	-2(1)
F(2)	27(1)	23(1)	31(1)	4(1)	2(1)	7(1)
F(3)	35(1)	25(1)	27(1)	6(1)	15(1)	2(1)
F(9)	20(1)	33(1)	41(1)	-1(1)	-1(1)	-7(1)
F(8)	20(1)	30(1)	46(1)	4(1)	2(1)	6(1)
F(4)	27(1)	27(1)	46(1)	-6(1)	-13(1)	0(1)
F(6)	36(1)	16(1)	42(1)	0(1)	-5(1)	-2(1)
F(7)	20(1)	45(1)	33(1)	4(1)	10(1)	1(1)
F(5)	47(1)	33(1)	26(1)	-10(1)	6(1)	-1(1)
O(3)	17(1)	16(1)	27(1)	2(1)	3(1)	-1(1)
O(1)	21(1)	24(1)	22(1)	-1(1)	10(1)	0(1)
O(2)	19(1)	31(1)	24(1)	4(1)	7(1)	-2(1)
C(2)	18(1)	18(1)	19(1)	1(1)	3(1)	2(1)
C(7)	24(1)	18(1)	21(1)	1(1)	4(1)	1(1)
C(1)	18(1)	18(1)	19(1)	0(1)	4(1)	0(1)
C(4)	18(1)	16(1)	23(1)	0(1)	3(1)	1(1)
C(3)	18(1)	17(1)	19(1)	0(1)	3(1)	-1(1)
C(5)	15(1)	19(1)	24(1)	1(1)	2(1)	1(1)
C(8)	25(1)	20(1)	26(1)	-1(1)	-1(1)	1(1)
C(9)	19(1)	26(1)	29(1)	2(1)	2(1)	0(1)
C(6)	22(1)	26(1)	22(1)	2(1)	1(1)	-1(1)

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for (\pm) -1a. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2h k a^* b^* U^{12}]$

	Х	У	Z	U(eq)
H(2A)	3105	3856	5307	22
H(2B)	1325	3988	5679	22
H(4A)	5356	1978	5945	23
H(4B)	4935	1172	6736	23
H(6A)	6043	3957	8150	35
H(6B)	6102	2268	8075	35
H(6C)	4291	3081	7929	35
H(2)	2110(40)	1600(30)	7109(19)	88(11)
H(1)	2040(40)	4410(30)	7149(19)	90(12)

<u>Table 5.</u> Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for (±)-1a.

Figure S3: Compound (±)-3

Table 1. Crystal data and structure refinement for (±)-3.

Report date
Identification code
Empirical formula
Molecular formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Crystal color, habit Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient Largest diff. peak and hole

2016-06-17 dawson03 C11 H11 F9 O4 C11 H11 F9 O4 378.20 100.0 K 0.71073 Å Orthorhombic P212121 a = 8.2625(4) Å $\alpha = 90^{\circ}$. $\beta = 90^{\circ}$. b = 9.6405(4) Åc = 17.8895(7) Å $\gamma = 90^{\circ}$. 1424.98(11) Å³ 4 1.763 Mg/m^3 0.204 mm⁻¹ 760 0.24 x 0.12 x 0.12 mm³ colorless block 2.277 to 26.748°. -10<=h<=10, -12<=k<=12, -19<=l<=22 17826 3022 [R(int) = 0.0544]100.0 % Semi-empirical from equivalents 0.6466 and 0.5900 Full-matrix least-squares on F² 3022 / 0 / 220 1.055 R1 = 0.0310, wR2 = 0.0741R1 = 0.0352, wR2 = 0.07740.2(3) n/a 0.217 and -0.223 e.Å-3

	Х	У	Z	U(eq)
F(8)	847(2)	3059(2)	7968(1)	29(1)
F(9)	-1153(2)	3267(2)	7216(1)	29(1)
F(6)	268(2)	5837(2)	4651(1)	33(1)
F(5)	2790(2)	6138(2)	4393(1)	31(1)
F(7)	3(2)	5093(2)	7651(1)	32(1)
F(1)	6213(2)	5338(2)	7355(1)	35(1)
F(4)	1671(2)	7301(2)	5286(1)	34(1)
F(2)	4837(2)	6974(2)	6834(1)	34(1)
F(3)	6752(2)	5971(2)	6224(1)	36(1)
O(3)	1830(2)	2420(2)	6540(1)	18(1)
D(2)	2227(2)	3642(2)	5116(1)	20(1)
D(1)	3688(2)	5322(2)	5773(1)	21(1)
D(4)	-467(2)	2014(2)	5887(1)	22(1)
C(10)	887(3)	1677(2)	6064(1)	19(1)
C(2)	879(3)	4768(2)	6110(1)	18(1)
C(9)	273(3)	3803(2)	7394(1)	22(1)
C(4)	3087(3)	4424(2)	7039(1)	20(1)
C(1)	2162(3)	4893(2)	5501(1)	18(1)
C(3)	1483(3)	3843(2)	6748(1)	18(1)
C(8)	1715(3)	6057(2)	4954(1)	23(1)
C(6)	5290(3)	3341(2)	6209(2)	23(1)
C(5)	4347(3)	4647(2)	6423(1)	21(1)
C(7)	5548(3)	5743(3)	6707(2)	27(1)
C(11)	1754(3)	407(2)	5812(1)	25(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x 10^3$) for (±)-3. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table 3. Bond lengths [Å] and angles [°] for (±)-3.

F(8)-C(9)	1.339(3)	F(7)-C(9)-C(3)	110.10(19)
F(9)-C(9)	1.325(3)	H(4A)-C(4)-H(4B)	107.7
F(6)-C(8)	1.330(3)	C(3)-C(4)-H(4A)	108.9
F(5)-C(8)	1.342(3)	C(3)-C(4)-H(4B)	108.9
F(7)-C(9)	1.345(3)	C(3)-C(4)-C(5)	113.3(2)
F(1)-C(7)	1.341(3)	C(5)-C(4)-H(4A)	108.9
F(4)-C(8)	1.338(3)	C(5)-C(4)-H(4B)	108.9
F(2)-C(7)	1.344(3)	O(2)-C(1)-O(1)	112.96(19)
F(3)-C(7)	1 336(3)	O(2)-C(1)-C(2)	10823(18)
O(3)- $C(10)$	1 359(3)	O(2) - C(1) - C(8)	109.120(10)
O(3)- $C(3)$	1 450(3)	O(1)-C(1)-C(2)	113 45(19)
O(2)-H(2)	0.8400	O(1) - C(1) - C(8)	102.67(18)
O(2)- $C(1)$	1 390(3)	C(2)-C(1)-C(8)	102.07(10) 110.27(19)
O(1)- $C(1)$	1 413(3)	O(3)-C(3)-C(2)	115.27(19) 115.10(18)
O(1) - C(1)	1.413(3) 1.440(3)	O(3) - C(3) - C(2)	107.42(18)
O(1) - C(3)	1.440(3)	O(3) - C(3) - C(4)	107.42(18) 105.23(18)
C(10) C(11)	1.207(3) 1 480(3)	C(3) - C(3) - C(4)	103.23(18) 111 43(10)
C(10)-C(11)	0.0000	C(9) - C(3) - C(2)	111.43(19) 108 54(10)
C(2) - H(2R)	0.9900	C(4) C(2) C(2)	106.34(19) 108.70(10)
C(2) - H(2B)	0.9900	C(4)-C(5)-C(2) E(6)-C(9)-E(5)	108.79(19) 107.4(2)
C(2)- $C(1)$	1.525(5)	F(0)-C(0)-F(3)	107.4(2)
C(2)- $C(3)$	1.532(3)	F(0)-C(0)-F(4)	107.4(2)
C(9)-C(3)	1.528(3)	F(0)-C(0)-C(1)	111.09(19)
C(4)-H(4A)	0.9900	F(5)-C(8)-C(1)	111.1(2)
C(4)-H(4B)	0.9900	F(4)-C(8)-F(5)	107.3(2)
C(4)-C(3)	1.531(3)	F(4)-C(8)-C(1)	112.3(2)
C(4)-C(5)	1.531(4)	H(6A)-C(6)-H(6B)	109.5
C(1)- $C(8)$	1.534(3)	H(6A)-C(6)-H(6C)	109.5
C(6)-H(6A)	0.9800	H(6B)-C(6)-H(6C)	109.5
C(6)-H(6B)	0.9800	C(5)-C(6)-H(6A)	109.5
C(6)-H(6C)	0.9800	C(5)-C(6)-H(6B)	109.5
C(6)-C(5)	1.529(3)	C(5)-C(6)-H(6C)	109.5
C(5)-C(7)	1.537(3)	O(1)-C(5)-C(4)	112.9(2)
C(11)-H(11A)	0.9800	O(1)-C(5)-C(6)	111.2(2)
C(11)-H(11B)	0.9800	O(1)-C(5)-C(7)	101.50(18)
С(11)-Н(11С)	0.9800	C(4)-C(5)-C(7)	107.3(2)
		C(6)-C(5)-C(4)	114.3(2)
C(10)-O(3)-C(3)	123.09(18)	C(6)-C(5)-C(7)	108.6(2)
C(1)-O(2)-H(2)	109.5	F(1)-C(7)-F(2)	106.8(2)
C(1)-O(1)-C(5)	118.80(18)	F(1)-C(7)-C(5)	110.5(2)
O(3)-C(10)-C(11)	110.3(2)	F(2)-C(7)-C(5)	112.4(2)
O(4)-C(10)-O(3)	123.7(2)	F(3)-C(7)-F(1)	107.6(2)
O(4)-C(10)-C(11)	126.0(2)	F(3)-C(7)-F(2)	106.9(2)
H(2A)-C(2)-H(2B)	108.1	F(3)-C(7)-C(5)	112.4(2)
C(1)-C(2)-H(2A)	109.5	C(10)-C(11)-H(11A)	109.5
C(1)-C(2)-H(2B)	109.5	C(10)-C(11)-H(11B)	109.5
C(1)-C(2)-C(3)	110.62(18)	C(10)-C(11)-H(11C)	109.5
C(3)-C(2)-H(2A)	109.5	H(11A)-C(11)-H(11B)	109.5
C(3)-C(2)-H(2B)	109.5	H(11A)-C(11)-H(11C)	109.5
F(8)-C(9)-F(7)	106.99(19)	H(11B)-C(11)-H(11C)	109.5
F(8)-C(9)-C(3)	111.2(2)		
F(9)-C(9)-F(8)	106.86(19)		
F(9)-C(9)-F(7)	107.18(19)		
F(9)-C(9)-C(3)	114.2(2)		

<u>uispiace</u>		Applient takes	-21 the 101 lift, -21			U U
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
F(8)	32(1)	39(1)	17(1)	4(1)	2(1)	1(1)
F(9)	22(1)	39(1)	26(1)	-5(1)	4(1)	-2(1)
F(6)	30(1)	36(1)	34(1)	10(1)	-10(1)	0(1)
F(5)	37(1)	30(1)	27(1)	10(1)	4(1)	2(1)
F(7)	42(1)	27(1)	28(1)	-9(1)	12(1)	2(1)
F(1)	32(1)	39(1)	33(1)	-3(1)	-14(1)	-6(1)
F(4)	50(1)	16(1)	37(1)	2(1)	0(1)	6(1)
F(2)	39(1)	22(1)	41(1)	-7(1)	-6(1)	-4(1)
F(3)	29(1)	38(1)	41(1)	1(1)	1(1)	-13(1)
O(3)	20(1)	17(1)	16(1)	-2(1)	0(1)	2(1)
O(2)	24(1)	18(1)	18(1)	-4(1)	4(1)	0(1)
O(1)	22(1)	21(1)	20(1)	2(1)	-3(1)	-3(1)
O(4)	23(1)	22(1)	22(1)	-2(1)	0(1)	-2(1)
C(10)	24(1)	18(1)	15(1)	1(1)	3(1)	-4(1)
C(2)	20(1)	17(1)	19(1)	-2(1)	-1(1)	3(1)
C(9)	26(1)	22(1)	20(1)	-4(1)	-1(1)	2(1)
C(4)	23(1)	20(1)	18(1)	-1(1)	-4(1)	0(1)
C(1)	21(1)	17(1)	18(1)	-2(1)	0(1)	1(1)
C(3)	20(1)	15(1)	18(1)	-4(1)	-1(1)	0(1)
C(8)	27(1)	20(1)	23(1)	2(1)	0(1)	2(1)
C(6)	19(1)	23(1)	28(1)	0(1)	-2(1)	3(1)
C(5)	23(1)	21(1)	19(1)	0(1)	-3(1)	-2(1)
C(7)	26(1)	25(1)	29(1)	-1(1)	-3(1)	-3(1)
C(11)	30(1)	20(1)	25(1)	-4(1)	0(1)	1(1)

<u>Table 4.</u> Anisotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for (\pm) -3. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [\text{ h}^2 a^{*2} U^{11} + ... + 2 \text{ h} \text{ k} a^* \text{ b}^* U^{12}]$

	Х	У	Z	U(eq)
H(2)	2084	3668	/803	30
H(2A)	-122	4368	5896	22
H(2B)	619	5701	6308	22
H(4A)	3535	3777	7416	24
H(4B)	2879	5321	7292	24
H(6A)	4542	2647	6006	35
H(6B)	5828	2964	6653	35
H(6C)	6103	3574	5831	35
H(11A)	2572	659	5439	38
H(11B)	979	-243	5590	38
H(11C)	2283	-33	6241	38

<u>Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters ($Å^2x$ 10³) for (±)-3.</u>